
Leveraging Cache Coherence to Detect and Repair
False Sharing On-the-fly

Vipin Patel
Indian Institute of Technology Kanpur

Kanpur, India
vipinpat@cse.iitk.ac.in

Swarnendu Biswas
Indian Institute of Technology Kanpur

Kanpur, India
swarnendu@cse.iitk.ac.in

Mainak Chaudhuri
Indian Institute of Technology Kanpur

Kanpur, India
mainakc@cse.iitk.ac.in

Abstract—Performance bugs due to false sharing do not man-
ifest as observable correctness errors, and hence are challenging
to detect and repair. Prior approaches aim to both detect
and repair false sharing instances automatically but most of
them suffer from one or more of the following drawbacks:
(i) high performance overhead due to expensive tracking of
shadow memory, (ii) reliance on imprecise hardware events, and
(iii) limited applicability and portability.

We present extensions to the MESI cache coherence protocol
for efficiently identifying and mitigating false sharing instances.
The FSDetect protocol tracks the frequency of coherence misses
per cache block to identify harmful instances of falsely shared
lines while incurring negligible performance overhead. The
FSLite protocol extends FSDetect to transparently privatize the
falsely shared lines on accesses after detection, thereby eliminat-
ing the performance problem arising from false sharing. FSLite
maintains coherence by performing precise byte-level updates of
privatized blocks at the LLC on termination of privatization.

Our simulation results on a variety of multithreaded workloads
show that FSDetect can precisely identify all known harmful
instances of false sharing. FSLite, on average, improves the
performance of applications suffering from false sharing by 1.39X
over the unmodified baseline, at the cost of a minimal increase
in the chip area. Furthermore, applications running with FSLite
stress the network less and show improved energy behavior.

Index Terms—coherence protocol, false sharing, shared mem-
ory, performance bugs

I. INTRODUCTION

The invalidation-based coherence protocols used in mul-
ticore architectures enforces a single-writer multiple-reader
(SWMR) invariant, which means that, at any given time, a
cache line can be written by only a single core but can be
read concurrently by multiple cores [1], [2]. When multiple
cores try to update a cache line repeatedly, the updates
get serialized. Resolving cache line contention to keep the
cache hierarchy coherent incurs substantial overhead since it
requires synchronous decision-making across multiple cores,
and is a barrier to developing efficient and scalable shared-
memory multithreaded applications. Contended lines in a
cache-coherent architecture ping-pong between the private
caches of the sharing cores, hurting performance and inflating
communication traffic. Cache line contention arises from two
types of read-write data sharing: true sharing and false sharing.

We acknowledge the support received from the SERB Grant
SRG/2019/000384, TCS Research Scholar Program, and Research-I Foun-
dation of CSE, IIT Kanpur.

True sharing occurs when threads on different cores access
overlapping bytes in the same cache line, where at least one
access is a write. True sharing can either be intentional, e.g.,
threads communicate through a shared variable, or uninten-
tional, leading to data races [3]. False sharing arises when
threads access disjoint bytes of the same cache line and at
least one access is a write [4], [5].

TI
M

E
Directory

GetX Fwd_GetX

Xfer_Owner_ACK

GetXFwd_GetX Data
Xfer_Owner_ACK

Core 0

Data invalidate
block

WR b1

WR b2invalidate
block

GetX Fwd_GetX
Xfer_Owner_ACK

GetXFwd_GetX
Data

Xfer_Owner_ACK

Data
invalidate

block

invalidate
block WR b2

WR b1

b0 b3 b2b1

Core 1
b0 b2 b3b1

Fig. 1: A write-write false sharing instance resulting in re-
peated interventions (Fwd_GetX) across cores. WR a denotes
a coherent write to address a.

Cache line contention arising from false sharing is almost
always unintentional, is not fundamental to the application’s
correctness, and only serves as a performance bottleneck.
Figure 1 shows an example of write-write false sharing where
the sharing cores write to disjoint bytes b1 and b2 of a shared
cache line. The figure shows frequent message exchanges
under the MESI protocol [1], [2] because of repeated accesses
to the falsely shared line by Cores 0 and 1. False sharing
is expensive because of the (i) invalidation and intervention1

penalties leading to remote fetch stalls in the associated
memory operations, and (ii) cache and interconnect bandwidth
wastage [6]. The presence of false sharing and its impact on
application performance is sensitive to the application behavior
(e.g., input and thread-to-core binding), the compiler toolchain,
and the execution environment (e.g., cache line size) [7]–
[10]. Two independent memory locations may end up in the
same cache line due to optimizations by the compiler and
the language runtime or because of the memory hierarchy

1Intervention is a Get/GetX (read/read-exclusive) request forwarded by
the directory to the owner core caching the requested block in E/M state.

configuration of the target machine [9]. For example, a known
false sharing instance in the linear-reg benchmark from the
PHOENIX suite [11] is unintentionally hidden by GCC at
certain optimization levels, but not by LLVM [8]. Further-
more, false sharing can manifest dynamically with managed
languages when copying garbage collectors move objects in
the heap [12].

Although frequent false sharing can severely degrade per-
formance and inflate on-chip interconnect traffic in cache-
coherent multicore systems, the negative impact can go unno-
ticed [8], [13], [14]. Furthermore, manual resolution of false
sharing can be very challenging for complex real-world appli-
cations (e.g., see Table I). The negative impact of false sharing
on interconnect traffic can also be exploited by an attacker to
launch denial-of-service attacks. Launching an attack requires
running a multithreaded program with a very high volume
of falsely shared blocks. Such a program would drive the
interconnect bandwidth toward saturation, severely hampering
progress of other co-scheduled processes. The presence of
false sharing in several real-world applications (Table I) and in
benchmark applications from the PHOENIX [11], SPLASH-
2 [15], PARSEC [16], SynchroBench [7], and CCBench [9]
suites highlights the need for automated detection and repair
mechanisms [8]–[10].

TABLE I: False sharing detected in real-world applications

Linux kernel [17] MySQL and MariaDB [18], [19]
Boost library [20] Lmax disruptor [21]
OpenJDK [22], [23] Libdes [7], [24]
Spin Checker [7], [25], [26] Netflix [14], [27]

Impact of False Sharing: Figure 2 estimates the potential
performance speedup that can be achieved when false sharing
is manually repaired in a set of benchmarks. The results
are obtained on an eight-core processor modeled using the
gem5 simulator2 [28], [29]. The processor model uses a two-
level cache hierarchy with the L2 cache being shared across
all cores. The private L1 caches are kept coherent using
a directory-based MESI protocol. The average performance
speedup is 1.34X, with RC enjoying a peak speedup of 3.06X.
Furthermore, eliminating false sharing leads to an average
reduction of 84% in the interconnect messages, and 25% in
the energy expense of the cache hierarchy. The improvements
from fixing false sharing can be more pronounced for longer-
running applications that suffer from repetitive false sharing
with cycles expended in false sharing episodes increasing more
rapidly than those spent in non-false sharing portions of the
applications. The amount of false sharing that manifests during
the run time of an application can also vary with the compiler
toolchain as we show later in Section VIII-B.

Existing Approaches: Although the aforementioned study
considers manual repair of false sharing, it is difficult to
identify and fix false sharing manually for complex multi-
threaded applications [8], [13], [14], [30]. As a result, several
techniques have been proposed to automatically detect and
repair false sharing [4]–[10], [12], [30]–[36]. However, most
existing approaches do not scale [4], [33], can have false

2Section VIII provides details about the applications and the simulator.

BS LL LR LT RC SC SF SM geomean
1.0

1.2

1.4

Sp
ee
du
p

1.04

1.5 1.56
1.31

3.06

1.02 1.02 1.05

1.34

Fig. 2: Speedup achieved after manually fixing false sharing.

negatives [4], [7], [8], [10], [30]–[32], require changes targeted
to the language, compiler, and the runtime [8], [10], [12], need
access to the application source and the software development
process [8], [10], rely on fundamental changes to the core
cache organization [6], [34], introduce complex speculation in
coherence protocols [35], or can only detect false sharing but
cannot repair on-the-fly [5], [7], [8], [32], [36], [37].

Our Approach: In this work, we propose practical archi-
tectural support for online detection and repair of false sharing.
Given that the root cause of false sharing is the invalidation-
based SWMR coherence protocol, it is natural to look for
solutions in the coherence protocol layer only. We design
false-sharing-aware coherence protocols without significantly
deviating from the traditional core microarchitecture and cache
memory design. The baseline is a cache-coherent multicore
system with private caches, and all the cores share an inclu-
sive L2 cache, which is also the last-level cache (LLC). A
directory-based MESI cache coherence protocol [2] keeps the
L1 caches coherent. We assume that the directory entries are
embedded in the LLC tag array as extended tags/states, and
follow cache-centric notation for memory blocks assuming that
the directory is the owner (Section 8.6, [2]).

We propose FSDetect, a coherence protocol that helps
track more harmful instances of false sharing (i.e., frequent
false sharing that can potentially degrade performance). FS-
Detect maintains a per-core metadata array to track per-byte
access information that helps distinguish between true and
false sharing. FSDetect backs up the private access metadata
in a shared metadata array associated with each coherence
directory slice. FSDetect tracks the frequency of coherence
misses to the shared blocks, and marks a line as potentially
falsely shared when both the invalidation count and the fetch
request count of the line crosses a threshold and no true
sharing is detected. FSLite extends FSDetect by invoking the
repair mechanism for the potentially falsely-shared lines. For
repair, the coherence directory controller switches to a protocol
extension that allows a requesting core to privatize a cache
line flagged as falsely shared by FSDetect. The requesting
cores can, therefore, operate on private copies of the line,
thereby eliminating false sharing. Figure 3 shows the high-
level steps of how FSDetect first detects a falsely shared block
and after that, the block is governed by FSLite. Privatizing
the contended cache block avoids future intervention and
invalidation messages as long as there is no true sharing.
FSLite maintains coherence when a privatized line is evicted
from a private cache or privatization is terminated on certain
conditions, e.g., a privatized line experiencing a true sharing.

We discuss the protocols and several optimizations and exten-
sions in Sections III–VII.

We implement FSDetect and FSLite in gem5. Our simu-
lation results show that FSDetect can precisely identify and
FSLite can repair all known harmful instances of false shar-
ing with minimal overhead (Section VIII). FSLite improves
the run-time performance of applications experiencing false
sharing by 1.39X on average over the unmodified baseline
because it eliminates unnecessary cache line invalidations. The
improvement with FSLite is significant for several applica-
tions (up to 3.9X for RC). Importantly, the speedup achieved
by FSLite surpasses that of the manually fixed versions (shown
in Figure 2) for a few applications as FSLite improves perfor-
mance without inflating the working set size, thereby avoiding
any negative impact on the cache performance. The volume of
on-chip network traffic and the count of messages also reduce
with FSLite, thereby placing fewer constraints on the network.
FSLite reduces the energy expense in the cache hierarchy by
27%, on average.

Our results show that FSDetect and FSLite provide a
competitive automated solution to the long-standing problem
of false sharing while introducing modest overheads in terms
of the protocol complexity and on-chip area. Our approach im-
proves parallel software development productivity and avoids
most drawbacks of prior work. Our solution requires no
modification to the application source, the compiler toolchain,
or the binary, does not inflate the memory requirement, is
portable across software development toolchains, and leaves
the basic private and shared cache organization unchanged.

Contributions: This paper makes the following contribu-
tions:

• a low-overhead coherence protocol, FSDetect, to identify
harmful instances of false sharing,

• a repair protocol, FSLite, that fixes false sharing on the
fly in a manner that is transparent to applications,

• practical architecture support for automated online detec-
tion and repair of false sharing, and

• an evaluation that shows compelling benefits from auto-
mated repair of false sharing instances.

II. RELATED WORK

In this section, we briefly discuss related work for automat-
ically detecting and repairing false sharing.

Detecting False Sharing: Much prior work has focused
on only detecting instances of false sharing by using static
analysis [38], dynamic instrumentation [8], [33], [39], runtime
monitoring [4], [40], machine learning techniques [37], and
simulation with architectural extensions [5]. Many recent
techniques rely on accurate tracking of hardware performance
counters (e.g., Intel HITM) to identify remote cache hits and
use that to detect false sharing [7]–[9], [12], [30]–[32], [37].
DeFT is a hardware-based technique to automate detection of
false sharing [5]. DeFT maintains per-core private metadata
to track the last reader(s) and writer for each private cache
line and to identify overlapped accesses from different cores.
The metadata required in DeFT per L1 data cache line is
double that of FSDetect, and the false sharing detection logic

TI
M

E

Directory

GetX Fwd_GetX
Xfer_Owner_ACK

GetXFwd_GetX
DataXfer_Owner_ACK

Core 0 Core 1

Data invalidate
block

WR b1

WR b2invalidate
block

GetX
Data

GetX
Data

b0 b3b2

Directory provides private copies if
accesses are non-conflicting

WR b1

WR b2

The FC and IC cross the threshold after repeated accesses,
 Privatization is triggered

FS
D

et
ec

t
FS

Li
te

b0 b2 b3b1 b1

Fig. 3: Cores 0 and 1 continue to access disjoint block offsets
(b1 and b2) after privatization without intervention overhead.
FC=fetch request count, IC=invalidation and intervention count.

is per core. DeFT needs to communicate with a shared access
tracking table on every load/store. Furthermore, DeFT requires
post-mortem analysis to report false sharing instances and does
not offer any automated repair mechanism. Only detecting
false sharing has limited utility since it does not help with
the observed efficiency of program execution.

Detecting and Repairing False Sharing: There is a rich
body of work to automatically detect and repair false sharing
instances [4], [9], [10], [12], [30], [31]. Software techniques
to repair false sharing use compiler instrumentation, pro-
gram analyses, shadow memory tracking, and support from
operating system or managed runtimes to transform the data
layout by padding and moving locations and modifying the
application binary [10], [12], [38], [40]–[42]. Compile-time
approaches mostly target array-based applications with regular
strided accesses, inflate memory footprint, require access to
the application source, are tightly coupled with the language
toolchain, and cannot generalize to the target architecture
where the application will be run [38], [43].

Sheriff [4] transforms shared-memory threads to processes
so that each thread updates its private copy of contended
data. Sheriff cannot detect write-write false sharing, incurs
high memory overhead because of page-level access tracking,
and suffers from significant performance overhead in programs
with frequent lock operations. Plastic [9] uses hardware per-
formance counters to detect memory contention, and requires
tight integration with custom hypervisors to resolve false shar-
ing by remapping the contended locations to different physical
memory. Plastic has a high overhead because of dynamic
binary instrumentation. Laser [30] detects false sharing using
the HITM events available in Haswell and newer architectures.
All the stores in a basic block containing a contended cache
line are performed using a software store buffer. Remix utilizes
performance counter support to detect false sharing, and then
pads class definitions to repair false sharing for managed
languages like Java [12]. TMI is a userspace analysis tool
that uses perf and ptrace utilities to detect false sharing,
and uses Sheriff to privatize contended regions of memory

dynamically [31]. Huron identifies false sharing with compiler
instrumentation and repairs false sharing with memory layout
transformations. Huron uses TMI during production runs
to identify undetected false sharing instances. In summary,
these software-based approaches do not scale [4], introduce
suboptimal fixes [9], [30], inflates memory footprint [10],
[12], can miss false sharing [4], can have false reports [4],
are runtime-specific [12], or require extensive support and
tight coupling with the system libraries and the software
development process [4], [9], [10], [31].

Coherence decoupling [35], a hardware solution to address
false sharing, introduces complex speculation in the coherence
protocol to enable consumption of values from invalidated
cache lines. It suffers from high volume of interconnect traffic
arising from false-sharing-induced invalidations and interven-
tions. Also, the core microarchitecture needs to be augmented
with support similar to load value prediction and recovery from
value misprediction.

Sub-block-grain coherence protocols that help reduce the
impact of false sharing have also been studied [6], [34],
[44], [45]. Minerva [44] is an adaptive sub-block coherence
protocol that uses sector caches to support fine-grained com-
munication (e.g., four bytes grain). However, Minerva requires
synchronization among caches when multiple cores share the
requested sub-block, and it is challenging to merge multiple
copies of a word arriving from different sources. In general,
sub-block coherence maintains coherence states at sub-block
grain leading to a significantly more complex and bulkier
protocol in terms of the state space. Sub-block coherence can
solve false sharing only when falsely shared bytes fall on
different sub-blocks. Our proposal has no such constraints.
The Protozoa family of protocols supports multiple non-
overlapping writers per cache block to reduce frequent inval-
idations from false sharing [6], [34]. These proposals require
support for cache blocks of variable granularity and introduce
complex changes to the existing cache hierarchy. Furthermore,
false sharing can still arise when the size of sub-blocks that
are invalidated is greater than one byte.

The scope consistency protocol [46] reduces cache misses
and invalidations by invalidating only the pages associated
with the current lock participating in lock-acquire operations.
Such an approach enforces additional constraints to maintain
synchronization variables in a specialized region and manage
updates to shared variables from within critical sections.

Other Approaches: Memory allocators like Hoard [47]
avoid heap allocations of thread-shared data on the same cache
line. However, such memory allocators cannot prevent false
sharing within a heap object or those caused by thread con-
tentions due to poor programming or thread scheduling [37].

Self-invalidation-based coherence protocols aim to reduce
the verification complexity of MESI-based protocols by rely-
ing on the data-race-free (DRF) assumption of language-level
memory consistency models (e.g., Java [48] and C++ [49])
to enforce coherence only at synchronization operations [50]–
[55]. A core self-invalidates its valid lines at an acquire opera-
tion and writes back dirty lines at a release operation. Although
such approaches are competitive with MESI for applications

that have false sharing, they often require additional hardware
support and suffer from performance overheads for programs
with frequent synchronization.

It is desirable to have an automated false-sharing detection
and repair mechanism that overcomes the drawbacks of the
existing proposals discussed in this section. Such a technique
should be accurate, efficient, and portable across compiler
toolchains. The approach should not require the application
source, should not modify the application binary, and should
be independent of the software development process.

III. HIGH-LEVEL DESIGN OVERVIEW

This section presents a high-level overview of our proposed
false-sharing detection and repair protocols. Figure 4 shows
the overall architecture. Later sections discuss the protocol
and the architectural extensions in more detail.

LLC +
 Directory SAM

Counters
(FC,IC,PMMC,

and HC)

Main Memory

Core 0

SAM: Shared Access Metadata

PAM: Private Access Metadata

L1D PAM

Core 1

L1D PAM

Core N

L1D PAM

FC: Fetch Counter

IC: Invalidation Counter

HC: Hysteresis Counter

PMMC: Pending Metadata Message Counter

Fig. 4: Our proposed architecture (not according to scale). The
new structures added by our proposal are shaded.

A. Detecting False Sharing

The FSDetect protocol precisely and efficiently detects
cache lines that suffer from false sharing. FSDetect piggybacks
on MESI transitions [1], [2] to track the frequency of fetch and
invalidation/intervention requests needed to identify contended
cache lines, and uses byte-granular access metadata to distin-
guish between true and false sharing. The protocol maintains
precise access information in per-core private access meta-
data (PAM) table. When a core reads (writes) a byte of memory,
the private cache controller updates the corresponding read
(write) metadata in the PAM table. It is important to maintain
the access metadata for a block as long as it is privately
cached in any core in the multiprocessor. A shared access
metadata (SAM) table associated with each LLC/directory slice
maintains the access information for the blocks across all the
cores. An entry in the SAM table is updated whenever the
corresponding private metadata is received from a core. The
directory uses the shared metadata along with the metadata in
incoming messages to ensure that the accesses from different
cores do not conflict. FSDetect maintains additional state
per entry in the PAM and the SAM tables to limit metadata
communication (see Section IV).

The key insight in FSDetect is that false sharing generates
frequent invalidation and intervention messages along with
high volume of fetch requests in a write-invalidation-based
coherence protocol. FSDetect tracks the number of invalida-
tions and interventions along with the number of fetch requests
received by the LLC for a cache block B. Block B is marked
potentially falsely shared when (i) there is no true sharing
involving B and (ii) the number of fetch requests received
by the LLC from any core for B and the total number of
invalidations and interventions sent by the directory for B

exceed certain thresholds. Setting these thresholds high filters
out the less impactful instances of false sharing. The FSLite
protocol is enabled for potentially falsely shared blocks.

B. Repairing False Sharing

The false sharing problem can be alleviated if each core
accesses the falsely shared bytes of a block in isolation,
thereby avoiding unnecessary invalidations and interventions.
The directory invokes the repair of a falsely shared cache block
by initiating privatization of the block and informs the existing
owner/sharer(s) that the block will be privatized. Any core
that has the block in its private cache communicates the PAM

table entry of the block to the directory slice and clears the
PAM entry of the block. The directory checks for true sharing
conflicts for all incoming private access metadata messages. In
the absence of a true sharing conflict, the directory privatizes
the cache block. The privatization procedure is aborted if a
true sharing conflict is detected.

FSLite continues to check for true sharing conflicts at the
granularity of individual bytes even after a cache block has
been privatized. FSLite performs a conflict check whenever a
byte offset of a privatized cache block is accessed for the first
time after the block is privatized (determined from the PAM

table entry). A privatized episode of a block is terminated if
the directory entry, the LLC copy, or the SAM table entry of
the block is evicted. At the end of a privatized episode of a
block, the modified bytes from the privatized copied of the
block are merged with the LLC copy of the block.

IV. FSDETECT: COHERENCE PROTOCOL TO DETECT

FALSE SHARING

PAM Table: FSDetect maintains metadata correspond-
ing to reads and writes performed by a core in a per-core
private access metadata (PAM) table. Each PAM table entry
corresponds to an L1D cache block and maintains one read
and one write bit per byte (see Figure 5a). A PAM table has
512 entries for a 32 KB L1D cache with 64-byte cache lines.
A core’s PAM table is connected to its L1D cache controller.
On every load/store access, the L1D cache controller updates
the bits corresponding to the cache line bytes touched by the
core. The read and write bits can be maintained at a coarser
grain than a byte to reduce the PAM table overhead.

FSDetect maintains a per-block SEND_MD bit in the PAM
table to limit metadata communication on eviction of private
blocks. On an L1D cache eviction, the corresponding PAM table
entry is invalidated and the core sends the contents of the PAM

entry to the directory if the SEND_MD bit is set in the entry.
The directory acknowledges the receipt of the PAM entry. We
assume MESI with silent evictions enabled. A 129-bit PAM

table entry is organized as two separately accessible 8-byte
segments (read and write bit-vectors) and the SEND_MD bit.

SAM Table: The shared access metadata (SAM) table
associated with each LLC/directory slice maintains the last
writer and a list of the readers for each byte of a cache block
for the shared blocks across all the cores (see Figure 5b). For
each byte, the SAM table uses C bits to track all readers and
log

2
C+1 bits to identify the valid last writer, where C is the

number of cores. Each SAM table entry also maintains a TS bit

1 bit

R W R W WR

byte 0 byte 1 byte B-1

B = size of cache block in bytes

SEND_MD
bit

1 bit

(a) PAM table entry

C = # cores

TS bit

1 bit

C+1+log C bits

byte 0 byte B-1

C+1+log C bits

(b) SAM table entry

C = # cores
Invalidation
counter (IC)

7 bits

Fetch
counter (FC)

7 bits

PMM counter
(PMMC)

log C bits

Hysteresis
counter (HC)

2 bits

(c) Metadata per directory entry

Fig. 5: Schematics of (a) private access metadata entry, (b)
shared access metadata entry, and (c) directory entry metadata.

that is set when a true sharing involving any byte of the cache
block is detected. For an 8-core system with 64-byte cache
lines, a SAM table entry is (8 + 1 + log

2
8) ∗ 64 + 1 = 769

bits (i.e., ∼ 97 bytes) in size. This overhead can be reduced
by maintaining the metadata at a coarser grain than a byte.
Given that only a few lines in an application are falsely shared
at a time, the SAM table implemented as a set-associative
cache having 128 entries per 2 MB LLC slice and exercising
LRU replacement works well (Section VIII-B). We discuss
optimizations to reduce the width of a SAM entry in Section VI.

A SAM table entry is read and written when metadata from
the corresponding PAM table entry is received. A SAM table
entry is invalidated at the end of each sharing episode and
cleared at the beginning and end of a privatized episode of
the corresponding block (see Section V).3 An entry in the SAM

and PAM tables is invalidated once the corresponding block is
evicted from the LLC as per the inclusion policy. A SAM table
entry may also get evicted due to space constraints.

Directory Metadata: Each directory entry maintains a
fetch count (FC) and an invalidation count (IC) (see Figure 5c).
We discuss the pending metadata message count (PMMC) and
the hysteresis count (HC) in Sections V and VI, respectively.
The FC of a cache block B tracks the total number of Get, GetX,
or Upgrade requests received by the LLC from any core for B.
The IC tracks the number of invalidations and interventions
sent by the directory for B. FSDetect initializes FC and IC

to zero when a block is filled into the LLC. The directory
controller also resets both FC and IC of a directory entry if
any of them saturates to the maximum possible value (127 for
7-bit FC and IC). In an 8-core system, each directory entry is
extended by 19 bits to accommodate all the counters.

3A sharing episode of a block B starts from the time the first sharer core
fetches a copy of B into its private cache and ends when all sharers/owner
have/has evicted all copies of B from their private caches. Each LLC residency
period of a block can experience multiple sharing episodes. A privatized

episode of a block B starts when B moves to the privatized state and lasts
till privatization is terminated or the application completes execution.

Metadata Maintenance: When a core C ′ requests for
a block B cached in core C, the directory consults the TS

bit in the corresponding SAM table entry to check whether
the line has already experienced true sharing. In addition to
sending an intervention or invalidation, the directory requests
metadata from the owner (if state is E/M) or sharers by setting
a spare bit (REQ_MD) in the header of the intervention/in-
validation message if the TS bit is unset. On receiving an
intervention/invalidation message, core C copies the REQ_MD

bit from the header of the received message into the header of
the intervention response or the invalidation acknowledgment
that it sends to the requesting core C ′ and C ′ further copies
the REQ_MD bit into the SEND_MD bit of B’s PAM table
entry. This allows core C ′ to decide whether to send the
private metadata to the directory on a possible eviction of
B in future. Core C also sends its PAM entry for block
B to the home LLC/directory slice in a separate REP_MD

metadata message if the REQ_MD bit was set in the header
of the intervention/invalidation message. The REP_MD message
carries the read and write bit-vectors as a 16-byte payload. On
receiving an intervention due to a Get request, C copies the
REQ_MD bit from the intervention message into the SEND_MD

bit of the requested block’s PAM entry. On the other hand,
on receiving an intervention due to GetX or on receiving an
invalidation message for block B from the directory, core C

invalidates B and the corresponding PAM entry.
On receiving a REP_MD message, the directory controller

updates the corresponding SAM table entry and sets the TS

bit if true sharing is detected. A true sharing involving a
byte offset b ∈ B is inferred if either of the following two
conditions holds: (i) b is marked as read-only in the currently
received private metadata entry from core C, there is a valid
last writer C

′

recorded in b’s SAM table entry and C ̸= C
′

, or
(ii) b is marked as written to in the currently received private
metadata entry from core C, and (a) there is a valid last writer
C

′

such that C
′

̸= C, or (b) b has one or more reader cores
recorded in the reader bit-vector of its SAM table entry and
at least one reader CR ̸= C. Verifying these conditions does
not require maintaining a full bit-vector of readers for each
byte. However, a precise bit-vector is useful when reporting
the complete set of cores involved in a detected instance of
false sharing. We discuss a possible optimization in Section VI.

Example: Figure 6 shows an example to highlight the
steps in on-the-fly detection of false sharing. The example
assumes 4-byte cache blocks, and the numbers (in black
circles) indicate the order of events. On Core C0’s GetX request
for accessing block offset b1 (1), the directory increments
FC by one and responds with the data block (2). Core C1’s
Get request (3) increments both the FC and IC by one. The
directory sets the REQ_MD bit in the intervention message
before forwarding Core C1’s Get request (4) to C0. On
receiving C1’s forwarded request, C0 responds to the directory
with the data (5a). C0 also sends the PAM entry (5b)
because REQ_MD was set, and the directory checks for conflicts
and updates the relevant bits in the corresponding SAM entry
of B to mark C0 as the last writer. Similarly, on the next UPG

request from C0 (6), the directory sets the REQ_MD bit before

forwarding an invalidation request to C1 (7). The directory
updates C1 as a reader for byte b2 after C1 responds with
the metadata (8). The directory will identify block B to be
potentially falsely shared when both IC and FC for the block
exceed their trigger thresholds and the accesses from different
cores do not conflict (i.e., TS bit is zero). High thresholds
can filter out less impactful instances of false sharing. In our
implementation, we set the thresholds for both FC and IC to
the same value and refer to it as the privatization threshold τP .
Once a block has been identified as potentially contended, the
repair mechanism is invoked to mitigate false sharing.

b0 b1 b2 b3 b0 b1 b2 b3

Dir Controller

Core0 Core1
ST LD

3 Get

4 Fwd_Get

8 MD
Inv

0 0 0 0
0 1 0 0

0 0 1 0
0 0 0 0

read bits

SAM table

PAM table

5b MD

PAM table

 write bits

cache block B cache block B

Last writer (LW) for b1 is updated
on , while the reader vector for
b2 is updated on 8

5b

ReaderVec.

C0 C1 C2 C3

b0
b1
b2
b3

C0
1

LW

75a WB
1 GetX

6 UPG

2 Data
5 Data

IC

FC

8

9

Fig. 6: Detecting false sharing instance in FSDetect protocol.
UPG and MD denote Upgrade and REP_MD, respectively.

V. FSLITE: PROTOCOL TO REPAIR FALSE SHARING

The FSLite protocol automatically repairs false sharing by
allowing multiple cores to access falsely shared bytes of a
cache line in isolation. FSLite introduces a new stable state
called PRV for a private cache block as well as directory
entry. The PRV state indicates that multiple cores may cache
the line marked PRV with write permissions, as long as
the updates do not conflict. The updates to FC and IC to a
block are disabled when it is in the PRV state. The FSLite
protocol uses a pending metadata message counter (PMMC) in
each directory entry (Figure 5c) to track how many metadata
message responses the directory should expect. The PMMC is
set to the number of owner/sharers every time the directory
sends out a message that triggers metadata responses.

A. Initiating Privatization

The FSLite protocol triggers the privatization of a block
when the directory receives a request for the block that has
already been identified to be falsely shared. Figure 7 shows the
four basic messages involved in privatization which in this case
is triggered by a GetX request from Core C0 (1). The existing
owner/sharer(s) of the block is/are informed about this through
a trigger privatization message TR_PRV (2) and PMMC in the
directory entry is set to the number of owner/sharers. If the
block is in the M state in a private cache, the owner core sends
a copy of the block to the LLC. Additionally, a private cache
having a valid copy of the block in any state (e.g., Core C1

in Figure 7) sends the private access metadata of the block
to the directory slice if the SEND_MD bit is set in the PAM

entry (discussed earlier), and clears the PAM entry (3). The

ReaderVec.

C0 C1 C2 C3

b0 b1 b2 b3 b0 b1 b2 b3

Dir Controller

Core 0 Core 1
GetX1

ST LD

Data_PRV4

b0
b1
b2
b3

C0
1

0 0 0 0
0 1 0 0

read bits
write bits

SAM table

PAM table

0 0 1 0
0 0 0 0

8

9

IC

FC

PAM table

TR_PRV2

LW

3 REP_MD

Fig. 7: Initiating privatization in FSLite.

directory controller waits for all in-flight metadata response
messages to arrive (i.e., PMMC drops to zero). On receiving a
metadata response message (REP_MD), the directory updates
the SAM entry, checks for true sharing, and updates the TS bit
in the SAM entry if a true sharing is detected.

Next, FSLite checks whether the current request (1 in
Figure 7) introduces any true sharing for the block, which
requires knowing the bytes touched by the request. FSLite
uses two spare bits in the message header to convey the
number of bytes (four choices—1, 2, 4, or 8) touched by
a GetX/Get/Upgrade. This information, in conjunction with the
starting byte address (required for optimizations such as criti-
cal word first) of the request, enables the directory to compute
the byte addresses touched by the request. Privatization is
initiated for the shared block after all true sharing checks
fail. The directory resets the SAM entry, updates it for the
bytes accessed by the current request, and responds to the
core which triggered privatization with a private copy of the
data block using a Data_PRV message (4). Prefetch requests
are distinguished from the demand requests through message
opcodes different from GetX/Get/Upgrade. For prefetch requests,
the FSLite protocol takes the number of bytes touched to be
zero. A privatized episode of a block initiated by a prefetch
request or a wrong-path load/store does not lead to any
correctness issue because the demand accesses to a privatized
block are verified for correctness at runtime as discussed next.

B. Read/Write Requests to Privatized Blocks

Figure 8 shows how Get/GetX requests are handled after a
block B is privatized. In the figure, assume that B is privatized
because of repeated false sharing accesses to offsets b1 and
b2 from cores C0 and C1. Suppose B is currently cached by
cores C0, C1, C2, and C3 in the PRV state. A store operation
to block B from C2 examines the read and write bits in the
PAM table entry of B in C2. If at least one of the accessed
bytes of B does not have the write bit set in the PAM table
entry, the L1D cache controller sends a GetXCHK request to
the directory (1) along with the number of bytes touched
in the message header. The directory checks whether each of
the accessed bytes in B’s SAM table entry satisfies one of the
following conditions to rule out any true sharing: (i) the last
writer is not valid and the reader bit-vector has at most one
reader that is same as the current requesting core, or (ii) the

Dir Controller

Core 2 Core 3
LDST

b0 b1 b2 b3b0 b1 b2 b3

read bits0 0 0 0
0 1 0 0

0 0 1 0
0 0 0 0write bits

PAM table PAM table
PRV

SAM table

ReaderVec.

C0 C1 C2 C3

b0
b1
b2
b3

C2
C0

1
1

LW

3 GetCHK
4 Ack_PRV

1 GetXCHK
2 Ack_PRV

Fig. 8: Serving a request to a PRV block in FSLite.

last writer is valid and is same as the requesting core. If one
of these conditions is satisfied, the directory responds to the
requesting core with an acknowledgment (2) and updates
the last writer of the accessed bytes in B’s SAM table entry.
On receiving the acknowledgment, the core proceeds with the
write and updates the relevant write bits in B’s PAM table entry.

The steps performed on a load operation to block B from C3

are similar. If neither the read bit nor the write bit is set in the
PAM entry of B in C3 for at least one of the bytes touched by
the operation, the L1D cache controller sends a GetCHK request
to the directory (3). This request, like GetXCHK, encodes the
number of bytes touched in the message header. On receiving
a GetCHK request for B, the directory looks up the SAM table
entry of B and checks whether each of the accessed bytes
satisfies one of the following conditions: (i) the last writer
is not valid, or (ii) the last writer is valid and is same as
the current requesting core. Satisfying one of these conditions
confirms absence of true sharing. In that case, the directory
responds to the requesting core with an acknowledgment (4)
and updates the reader bit-vectors of the accessed bytes in
the SAM entry. On receiving the acknowledgment, the core
proceeds with the read access and updates the read bits of the
accessed bytes in the PAM entry of B. If, on the other hand, a
true sharing is detected, the directory initiates a privatization
termination sequence (discussed later).

Within a privatized episode of a falsely shared block B,
only the first access (read or write) to a byte and the first
write to a byte of B from a core having B in the PRV state
see a two-hop critical path (requester to directory and back).
This is significantly better than three hops incurred by every

access to a falsely shared block in the baseline (requester to
directory, directory to owner, and owner to requester). The
blocking implementation of GetCHK can be improved through
speculative forwarding of the load values to the dependents.
The state checkpointing support that non-blocking GetCHK

would require can also be used to implement non-blocking
GetXCHK. We leave this exploration to future work.

The PRV state does not impose any change to the imple-
mentation of a fence instruction. Although the stores done
to a privatized block B by a core C are not made visible
to other cores when core C executes a fence instruction, any

attempt by another core C′ to access the bytes of B modified
by C leads to termination of the privatized episode of B and
core C′ receives the latest values of these bytes. Since any
true sharing automatically exposes the stores done by all the
cores to a privatized block, the fence instruction can remain
oblivious to the PRV state.

The loads and stores to a privatized cache line from a
core are not visible to other cores, but the bytes of the
privatized line accessed by different cores are disjoint. As a
result, within a privatized episode of a block, the loads and
stores to the block from different cores can be interleaved
arbitrarily to form a legal total order. All these possible total
orders are equivalent to a total order that is legal for the
baseline memory consistency model as long as the baseline
partial order within each core remains unaltered. Since GetCHK

and GetXCHK operations are blocking, the partial order within
a core conforms to the baseline partial order. In summary,
FSLite does not alter the guarantees of the baseline memory
consistency model.

C. Terminating Privatization

The directory controller initiates the termination of the
privatized episode of a falsely shared block if any of the
following holds: (i) there are conflicting accesses to the same
byte of a privatized block by two or more cores, (ii) a directory
entry or LLC block in the PRV state is evicted, (iii) the SAM

table entry of a privatized block gets evicted, or (iv) an access
to the privatized block is forwarded from another socket.

Conflict Detection: Figure 9 shows the termination of
a privatized episode of a shared block B by the directory
on detecting an access conflict. The figure shows a 4-byte
block falsely shared among four cores (each core accesses
the block offset using its core ID). A true sharing conflict is
detected when a GetCHK or a GetXCHK request fails to satisfy
the necessary and sufficient conditions of conflict-freedom, as
already discussed. In Figure 9, Core 0 attempts to write to a
previously untouched offset b1 triggering a GetXCHK request
(1). In such a situation, the directory controller initiates
termination by sending a special invalidation message Inv_PRV

(2) to each of B’s sharers, caching B in the PRV state. Each
sharer responds by sending B to the home LLC slice (Prv_WB,
3) and invalidating it from its private cache. On receiving

a response from a core, the directory controller updates the
LLC block at the byte positions where the last writer matches
the responding core. After the LLC block is updated with
all the responses, the SAM entry of B is cleared and the IC

and FC counters are reset. This completes the switch-over
to the FSDetect protocol. Finally, the directory responds to
the original GetCHK or GetXCHK request by treating it as a
traditional Get or GetX request, respectively.

Eviction of a Directory Entry or LLC Block: When a
directory entry or an LLC block is evicted, all privately cached
copies are invalidated as per the inclusion requirement, and
the privatized episode of a block is terminated. When an LLC
block in the PRV state is evicted, it is copied into a write
buffer, as is done on eviction of a dirty block. As and when
responses from the sharers arrive, the appropriate bytes are
updated in the write buffer. When all updates are done, the

b0 b1 b2 b3 b0 b1 b2 b3

Dir Controller

Core 0 Core 1

b0 b1 b2 b3 b0 b1 b2 b3

Core 3

Updates to PAM and SAM tables have
been omitted to avoid clutter

Core 2

2 Inv_PRV
Prv_WB3

IPRVIPRV IPRVIPRV

GetXCHK1

Fig. 9: Terminating privatization due to access conflict.

block from the write buffer is sent for writing to the next
lower level of the memory hierarchy, and the SAM table entry
of the block is invalidated.

Privatizing a falsely shared block increases the chances of
its directory entry or the LLC block getting aged and evicted
because the accesses can now happen within each core without
requiring directory or LLC access. We can reduce the chances
of premature termination by devising a replacement policy that
attaches a low eviction priority to the directory entries/LLC
blocks in the PRV state. The controller can evict a block in
the PRV state only if all the ways in a set are occupied by
privatized lines. We do not implement this optimization.

Eviction of SAM Table Entry: Eviction of the shared
access metadata of a privatized block results in losing the
access history of the block and can lead to incorrect execution
due to the inability to detect true sharing instances in future.
Therefore, the directory controller terminates privatization
once the SAM table entry of a privatized block is evicted. The
privatized copies of the block are retrieved and the LLC block
is updated at the appropriate byte positions.

Access from External Socket: Let us suppose socket
S caches a block B which is privatized. Since this socket
is necessarily the owner (M state holder) of this block, an
access to B from another socket S′ is forwarded to S by
the inter-socket coherence directory. Before responding to S′,
the privatized episode of B must be first terminated in S and
then the updated block is used to respond to S′. However, if
FSLite is also extended to the inter-socket coherence protocol,
the request from S′ would be handled by an inter-socket table
similar to the intra-socket SAM table and privatization in S

may not be terminated (see Section VII).

D. Other Protocol Details

Eviction of Privatized Blocks: When a core evicts a block
in the PRV state, it sends a usual writeback message to the
home LLC/directory slice. On receiving a writeback message
to a block in the PRV state, the home LLC controller reads
out the block from the LLC slice. In parallel, the directory
controller accesses the SAM entry of the block and compares
the last writer of each byte of the block against the ID of the
evicting core to prepare a bitmask for updating the relevant
bytes of the LLC block. The block read out from the LLC
slice is updated using the block in the writeback message at
the byte positions where the last writer matches the evicting
core. The updated block is written back to the LLC slice. On
successful update of the LLC slice, the directory removes the
evicting core ID from the list of sharers and the last writer.

Phantom Message: A private core may receive an invali-
dation or intervention for a line when the line has already been
evicted from the L1D cache and the corresponding entry has
been invalidated in the PAM table. As an example, consider a
core C having a block B in the M state. The directory receives
a GetX request from core C′ for B. The directory finds that
the TS bit for B is zero, increments PMMC of B, and sets the
REQ_MD bit in the header of the intervention message before
forwarding the request to C. Meanwhile, core C evicts block
B and issues a writeback to the LLC for B before receiving
the intervention. On receiving the late intervention, core C

forwards the data for block B from its local writeback buffer
to C′, but the metadata for B no longer exists in the PAM

table for C. In such a scenario, core C sends out a dataless
phantom message notifying the directory that the core no
longer caches the block and metadata. The directory uses
the phantom message to only decrement PMMC and does not
update the SAM entry of B.

Protocol Modifications: Figure 10 shows the state transi-
tions for a private cache block and the corresponding directory
entry into the PRV state after the block has been identified as
falsely shared and state transitions out of the PRV state when
the privatized episode of the block is terminated. A private
cache block B can switch to the PRV state in three scenarios
(Figure 10a): (i) B is in the M state and a read/write from
another core triggers privatization of B, (ii) B is in the S
state and a write from another core or the core caching B

triggers privatization, and (iii) a core reads/writes to bytes of
an invalid line B that is already in PRV state in another
core. Block B transitions to the I state when privatization
terminates. A directory entry transitions into the PRV state
on an invalidation or an intervention, provided the conditions
for conflict-freedom are satisfied (Figure 10b).

M

S

I PRV

WR/Other WR

Inv_PRV

Other RD/WR

RD/WR

(a) Private cache line

M

S

PRV

GetX/Get

GetX/Upgrade

I Inv_PRV

(b) Directory entry

Fig. 10: Transition diagrams of FSLite.

E. Protocol Races

In this section, we briefly discuss two scenarios to show
how FSLite handles protocol races.

Figure 11 shows a race involving accesses to a block B

privatized in core C1. Core C0 issues a GetX for B (1). The
directory does not detect a conflict and responds (2). A new
request is sent by C2 (3). The directory detects that C2’s
access conflicts with C1’s access, and initiates termination by
sending out invalidations (4) to C0 and C1. Suppose 4
reaches C0 before the response 2 . C0 responds with a special

Ctrl_WB message 5a as B is not present in the cache. C0 must

reissue the request on arrival of response 2 . Similarly, for

b0 b1 b2 b3 b0 b1 b2 b3

Dir Controller

Core0 Core1

b0 b1 b2 b3

Updates to PAM and SAM tables have been omitted to avoid clutter

Core2

I(4)PrvIM(1)I IM(3)I

Inv_PRV4

5(b) Prv_WB

3 GetX(b1)

1 GetX(b0)

Data_PRV2
Ctrl_WB5(a)

Fig. 11: Race between GetX response and invalidate privatiza-
tion request.

a Get request, the load will be reissued by the L1D cache
controller on detecting a similar race.

Figure 12 depicts a protocol race involving an upgrade
request. Core C0 issues an upgrade (1). Suppose C0’s request
triggers privatization of the requested block, and the directory
sends the initiate-privatization message (TR_PRV) to C0 and
C1 (2). Both the cores respond with metadata messages
(3). The directory performs a conflict check for the upgrade
request of C0, and sends an upgrade acknowledgment with
privatization (4) on detecting no conflict. On C2’s conflicting
request (5), the directory sends invalidations to terminate
privatization (6). Each sharer responds with writeback mes-

sages to the directory (7a and 7b). The directory merges
the copy of the cache line received from each core and updates
the line in the LLC. If the response 4 to C0 is delayed and
reaches after the invalidation (6), the Upgrade will be reissued
by C0 as a GetX.

b0 b1 b2 b3 b0 b1 b2 b3

Dir Controller

Core0 Core1

b0 b1 b2 b3

Updates to PAM and SAM tables have been omitted to avoid clutter

UPG(b0)1

Core2
TR_PRV2

PRV(2)S

GetX(b1)5

SM(1)S IM(4)I

7(b)
MD3

4

Inv_PRV6

UPG_Ack
_PRV

Prv_WB

Prv_ WB7(a)

Fig. 12: Race between Upgrade and terminate privatization.
UPG and MD denote Upgrade and REP_MD, respectively.

VI. DESIGN OPTIMIZATIONS

Data Initialization: In many applications, often the main
thread initializes the data (e.g., an array of work items). Later,
the worker threads repeatedly read and write to their partitions
of the shared arrays leading to false sharing. However, in such
a scenario, the FSDetect protocol correctly detects a write-
write true sharing between the only write by the main thread
during data initialization and the subsequent falsely shared
updates by the worker threads, thereby losing the opportunity
to privatize such cache lines. In general, an application may
exhibit a phased behavior where a short-lived true sharing
episode on a cache block is followed by a substantial stretch

of falsely shared accesses. To be able to successfully privatize
falsely shared blocks in such scenarios, FSDetect periodically
resets a private or shared metadata entry including the TS bit
whenever either FC and IC both cross a threshold τR1 or FC

attains a value of τR2. We set τR1 = 16 and τR2 = 127 for our
simulated system. In general, these values may require tuning.

Optimizing the SAM Table Size: Maintaining a precise
reader list per byte is the primary contributor to the size of the
SAM table. For a system with C cores and B-byte cache blocks,
the basic design requires C ×B bits to maintain information
about all the reader cores for each byte of a block to primarily
identify read-write true sharing for a block. However, a read-
write true sharing for a byte can be identified without the
knowledge of precise IDs of the reader cores involved in the
sharing. For each byte, it is sufficient to maintain the ID of
the last reader along with a valid bit and an “overflow” bit
indicating the presence of any reader other than the last reader.
The overflow bit for a byte is set when a core C reads the
byte and there is already a valid last reader different from C.
A read-write true sharing is detected on a write from core C

to a byte if and only if the byte has a valid last reader different
from C or the overflow bit is set for the byte. Thus, we can
replace C bits by (log

2
(C) + 2) bits per byte in the SAM

table entry. This optimized SAM table entry is 577 bits wide
as opposed to 769 bits in the basic design leading to a 25%
storage saving in an 8-core system with 64-byte cache blocks.
The only drawback of this optimization is that FSDetect cannot
report the precise reader core IDs involved in a false sharing
instance, although it continues to correctly identify all harmful
false sharing instances.

Hysteresis counter: A cache line can experience re-
peated interspersed episodes of false and true sharing. In
such scenarios, FSDetect repeatedly identifies the line as
falsely shared, FSLite privatizes the block, but the short-lived
privatized episode of the block gets terminated when FSLite
detects true sharing. The overhead of frequently triggering
and terminating privatization for such cache lines eclipses
the performance benefit of privatization. We introduce a 2-bit
saturating hysteresis counter (HC) with each directory entry
(Figure 5c) to address this issue. HC is initialized to zero,
incremented whenever a true sharing conflict is detected with
TS = 0, and decremented whenever both FC and IC cross
the privatization threshold provided HC > 0 and TS = 0. The
privatization sequence for a block is initiated if (i) TS = 0,
(ii) HC = 0, and (ii) both FC and IC cross the privatization
threshold τP . If both FC and IC cross the privatization threshold
for a block B, but the privatization sequence cannot be
initiated for not meeting the aforementioned conditions, the
SAM table entry as well as FC and IC of B are reset so that
the most recent access metadata can be gathered for B.

VII. DISCUSSION

Utility Beyond False Sharing: The proposed microar-
chitecture support for detecting and repairing false sharing
can be extended easily to carry out other shared memory
analyses and optimizations. First, FSDetect can be easily
adopted for identifying contended true-shared lines. Since
cache lines accommodating synchronization variables fall in

this category, FSDetect can identify and report contended
synchronization variables. Second, FSDetect, with simple ex-
tensions, can identify region conflicts and data races [56]–
[60]. Third, cache line privatization in some form has been
employed to accelerate commutative and associative parallel
reduction operations [61]–[64]. The privatization component
of FSLite can be augmented with a set of reduction merge
operations in the LLC controller to efficiently carry out these
parallel reduction operations.

Support for Three-level Cache Hierarchy: The presenta-
tion of our proposal so far assumes a two-level cache hierarchy.
A typical three-level cache hierarchy has a large mid-level (L2)
cache ranging in capacity from 256 KB to more than a
megabyte. We implement a PAM table connected to the L1D
cache controller as in a two-level cache hierarchy. Since a
block is not operated on by load or store operations while
it resides in the L2 cache, we do not need to implement an
access metadata table for the L2 cache blocks in a three-level
cache hierarchy. When an L1D cache block is evicted, the
corresponding PAM table entry is invalidated and the contents
of the invalidated entry are communicated to the SAM table
of the target LLC (in this case the L3 cache) slice. The SAM

table controller updates the corresponding SAM entry using the
received PAM entry. Thanks to the SEND_MD bit, we observe
that the traffic generated due to communication of the evicted
PAM table entries is only about 3% of the total L1D to LLC
traffic generated in the baseline MESI system with a two-level
cache hierarchy. This PAM table eviction traffic will remain
unchanged in the three-level cache hierarchy as well assuming
that the L1D cache is similar in both hierarchies. All other
aspects of our proposal remain unaffected in a three-level
cache hierarchy.

Support for Sparse Directory: The implementation of
our proposal assumes an in-cache directory for simplicity.
However, a space-efficient baseline design would implement
the directory as a set-associative cache, usually referred to as
the sparse directory. Our proposal does not rely on the actual
organization of the directory and therefore, continues to work
seamlessly in the presence of a sparse directory. On eviction
of a sparse directory entry, when the copies of the block being
tracked by the evicted directory entry are invalidated from the
private caches, the corresponding PAM table and SAM table
entries must also be invalidated.

Support for Non-inclusive LLC: The primary difference
between a non-inclusive and an inclusive LLC is that in the
former an entry found in the sparse directory may not have the
corresponding block cached in the LLC. Our proposal, except
in one scenario, does not rely on the presence of a block in
the LLC when its entry is found in the sparse directory. The
only one exception arises at the end of a privatized episode of
a block when the modified bytes from the privatized copies of
the block are merged with the LLC copy. If the LLC does not
have a copy of the block, the first writeback of a privatized
block allocates the block in the LLC. The rest of the protocol
is unchanged.

Extension to Scalable Multi-socket Systems: Our intra-
socket coherence protocol extensions can be easily incorpo-

rated in the inter-socket directory protocol of a scalable multi-
socket system. That would enable detecting and repairing
intra-socket as well as inter-socket false sharing instances.
Such a design would require a metadata access table attached
to the inter-socket coherence directory. This table can be
implemented as an SRAM cache embedded in the memory
controller. An evicted SAM table entry from a socket can be
communicated to the inter-socket metadata access table for
identifying the cross-socket contended cache blocks.

VIII. EVALUATION

A. Simulation Environment

We implement FSDetect and FSLite in the gem5 simula-
tor [28], [29] and the source code is available online (refer
to Appendix A for details). The gem5 simulator implements
a two-level blocking MESI coherence protocol [2] called
MESI_Two_Level. In MESI_Two_Level, the directory transitions to
a blocking state on (i) receiving a GetX/Upgrade request for a
block in S state, (ii) receiving a Get/GetX request for a block
owned by LLC, and (iii) receiving a request for a block owned
by a core. An explicit message from the requestor is required
to unblock the directory. We have modified MESI_Two_Level

so that the directory does not block in the first two of the
aforementioned three cases, obviating the need for an unblock
message in these two cases. We use this improved MESI as the
baseline cache coherence protocol, which closely resembles
the SGI Origin 2000 protocol [65].

The simulated system configuration is shown in Ta-
ble II. The latency and area numbers are computed using
CACTI [66]. Table II shows that the total storage overhead
of the PAM table, SAM table, and the directory extension is
less than 5% of the total capacity of the cache hierarchy. The
SAM table’s size includes its tag overhead and LRU state bits
assuming a 48-bit physical address. Its size drops to 9.7 KB
when the reader metadata optimization discussed in Section VI
is applied. The evaluation of all applications is done in the Full

System (FS) mode of gem5 with 4 child threads. We use an
in-order CPU model because that allows us to run a maximum
number of applications in the FS mode. Later in this section,
we evaluate our proposal on an out-of-order issue CPU model
running with the Syscall Emulation (SE) mode of gem5.

Benchmark Applications: Our approach is evaluated
on applications chosen from the PHOENIX [11], Syn-
chrobench [67], and PARSEC [16] benchmark suites, and
the Huron artifact [10], [68]. Table III lists the applications
from different suites used in the evaluation. These applications
have been used by prior work for studying false sharing [7],
[10]. To evaluate the performance and energy benefits of our
proposal, we include applications that are known to have false
sharing. To understand the overheads of our proposal, we also
include applications that do not exhibit any false sharing. We
evaluate the correctness of our protocols on several custom-
designed micro-benchmarks and with programs provided by
Feather [69], but do not discuss the results for microbench-
marks. FSDetect is able to detect all known harmful instances
of false sharing in both microbenchmarks and benchmarks.
Figure 13 shows the fraction of loads/stores that miss in the

TABLE II: System configuration simulated with gem5

Cores 8
CPU type In-order CPU with 3 GHz clock frequency
L1I cache 32 KB per core, 8-way, area: 3.02mm2

L1D cache 32 KB per core, 8-way, area: 7.43mm2

L1D Latency data: 3 cycles and tag: 1 cycle
L2 (LLC) 2 MB per core, 16 way, area: 13.74mm2

LLC Latency data: 8 cycles and tag: 2 cycles
Cache line size 64 bytes
Memory 3 GB, DDR3-1600, 8 ranks, 64-bit channel
Kernel and OS 4.19.83, Ubuntu 18.04
Compiler and flags gcc 7.5.0, -g, -static, default optimization

PAM table
8 KB (512 entries) per L1D cache, 8-way,
area: 0.017mm2

SAM table
12.7 KB (128 entries) per LLC slice, 16-way,
area: 0.095mm2

Directory extension 76 KB per LLC slice (FC, IC, HC, PMMC)
Conflict detection 2 cycles for conflict checking a PRV block
Tunable parameters τP = 16, τR1 = 16, τR2 = 127

TABLE III: Benchmark applications used in our evaluation

W/ false sharing W/o false sharing

Boost-Spinlock BS [10] Blackscholes BL [16]
Lockless-Toy LL [10] Bodytrack BO [16]
Linear-Regression LR [11] Canneal CA [16]
Locked-Toy LT [10] Facesim FA [16]
Reference-Count RC [10] Fluidanimate FL [16]
StreamCluster SC [16] Swaptions SW [16]
ESTM-SFtree SF [67]
String-Match SM [11]

L1D cache for applications with false sharing. Since a fraction
of the L1D cache misses leads to false sharing, this figure
shows that less than 5% of the L1D demand accesses lead
to false sharing on average. In the following, we discuss the
performance and energy benefits of our approach, the impact
of optimizations, and sensitivity to different parameters.

BS LL LR LT RC SC SF SM mean

0.05

0.10

Fr
ac

tio
n

0.01

0.05
0.08

0.06

0.18

0.03
0.01<0.005

0.05
L1D Misses

Fig. 13: Fraction of L1D cache accesses that lead to misses.

B. Performance and Energy Evaluation

Figure 14a shows the performance speedup achieved by our
proposal over baseline MESI for different applications that are
known to suffer from false sharing. FSDetect detects all known
impactful false sharing instances with negligible performance
overhead of 0.3% on the average, with a maximum overhead
of 3% for SM. FSLite repairs all instances of false sharing
identified by FSDetect, and achieves an average speedup of
1.39X. Several applications show significant speedup with
FSLite, e.g., LL, LR, LT, and RC, with a maximum benefit of
3.9X for RC. The observed performance gain with FSLite can
be attributed to lower miss rates in the L1D cache. The L1D
cache miss rates of LL, LT, and RC drop to nearly zero from
the baseline values of 5%, 6%, and 18% respectively (shown
in Figure 13), while that of LR drops to 0.8% from 8% in the

BS LL LR LT RC SC SF SM geomean

1.0

1.2

1.4

1.6
Sp

ee
du

p

0.99 0.98
1.04

0.97
1.04

1.47
1.54

1.44

3.91

1.03 1.04

1.39
FSDetect FSLite

(a) Speedup of FSDetect and FSLite protocols

BS LL LR LT RC SC SF SM geomean
0.25

0.50

0.75

1.00

No
rm

al
ize

d
en

er
gy

 u

sa
ge

1.01 1.02 0.97 1.01 1.01 1.04 1.01
0.97

0.69 0.65 0.7

0.26

1.01 1.01 0.97

0.73

FSDetect
FSLite

(b) Normalized energy expense in FSDetect and FSLite protocols

Fig. 14: Speedup and energy expense of FSDetect and FSLite
compared to the baseline MESI protocol.

baseline. On the other hand, applications with a muted benefit
in their L1D cache miss rate (BS, SM, and SF) have less
impact on their run time (≤4% speedup). SC does not show
any speedup because the volume of false sharing is small. We
exclude SC from the studies presented later in this section.

The FSLite protocol delivers performance close to the man-
ually fixed versions (see Figure 2) for most of the applications.
Interestingly, FSLite outperforms the manually-fixed versions
of two applications namely, LT and RC. FSLite outperforms
the manual fix for LT as the working set size of the original
application is inflated by 4X due to padding in the manually
fixed version. The manually fixed version reduces the L1D
cache miss rate from 6.4% to 2.4%, but FSLite eliminates
nearly all L1D cache misses leading to an L1D cache miss
rate of only 0.01%. In the manually fixed version, the benefit
of eliminating false sharing is offset by additional cache misses
due to the increased working set size. FSLite experiences good
locality as the working set fits in the L1D cache resulting
in a negligible L1D cache miss rate. The data layout of
RC is modified in the manually fixed version due to the
padding of the falsely shared field. Modifying the data layout
introduces additional arithmetic instructions in the application
binary for address computation of array indices requiring extra
execution cycles. These results highlight the important benefits
of our automated repair approach: does not inflate the memory
footprints of applications and does not modify the binary.

Figure 14b shows the energy expense of our protocols nor-
malized to the baseline. The computed energy includes static
energy expended in the cache hierarchy and the structures
added by our proposal as well as the dynamic fill energy
expended in the L1D cache and LLC. The figure shows that
the energy consumption of FSDetect is comparable to baseline,
while FSLite saves 27% energy on average. The savings in
static energy (not shown separately) in FSLite is 35%, which
is because of the reduced application execution time.

We observe that FSLite reduces the number of request
messages originating from the L1 caches by 80% on average

BL BO CA FA FL SW geomean
0.98

1.0

1.02

Sp
ee

du
p

0.99

1.01

0.99 0.99

1.01

0.98

1.0

1.02

No
rm

al
ize

d
 e

ne
rg

y1.01 1.01 1.01

Fig. 15: Speedup (left bar) and energy expense (right bar) of
FSLite for applications without false sharing.

for the applications that suffer from false sharing. However,
the metadata messages introduce, on average, 5% additional
interconnect traffic in FSLite leading to an overall reduction
of 75% interconnect traffic from the cores to the LLC. FSDe-
tect does not stress the network bandwidth due to metadata
messages and the overhead is within 1-2% of the baseline.

Figure 15 shows the speedup and normalized energy ex-
pense for applications without false sharing. FSLite has neg-
ligible impact on the performance and energy expense. The
mean slowdown and energy expense are both within 0.1% of
the baseline. Overall, when averaged over all 14 applications
listed in Table III, FSLite achieves a 1.21X speedup and 16%
energy saving.

Sensitivity to Privatization Threshold τP : Choosing a
reasonable value of τP is important for the performance of
FSLite. While applications may benefit substantially from
aggressive privatization with a smaller τP , a small threshold
may also repeatedly privatize blocks that later become truly
shared negating the benefit of privatization. The default value
of τP is 16. Setting τP to an integral multiple of the total
number of cores guards against premature privatization when
all cores are involved in sharing. Figure 16 shows the speedup
of FSLite with larger τP (32 and 64) relative to using the
default τP of 16. The results show that there is a small
slowdown (∼1%) on average with increasing τP . A larger
τP delays privatization leading to loss in performance. The
performance of the LL benchmark decreases with increasing
τP due to a small rise in the L1D cache miss rate.

BS LL LR LT RC SF SM geomean
0.9
0.95
1.0
1.05

Sp
ee
du
p 0.99 0.99 0.99

0.96 0.96
0.99

1.03
0.99

32 64

Fig. 16: Sensitivity of FSLite to the threshold τP .

Sensitivity to SAM Table Size: We observe that with the
default SAM Table size of 128 entries (8 sets × 16 ways) per
LLC slice, only 0.13% accesses replace a valid entry averaged
over all applications. As a result, when we increase the SAM

Table size to 256 entries per LLC slice, we do not see any
performance difference. A small SAM table works well because
a limited number of lines are falsely shared at a time.

Reader Metadata Optimization: The reader metadata
optimization introduced in Section VI reduces the SAM table
width by 25%. We observe that the total number of blocks
privatized with this optimization is the same as seen without
this optimization across all applications. Therefore, this opti-
mization offers a significant reduction in the SAM table’s area
overhead while enjoying the same performance benefit.

Impact of Coarse-grain Tracking: We explore tracking of
access metadata at a granularity coarser than a byte to reduce
the area overhead of the PAM and SAM tables. We observe that
the false sharing applications do not show any performance
degradation when the access metadata are maintained at 2-
and 4-byte granularity. This is expected because most false
sharing instances manifest with 4-byte data types. Tracking
access information at a 4-byte granularity reduces the size of
the PAM table to 2 KB per L1D cache and that of the SAM table
with reader metadata optimization to 3 KB per LLC slice.

Comparing FSLite with 128 KB L1D Cache: For a per
core and per LLC slice iso-storage evaluation, we compare
the performance of FSLite having a 32 KB L1D cache to
that of the baseline having a 128 KB L1D cache. Relative
to the baseline with 32 KB L1D cache, SM and LL degrade
in performance by 3% and 9% respectively in the baseline
with 128 KB L1D cache due to increased volume of false
sharing instances. With a smaller L1D cache, some of these
falsely shared lines get evicted early, thereby preventing the
corresponding false sharing instances from materializing. On
the other hand, baseline performance of LR, LT, SF, BO,
FA, and SW improve by 3%, 6%, 1%, 5%, 1%, and 4%
respectively with a 128 KB L1D cache. When averaged across
all 14 applications listed in Table III, FSLite having a 32 KB
L1D cache continues to deliver a 1.21X speedup relative to
the baseline having a 128 KB L1D cache.

Sensitivity to Larger Private Caches: A three-level cache
hierarchy introduces a large mid-level cache. To mimic its
behavior, we evaluate our proposal using a 512 KB L1D
cache in the two-level cache hierarchy. The average speedup
achieved by FSLite in this configuration for the false sharing
applications is 1.39X. Thus, FSLite continues to achieve
similar performance improvement with a larger private cache.

Performance on Out-of-order Issue Cores: We evaluate
FSLite with out-of-order issue cores using the syscall emula-
tion (SE) mode of gem54 to study whether dynamic scheduling
and out-of-order issue can hide some of the inefficiencies of
false sharing. Using 8-wide cores in SE mode, we could sim-
ulate six out of the eight applications with false sharing listed
in Table III. The baseline performance of these applications
improves by 5.1X on average when using the out-of-order
issue cores compared to the in-order cores. This large speedup
comes from an 86% reduction in commit stalls due to partial
hiding of false sharing overhead and 40% reduction in useful
commit cycles due to wider instruction processing pipeline
and 8-wide commit. When FSLite is enabled on top of this,
it further eliminates nearly 55% of the residual commit stalls
achieving an average speedup of 1.63X over the out-of-order
issue baseline. FSLite achieves an average speedup of 1.56X
for the same set of six applications on the in-order cores in
FS mode.

Comparison with Huron: Figure 17 compares the
speedup achieved by manual fix, Huron [10], and FSLite
relative to the baseline. We evaluate only those applications
from the Huron artifact that run successfully with gem5. The

4The version of gem5 (v20) used in our implementation does not support
out-of-order issue cores with FS mode [70].

BS LL LR LT RC SM geomean
0.9
1.0
1.1
1.2
1.3
1.4

Sp
ee

du
p

1.
04

1.
36 1.
89

1.
16

3.
5

1.
02

1.
49

1.
19

1.
47

1.
82

1.
19

1.
34

1.
06

1.
32

1.
04

1.
46

1.
93

1.
37 3.
75

1.
01

1.
57

Baseline Manual Huron FSLite

Fig. 17: Comparison between Huron and FSLite.

inputs to the applications across all the techniques are same.
The applications are compiled using the clang compiler that
comes with the Huron artifact and linked statically. Due to the
use of a different compiler toolchain, the speedup numbers of
manual fix and FSLite shown in Figure 17 may not match with
those shown earlier in the paper. FSLite outperforms Huron
and manual fix on average by 19.8% and 6.8% respectively.
Huron outperforms manual fix as well as FSLite by 14% on
BS as it commits 15% fewer instructions. For RC, Huron offers
limited benefit (34% speedup over baseline) and lags behind
FSLite and manual fix by significant margins. Huron fails to
mitigate all false sharing instances in RC. FSLite and Huron
deliver nearly similar performance on LL and SM, while FSLite
outperforms Huron on LR and LT. The benefits on SM are
limited due to short-lived false sharing episodes.

In addition to delivering better performance, FSLite enjoys
several other advantages over Huron. Huron requires access to
the application’s source and test cases for static pointer anal-
ysis, profiling, and logging memory accesses. Furthermore,
Huron’s approach needs to be replicated for every software
toolchain. Its compile-time data layout transformations may
not work for managed languages, languages with a moving
garbage collector, and dynamic languages in which code is
generated and loaded on-the-fly [12]. In contrast, FSLite does
not require additional compiler passes for tracking the memory
footprint of an application, does not assume the availability of
application’s source or application-related data or metadata,
does not require tight integration with the operating system,
does not alter the data layout, and does not inflate the memory
requirement of the applications. FSLite is agnostic of the
programming language features and compiler toolchain, and
can automatically and transparently fix false sharing in an
application irrespective of the development stack.

IX. SUMMARY

The performance degradation arising from the presence of
falsely shared cache lines is an artifact of the invalidation-
based SWMR cache coherence protocols. Unlike most prior
work, we propose coherence protocol extensions to automat-
ically detect and repair instances of false sharing, with no
dependence on the application source and the software stack.
Our simulation results show improved run time, energy be-
havior, and lower bandwidth demands on the on-chip network,
with a modest increase in hardware complexity, indicating that
FSDetect and FSLite protocols have the potential to solve the
long-standing performance problem of false sharing.

APPENDIX

DETAILS OF THE ARTIFACT

A. Abstract

The artifact includes implementation of our detection and
repair coherence protocols for false sharing in the gem5 simu-
lator and the image files for full system simulation with gem5.
To ease the setup process and portability, we provide a Docker
image with all dependencies pre-installed and ready-to-execute
scripts that automate the execution of applications and plotting
of graphs. The micro24-artifact-README file [71] is provided
with the instructions to set up the Docker image on the host
machine, and run the scripts.

B. Artifact Check-list (Meta-information)

• Program: The gem5-false-sharing directory in the
false-sharing-micro24 artifact repository [72] contains
the source files that implement our approach. Search for the
string “FalseSharing” to browse the changes we have intro-
duced in the Gem5 source code.

• Compilation: GCC v9+, Clang v7+, Python2.7, Scons
• Binary:

1) The pre-built binaries of applications are provided as tar
image files in the Docker image [73]. The image files of
the applications can be accessed using QEMU [74].

2) The raw images are built using instructions provided in
the Gem5-v20.0.0.3-resource [75]. The images include the
dependencies required for compiling applications that are not
included in the resources.

• Data set: The artifact includes applications from PARSEC [16],
Phoenix [11], Synchrobench [67], and Huron [10] suites.

• Run-time environment: Linux distribution, Docker, and KVM
• Hardware: An x86_64 system with minimum 8 cores and 32

GB RAM with support for virtualization.
• Execution: The artifact includes scripts to launch experiments

and plot graphs.
• Metrics: The effectiveness of our approach is measured

in terms of the speedup and savings in energy consumption
achieved for each application.

• Output: After an experiment completes successfully,
the gem5 stats file is generated in the directory
/home/prospar/prospar-micro-output

and the corresponding plot is generated in
/home/prospar/false-sharing-scripts-micro24

directory.
• Experiments: We provide scripts in the Docker image for

reproducing the results discussed in Section VIII.
• How much disk space required (approximately)?: Setting

up Docker, and downloading and compiling the source code and
benchmarks will require around 80 GB. We suggest having at
least 100 GB of free space in the root partition of the disk if
Docker uses the default installation path for storing and running
containers. Refer to Docker storage setting [76] to change the
default storage location.

• How much time is needed to prepare workflow (approx-
imately)?: Setting up the Docker image will take around
1–2 hours. The initial setup to create directories and build
gem5 protocols in the image will take 4–6 hours. Once all the
protocols are built, a sanity check can be done by testing the pro-
tocols with a microbenchmark. The test-app-script.sh
executes a microbenchmark and generates a plot, and takes
around one hour to complete. The script removes the plot
generated for the microbenchmark.

• How much time is needed to complete experiments (approxi-
mately)?: Reproducing all the results discussed in Section VIII

can take up to 3 months if the experiments are run sequentially
in a single Docker instance. We suggest running experiments in
parallel to speed up the evaluation.

• Publicly available?: Yes, the Docker image, the source code
of our implementation, the benchmarks, and the resources to
build the benchmark images are available on Zenodo [77]. Each
directory includes a README file with detailed instructions.

• Archived (provide DOI): Leveraging Cache Coherence to
Detect and Repair False Sharing On-the-fly [77].

C. Description

1) How to access: The source code and other resources can
be accessed via the GitHub repository [72] and Zenodo [77].

2) Hardware dependencies: An x86_64 system with 8
cores, 32 GB RAM, and 200 GB of free space with support
for virtualization.

3) Software dependencies: Ubuntu 22.04, Docker, and
KVM; user must be added to kvm and docker user groups.

D. Installation and Execution

Set up the host environment:

(i) Install Docker [78].
(ii) Install KVM [79].

(iii) Post Docker and KVM installation steps:

1 # Docker

2 sudo groupadd docker
3 sudo usermod −aG docker $USER # Your user ID

4 # KVM

5 sudo adduser $USER libvirt # Your user ID

6 sudo adduser $USER kvm

(iv) Please log in again to the host system to activate permissions.
Otherwise, the following steps may require sudo access.

(v) Update the perf_event_paranoid variable: sudo

sysctl kernel.perf_event_paranoid=-1.
(vi) Download the Docker image [73] of size ∼ 13 GB.

(vii) Import the Docker image: docker import

micro-fs-artifact.tar.
(viii) Get the image ID: docker image ls.

(ix) Activate the container: docker run -it -privileged

<image_id> /bin/bash.
(x) The user should log in to a new Bash shell in the Docker con-

tainer. Do not close the current terminal (say terminal-0).
(xi) Open another terminal say terminal-1 and run the command

: docker ps -a.
(xii) Copy the container ID of image <image_id>.

(xiii) Rename the container: docker container rename

<container_id> micro-fs. You can choose any name
of your choice.

(xiv) Close terminal-1.
(xv) Refer to the docker container page [80] for more commands.

Setting up the execution environment in the micro-fs

container:

(i) The following is a list of environment variables defined
in micro-fs:

1 MICRO_VIR_ENV="/home/prospar/micro−virtualenv"
2 MICRO_HOME="$MICRO_VIR_ENV/false−sharing−micro24"
3 MICRO_OUT="/home/prospar/prospar−micro−output"
4 MICRO_RES="/home/prospar/prospar−micro−result"
5 MICRO_SCRIPT="/home/prospar/false−sharing−scripts−micro24"

Please use the following instructions to validate the artifact
and build the gem5 source.

1 cd $MICRO_SCRIPT
2 # Ensure that all scripts and the framework code are up to date
3 git pull
4 # Validate the structural setup one time
5 bash validation−script.sh
6 # Extract the tar image, and build the necessary directories
7 # and protocols in gem5. May take up to 6 hours to complete.
8 bash setup−script.sh
9 # Validate the protocols

10 bash test−app−script.sh fslite fsdetect 1

Reproducing the results:

(i) Please use the following instructions to reproduce the
primary results discussed in Section VIII.

1 cd $MICRO_SCRIPT
2

3 # Figure 2, estimated completion time: 9 days/iteration
4 bash introduction−result.sh <num_of_iter>
5 # Figure 14, estimated completion time: 13 days/iteration
6 bash primary−result.sh <num_of_iter>
7 # Figure 15, estimated completion time: 10 days/iteration
8 bash parsec−result.sh <num_of_iter>

(ii) In Table IV, we list the Bash scripts to reproduce
the other results presented in Section VIII. All the
scripts can be run with bash <script-name.sh>

<num_of_iter>.

TABLE IV: List of Bash scripts
Script Description

fc-ic-result.sh Study FC and IC thresholds
granularity-result.sh Explore sensitivity to tracking width
sam-result.sh Explore sensitivity of SAM table size
baseline-128KB-result.sh Evaluate with 128KB L1D cache
huron-result.sh Compare with Huron
opt-reader-result.sh Script to verify readers optimization
out-of-order-result.sh Compare performance with OOO core

The estimated run times of the applications for one iteration
with the baseline MESI protocol are shown in Table V.

TABLE V: Run-time estimates
Applications Run time (in hr) False Sharing Present

Blackscholes 4 No
Bodytrack 12 No
Canneal 5 No
Facesim 24 No
Fluidanimate 12 No
Swaptions 26 No

Boost-spinlock 12 Yes
ESTM-sftree 18 Yes
Linear-reg 10 Yes
Locked-toy 18 Yes
Lockless-toy 34 Yes
Ref-count 14 Yes
Streamcluster 30 Yes
String-match 6 Yes

Total time 215

E. Experiment workflow

We provide scripts to reproduce all the results presented in
Figure 2 and Section VIII. Figures 2, 14, and 15 present the

primary results of the paper. The results from these figures
can be reproduced first before the other design exploration
and optimization studies reported in Section VIII.

F. Evaluation and expected results

After the successful completion of all applications
for a configuration, an output directory named after
the configuration will be created and will contain the
configuration of the simulated hardware and a stats
file. For example, the introduction-result.sh

will create a directory micro-manual-fix in
the $MICRO_OUT and $MICRO_RES directories.
The $MICRO_OUT/micro-manual-fix directory
will contain the gem5 result files with the
following directory structure for each application:
<protocol-name>/<input-size>/<iteration-

number>/<application-name>.
For each application, there will be output.txt and

error.txt files in addition to gem5 output files in the
output directory. The error.txt file captures errors encoun-
tered during a simulation, while the output.txt file logs
the progress of the application during simulation.

The $MICRO_RES/micro-manual-fix directory will
contain a consolidated CSV file for stats of all applications
generated after parsing the stats.txt (gem5 output file) file
of each application. The directory also contains the bar charts
for each stat with absolute values for all protocols included in
the experiment.

The graph plotting script reads the CSV file to gener-
ate relevant plots. The scripts will generate plots in the
$MICRO_SCRIPT directory in the Docker container (refer to
the README file [71] for the names of different plots). The
directory reference_plots contains the expected output
for each experiment.

Lower run time and energy dissipation are the primary per-
formance metrics that showcase the benefits of our proposed
approach. Figures 14 and 15 report both the run time and
energy consumption results. The other figures focus on the
run time of the applications. False sharing can also stress the
network resources by flooding the network with coherence
invalidation and intervention messages leading to wastage of
bandwidth and energy. The intermediate CSV file generated
for graph plotting in the $MICRO_RES directory for each
set of experiments provides the number of intervention and
invalidation messages for each protocol. For applications with
significant false sharing, the FSLite protocol should report a
significantly smaller number of invalidation and intervention
messages compared to the baseline non-blocking MESI pro-
tocol (Section VIII-A).

G. Experiment customization

The $MICRO_SCRIPT directory contains helper scripts
and different sets of configuration files. Each config file
defines values for the simulated hardware system. Our ar-
tifact allows customizing most of the configuration pa-
rameters by editing a config.ini file located in the
$MICRO_SCRIPT/config-script directory.

REFERENCES

[1] M. S. Papamarcos and J. H. Patel, “A Low-Overhead Coherence Solution
for Multiprocessors with Private Cache Memories,” in ISCA, 1984, pp.
348–354.

[2] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer

on Memory Consistency and Cache Coherence, 2nd ed. Morgan &
Claypool publishers, 2020.

[3] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer, “Detecting
Data Races on Weak Memory Systems,” in ISCA, 1991, pp. 234–243.

[4] T. Liu and E. D. Berger, “SHERIFF: Precise Detection and Automatic
Mitigation of False Sharing,” in OOPSLA, 2011, pp. 3–18.

[5] G. Venkataramani, C. J. Hughes, S. Kumar, and M. Prvulovic, “DeFT:
Design Space Exploration for On-the-Fly Detection of Coherence
Misses,” TACO, vol. 8, no. 2, Jun. 2011.

[6] H. Zhao, A. Shriraman, S. Kumar, and S. Dwarkadas, “Protozoa:
Adaptive Granularity Cache Coherence,” in ISCA, 2013, pp. 547–558.

[7] M. Chabbi, S. Wen, and X. Liu, “Featherlight On-the-Fly False-Sharing
Detection,” in PPoPP, 2018, pp. 152–167.

[8] T. Liu, C. Tian, Z. Hu, and E. D. Berger, “PREDATOR: Predictive False
Sharing Detection,” in PPoPP, 2014, pp. 3–14.

[9] M. Nanavati, M. Spear, N. Taylor, S. Rajagopalan, D. T. Meyer,
W. Aiello, and A. Warfield, “Whose Cache Line Is It Anyway? Operating
System Support for Live Detection and Repair of False Sharing,” in
EuroSys, 2013, pp. 141–154.

[10] T. A. Khan, Y. Zhao, G. Pokam, B. Mozafari, and B. Kasikci, “Huron:
Hybrid False Sharing Detection and Repair,” in PLDI, 2019, pp. 453–
468.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for Multi-Core and Multiprocessor Systems,”
in HPCA, 2007, pp. 13–24.

[12] A. Eizenberg, S. Hu, G. Pokam, and J. Devietti, “Remix: Online
Detection and Repair of Cache Contention for the JVM,” in PLDI, 2016,
pp. 251–265.

[13] W. J. Bolosky and M. L. Scott, “False Sharing and Its Effect on Shared
Memory Performance,” in USENIX SEDMS, 1993, p. 3.

[14] V. Filanovsky and H. Sane, “Seeing through hardware counters:
a journey to threefold performance increase,” Nov. 2022. [On-
line]. Available: https://netflixtechblog.com/seeing-through-hardware-
counters-a-journey-to-threefold-performance-increase-2721924a2822

[15] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in ISCA, 1995, pp. 24–36.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in PACT, 2008,
pp. 72–81.

[17] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An Analysis of Linux Scalability to Many
Cores,” in OSDI, 2010, pp. 1–16.

[18] M. Ronstrom, “MySQL team increases scalability by >50% for
Sysbench OLTP RO in MySQL 5.6 labs release april 2012,” Apr. 2012.
[Online]. Available: https://mikaelronstrom.blogspot.com/2012/04/

[19] S. Vojtovich, “JIRA Issue,” 2017. [Online]. Available: https://jira.
mariadb.org/browse/MDEV-14482

[20] “False Sharing in boost::detail::spinlock_pool,” 2012. [Online].
Available: https://stackoverflow.com/questions/11037655/false-sharing-
in-boostdetailspinlock-pool

[21] A. Rukavytsia, “What false sharing is and how JVM prevents it,”
Mar. 2017. [Online]. Available: https://medium.com/@rukavitsya/what-
is-false-sharing-and-how-jvm-prevents-it-82a4ed27da84

[22] J. Rose, “JDK/JDK-8180450: secondary_super_cache does not scale
well,” Nov. 2017. [Online]. Available: https://bugs.openjdk.org/browse/
JDK-8180450

[23] P. Zhang, “[11u] RFR: 8244214: Add paddings for
TaskQueueSuper to reduce false-sharing cache contention,” Jun.
2020. [Online]. Available: https://mail.openjdk.org/pipermail/jdk-
updates-dev/2020-June/003369.html

[24] N. McDonald, “libdes: A framework for parallel discrete event
simulation,” 2015. [Online]. Available: https://github.com/nicmcd/libdes

[25] G. Holzmann, “The model checker spin,” IEEE TSE, vol. 23, no. 5, pp.
279–295, 1997.

[26] G. J. Holzmann and D. Bosnacki, “The Design of a Multicore Extension
of the SPIN Model Checker,” IEEE TSE, vol. 33, no. 10, pp. 659–674,
2007.

[27] A. Ather, “Intel Optimization at Netflix,” May 2023. [Online].
Available: https://medium.com/@amerather_9719/intel-optimization-at-
netflix-79ef0efb9d2

[28] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
Simulator,” ACM SIGARCH CAN, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[29] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Ko-
dama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,
T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Ol-
son, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani,
A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta, R. Thakur,
G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z. Wang,
N. Wehn, C. Weis, D. A. Wood, H. Yoon, and É. F. Zulian, “The gem5
Simulator: Version 20.0+,” CoRR, vol. abs/2007.03152, 2020.

[30] L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn, and
J. Devietti, “LASER: Light, Accurate Sharing dEtection and Repair,” in
HPCA, 2016, pp. 261–273.

[31] C. DeLozier, A. Eizenberg, S. Hu, G. Pokam, and J. Devietti, “TMI:
Thread Memory Isolation for False Sharing Repair,” in IEEE Micro,
2017, pp. 639–650.

[32] T. Liu and X. Liu, “Cheetah: Detecting False Sharing Efficiently and
Effectively,” in CGO, 2016, pp. 1–11.

[33] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Ama-
rasinghe, “Dynamic Cache Contention Detection in Multi-Threaded
Applications,” in VEE, 2011, pp. 27–38.

[34] S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and
L. Shannon, “Amoeba-Cache: Adaptive Blocks for Eliminating Waste
in the Memory Hierarchy,” in MICRO, 2012, pp. 376–388.

[35] J. Huh, J. Chang, D. Burger, and G. S. Sohi, “Coherence Decoupling:
Making Use of Incoherence,” in ASPLOS, 2004, pp. 97–106.

[36] M. Tolubaeva, Y. Yan, and B. Chapman, “Compile-Time Detection of
False Sharing via Loop Cost Modeling,” in IEEE IPDPSW, 2012, pp.
557–566.

[37] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu, “Detection of False
Sharing Using Machine Learning,” in SC, 2013.

[38] T. E. Jeremiassen and S. J. Eggers, “Reducing False Sharing on Shared
Memory Multiprocessors through Compile Time Data Transformations,”
in PPoPP, 1995, pp. 179–188.

[39] S. M. Günther and J. Weidendorfer, “Assessing Cache False Sharing
Effects by Dynamic Binary Instrumentation,” in WBIA, 2009, pp. 26–
33.

[40] J.-H. Chow and V. Sarkar, “False Sharing Elimination by Selection of
Runtime Scheduling Parameters,” in ICPP, 1997, pp. 396–403.

[41] M. Kandemir, A. Choudhary, J. Ramaujam, and P. Banerjee, “On
reducing false sharing while improving locality on shared memory
multiprocessors,” in PACT, 1999, pp. 203–211.

[42] S. J. Eggers and T. E. Jeremiassen, “Eliminating False Sharing,” in ICPP,
1991, pp. 377–381.

[43] J. Torrellas, H. S. Lam, and J. L. Hennessy, “False Sharing and Spatial
Locality in Multiprocessor Caches,” IEEE TOC, vol. 43, no. 6, pp. 651–
663, jun 1994.

[44] J. B. Rothman and A. J. Smith, “Minerva: An Adaptive Subblock
Coherence Protocol for Improved SMP Performance,” in ISHPC, 2002,
pp. 64–77.

[45] M. Kadiyala and L. N. Bhuyan, “A Dynamic Cache Sub-block Design
to Reduce False Sharing,” in ICCD, 1995, pp. 313–318.

[46] W. Shi, W. Hu, and M. Zhu, “An Innovative Implementation for
Directory-Based Cache Coherence in Shared Memory Multiprocessors,”
ACM SIGARCH CAN, vol. 25, no. 5, pp. 2–9, Dec. 1997.

[47] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A Scalable Memory Allocator for Multithreaded Applications,”
in ASPLOS, 2000, pp. 117–128.

[48] J. Manson, W. Pugh, and S. V. Adve, “The Java Memory Model,” in
POPL, 2005, pp. 378–391.

[49] H.-J. Boehm and S. V. Adve, “Foundations of the C++ Concurrency
Memory Model,” in PLDI, 2008, pp. 68–78.

[50] S. Kaxiras and A. Ros, “Efficient, Snoopless, System-on-Chip Coher-
ence,” in SOCC, 2012, pp. 230–235.

[51] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism,” in PACT, 2011, pp.
155–166.

[52] H. Sung and S. V. Adve, “DeNovoSync: Efficient Support for Arbitrary
Synchronization Without Writer-Initiated Invalidations,” in ASPLOS,
2015, pp. 545–559.

[53] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
Hardware Support for Disciplined Non-Determinism,” in ASPLOS, 2013,
pp. 13–26.

[54] S. Kaxiras and G. Keramidas, “SARC Coherence: Scaling Directory
Cache Coherence in Performance and Power,” IEEE Micro, vol. 30,
no. 5, pp. 54–65, Sep. 2010.

[55] R. Zhang, S. Biswas, V. Balaji, M. D. Bond, and B. Lucia, “Neat:
Low-Complexity, Efficient On-Chip Cache Coherence,” CoRR, vol.
abs/2107.05453, 2021.

[56] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia, “Valor: Efficient,
Software-Only Region Conflict Exceptions,” in OOPSLA, 2015, pp. 241–
259.

[57] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm, “Conflict
Exceptions: Simplifying Concurrent Language Semantics with Precise
Hardware Exceptions for Data-Races,” in ISCA, 2010, pp. 210–221.

[58] S. Biswas, R. Zhang, M. D. Bond, and B. Lucia, “Rethinking Support
for Region Conflict Exceptions,” in IPDPS, 2019, pp. 1095–1106.

[59] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy,
“DRFX: A Simple and Efficient Memory Model for Concurrent Pro-
gramming Languages,” in PLDI, 2010, pp. 351–362.

[60] V. Balaji, D. Tirumala, and B. Lucia, “Flexible Support for Fast Parallel
Commutative Updates,” CoRR, vol. abs/1709.09491, 2017.

[61] M. J. Garzaran, M. Prvulovic, Y. Zhang, J. Torrellas, A. Jula, H. Yu,
and L. Rauchwerger, “Architectural Support for Parallel Reductions in
Scalable Shared-Memory Multiprocessors,” in PACT, 2001, pp. 243–
254.

[62] D. Kim, M. Chaudhuri, M. Heinrich, and E. Speight, “Architectural
Support for Uniprocessor and Multiprocessor Active Memory Systems,”
IEEE Transactions on Computers, vol. 53, no. 3, pp. 288–307, Mar.
2004.

[63] G. Zhang, W. Horn, and D. Sanchez, “Exploiting Commutativity to
Reduce the Cost of Updates to Shared Data in Cache-Coherent Systems,”

in IEEE Micro, 2015, pp. 13–25.
[64] A. Mukkara, N. Beckmann, and D. Sanchez, “PHI: Architectural Sup-

port for Synchronization- and Bandwidth-Efficient Commutative Scatter
Updates,” in MICRO, 2019, pp. 1009–1022.

[65] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” in ISCA, 1997, pp. 241–251.

[66] HP Labs, “CACTI: An integrated cache and memory access time, cycle
time, area, leakage, and dynamic power model,” https://www.cs.utah.
edu/~rajeev/cacti7/.

[67] V. Gramoli, “More Than You Ever Wanted to Know about Synchro-
nization: Synchrobench, Measuring the Impact of the Synchronization
on Concurrent Algorithms,” in PPoPP, 2015, pp. 1–10.

[68] T. A. Khan, Y. Zhao, and B. Kasikci, “huron,” 2018. [Online].
Available: https://github.com/efeslab/huron

[69] M. Chabbi, “feather,” 2018. [Online]. Available: https://github.com/
WitchTools/Feather

[70] A. Akram, “X86 Linux Boot Status on gem5-19,” 2015. [Online].
Available: https://www.gem5.org/project/2020/03/09/boot-tests.html

[71] V. Patel, S. Biswas, and M. Chaudhuri, “README
file for MICRO Artifact for Paper 506,” 2024.
[Online]. Available: https://github.com/prospar/false-sharing-scripts-
micro24/blob/main/micro24-artifact-README.md

[72] ——, “false-sharing-micro24,” 2024. [Online]. Available: https://github.
com/prospar/false-sharing-micro24

[73] ——, “Leveraging Cache Coherence to Detect and Repair False
Sharing On-the-fly,” 2024. [Online]. Available: https://zenodo.org/
records/13293424/files/micro-fs-artifact.tar?download=1

[74] QEMU, “Download QEMU.” [Online]. Available: https://www.qemu.
org/download/#linux

[75] Gem5, “gem5-resources,” 2020. [Online]. Available: https://gem5.
googlesource.com/public/gem5-resources/+log/refs/tags/v20.0.0.3/src

[76] Docker, “Docker Community Forums,” 2015. [Online]. Avail-
able: https://forums.docker.com/t/how-do-i-change-the-docker-image-
installation-directory/1169/1

[77] V. Patel, S. Biswas, and M. Chaudhuri, “Leveraging Cache Coherence
to Detect and Repair False Sharing On-the-fly,” Aug. 2024. [Online].
Available: https://doi.org/10.5281/zenodo.13293424

[78] Docker, “Install Docker Engine on Ubuntu.” [Online]. Available: https:
//docs.docker.com/engine/install/ubuntu/#install-using-the-repository

[79] phoenixNAP, “How to install kvm on ubuntu,” 2024. [Online].
Available: https://phoenixnap.com/kb/ubuntu-install-kvm

[80] Docker, “docker container.” [Online]. Available: https://docs.docker.
com/reference/cli/docker/container/

