CS748 - Arithmetic Circuit Complexity (Sem I, 2024-25)

 

SYLLABUS


topics (tentative).

- Basic algebra results, algorithms
- Newton's identities, circuits, ABP  (eg. determinant)
- Homogenization, Derivatives, Depth reductions
- Universality of depth-3 circuits, width-2 ABP, approximative

- Homogeneity (tool- shifted partials)
- Multilinearity (tool- partials & rank-concentration)
- PIT (eg. matching, primality)
- Circuit lower bounds vs. PIT
- Depth-3 PIT results
- Noncommutativity (tool- partial derivative matrix)
- Diagonal circuits
- Read-once ABP

Advanced topic ideas.

- Equivalence of multivariate factoring and the identity testing problem. [pdf]
- Tensor-rank and lower bounds for arithmetic formulas. [pdf]
- Exp.size lower bounds for constant-depth circuits (by Limaye-Srinivas-Tavenas'21) [pdf]
- Wronskian, Jacobian (eg. linear/ algebraic independence)
- Read-k ABP
- Bipartite matching in Quasi-NC
- Linear/ algebraic independence over finite fields
- Papers from the last 5-10 years. [mine]
- Geometric complexity theory. Eg. GCT Chasm. [link] [pdf]

Schedule.


[04-Nov week] PIT algorithms for assorted models: Diagonal depth-3. ROABP (or noncommutative ABP). Bounded top-fanin depth-3.    [no videos] [slide10]  

[28-Oct week] Hitting-set generator (hsg). Hardness to hsg.   [video23] [video24]   

[21-Oct week] Shifted-partials. Homogeneous depth-4. Polynomial identity testing.   [video21] [video22]    [slide09]

[14-Oct week] Degree-restricted depth-4. Shifted-partials rank measure.    [video19] [video20]    [slide08

[30-Sep week] Coeff.matrix rank measure. Constant-depth multilinear circuit lower bounds.    [video17] [video18]       

[23-Sep week] Exp.Lower bound mod p. Multilinear model and its measure (coeff.matrix rank). Constant-depth multilinear circuit lower bounds.    [video15] [video16]    [slide07]   

[09-Sep week] Flatten to depth-3, mod p? Exp.Lower bound results.  [video13] [video14]    [slide06]   

[02-Sep week] Flattening to depth-3. Reducing ABP-width: to width-3; and, to width-2. Approximative model: Formula = ABP-width-2.  [video11] [video12]  

[26-Aug week]
Depth-reduction. Flattening to depth-4; and, to depth-3.   [video9] [video10]   
[slide05]   

[19-Aug week] I- & II-order Derivatives. Depth-reduction for formula and circuit.   [video7] [video8]   

[12-Aug week] Determinant = IMM = ABP.  Homogenization. Derivatives.    [video5] [video6]     [slide04]

[05-Aug week]
Determinant is in VP. Algebraic branching programs (ABP).     [video3] [video4]     [slide02] [slide03]

[29-Jul week] Turing machines. Algebraic circuits. Algebraic complexity classes.     [video1] [video2]     [slide01]