
CS 636: Concurrent Data Structures

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2025-26-II

Challenges with Concurrent Programming

Less
synchronization

More
synchronization

Order, atomicity, and
sequential consistency

violations

DeadlockConcurrent
and correct

Poor performance:
lock contention,

serialization

Languages and libraries should
provide efficient portable data
structures as building blocks

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 2 / 106

Challenges with Concurrent Programming

Less
synchronization

More
synchronization

Order, atomicity, and
sequential consistency

violations

DeadlockConcurrent
and correct

Poor performance:
lock contention,

serialization

Languages and libraries should
provide efficient portable data
structures as building blocks

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 2 / 106

Designing a Concurrent Set Data
Structure

Designing a Concurrent Set

1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

add(x)
adds x to the set and returns true if and
only if x was not already present

remove(x)
removes x from the set and returns true if
and only if x was present

contains(x)
returns true if and only if x is present in
the set

There are significantly more calls to contains() than add() and remove()

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 3 / 106

Designing a Concurrent Set Using Linked Lists

1 class Node {
2 T data;
3 int key;
4 Node next;
5 }

Two sentinel nodes head and tail

head a tail

ò Invariants
• Field key is data’s hash code to help with efficient search
• Nodes are sorted based on the key value
• Assume that all hash codes are unique
• Sentinel nodes are immutable, and tail is reachable from head
• Removed nodes continue to represent valid memory locations

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 4 / 106

A Thread-Unsafe Set Data Structure

1 public class UnsafeList<T> {
2 private Node head;
3 public UnsafeList() {
4 head = new Node(Integer.MIN_VALUE);
5 head.next = new Node(Integer.

MAX_VALUE);
6 }

1 public boolean add(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr; curr = curr.next;
7 }
8 if (key == curr.key) {
9 return false;

10 } else {
11 Node node = new Node(x);
12 node.next = curr;
13 prev.next = node;
14 return true;
15 }
16 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 5 / 106

A Thread-Unsafe Set Data Structure

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr;
7 curr = curr.next;
8 }
9 if (key == curr.key) {

10 pred.next = curr.next;
11 return true;
12 } else {
13 return false;
14 }
15 }

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr;
7 curr = curr.next;
8 }
9 if (key == curr.key) {

10 return true;
11 } else {
12 return false;
13 }
14 }
15 }

Can you given an example
to show that remove()

is not thread-safe?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 6 / 106

A Thread-Unsafe Set Data Structure

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr;
7 curr = curr.next;
8 }
9 if (key == curr.key) {

10 pred.next = curr.next;
11 return true;
12 } else {
13 return false;
14 }
15 }

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr;
7 curr = curr.next;
8 }
9 if (key == curr.key) {

10 return true;
11 } else {
12 return false;
13 }
14 }
15 }

Can you given an example
to show that remove()

is not thread-safe?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 6 / 106

Thread-Unsafe Set: Incorrect remove()

Thread 1 is executing remove(a) Thread 2 is executing remove(b)

head

prev1

a

curr1 prev2

b

curr2

tail

3 2

1

% %

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 7 / 106

Concurrent Set with Coarse-Grained Synchronization

1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4
5 public CoarseList() {
6 head = new Node(Integer.MIN_VALUE);
7 head.next = new Node(Integer.MAX_VALUE);
8 }
9 ...

10
11 public boolean add(T x) {
12 Node pred, curr
13 int key = x.hashcode();
14 lock.lock();
15
16
17
18
19

20 try {
21 pred = head;
22 curr = pred.next;
23 while (curr.key < key) {
24 pred = curr;
25 curr = curr.next;
26 }
27 if (key == curr.key) {
28 return false;
29 } else {
30 Node node = new Node(x);
31 node.next = curr;
32 prev.next = node;
33 return true;
34 }
35 } finally {
36 lock.unlock();
37 }
38 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 8 / 106

Concurrent Set with Coarse-Grained Synchronization

34 public boolean remove(T x) {
35 Node pred, curr;
36 int key = x.hashcode();
37 lock.lock();
38 try {
39 pred = head;
40 curr = pred.next;
41 while (curr.key < key) {
42 pred = curr;
43 curr = curr.next;
44 }
45 if (key == curr.key) {
46 pred.next = curr.next;
47 return true;
48 } else {
49 return false;
50 }
51 } finally {
52 lock.unlock();
53 }
54 }

55 public boolean contains(T x) {
56 Node curr;
57 int key = x.hashcode();
58 boolean found = false;
59 lock.lock();
60 try {
61 curr = head.next;
62 while (curr.key < key) {
63 curr = curr.next;
64 }
65 if (key == curr.key) {
66 found = true;
67 }
68 } finally {
69 lock.unlock();
70 }
71 return found;
72 }
73 }
74
75

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 9 / 106

Concurrent Set with Fine-Grained Synchronization

Add a lock object to each list node 1 class Node {
2 T data;
3 int key;
4 Node key;
5 Lock lock;
6 }

Possible interleaving

Thread 1
1 curr.lock.lock();
2 next = curr.next;
3 curr.lock.unlock();
4

5 next.lock.lock();

Thread 2
1

2

3

4 // Remove next from list
5

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 10 / 106

Is Locking One Node Sufficient?

Thread 1 is executing remove(a) Thread 2 is executing remove(b)

head a b c tail

2 remove(a) 3 remove(b)

1

% %

� �

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 11 / 106

Concurrent Set with Fine-Grained Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 head.lock();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }
15

16 if (key == curr.key) {
17 return false;
18 } else {
19 Node node = new Node(x);
20 node.next = curr;
21 pred.next = node;
22 return true;
23 }
24 } finally {
25 curr.unlock();
26 }
27 } finally {
28 pred.unlock();
29 }
30 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 12 / 106

Concurrent Set with Fine-Grained Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 head.lock();
4 Node pred = null, curr = null;
5 try {
6 pred = head; curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }

15 if (key == curr.key) {
16 pred.next = curr.next;
17 return true;
18 } else {
19 return false;
20 }
21 } finally {
22 curr.unlock();
23 }
24 } finally {
25 pred.unlock();
26 }
27 }
28

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 13 / 106

Understanding Hand-over-Hand Locking

� Hand-over-hand locking
The two locked nodes are always adjacent and guaranteed to be reachable from the
head

Ô Principles for efficient locking
• Acquire locks in a consistent order
• Do not hold too many locks
• Do not hold a lock for too long
• Only lock the written locations

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 14 / 106

Challenges With Fine-Grained Synchronization

. Need to avoid deadlocks
− Deadlocks are always a problem with fine-grained locking
• For the Set data structure, each thread must acquire locks in some

predetermined order

Are there other problems with the fine-grained Set design?

− Potentially long sequence of lock acquire and release operations
− Prohibits concurrent accesses to disjoint parts of the data structure

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 15 / 106

Challenges With Fine-Grained Synchronization

. Need to avoid deadlocks
− Deadlocks are always a problem with fine-grained locking
• For the Set data structure, each thread must acquire locks in some

predetermined order

Are there other problems with the fine-grained Set design?
− Potentially long sequence of lock acquire and release operations
− Prohibits concurrent accesses to disjoint parts of the data structure

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 15 / 106

Evaluating Concurrent Data Structures

Performance Metrics of Concurrent Data Structures

� Speedup measures how effectively is an application utilizing resources
• Linear speedup is desirable
• Data structures whose speedup grow with resources is desirable

. Amdahl’s law says we need to reduce amount of serialized code

q Reduce lock contention
Lock implementations with single memory location can introduce additional coherence
and memory traffic due to unsuccessful acquires

[Blocking or nonblocking implementations
Blocking Delay of any one thread can delay other threads

Nonblocking Delay of one thread cannot delay other threads

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 16 / 106

Reasoning about Correctness of Sequential Data Structures

� Need to describe how an object’s methods behave
• Possibilities include formal specification and API documentation
• Pre-condition describes the object’s state before the method call

▶ Operations on objects are not instantaneous. Each operation requires an invocation
on that object, followed by a response.

▶ Method call is the duration between an invocation event and a response event

• Post-condition describes the object’s state and return value after the method call

Ô Example
Suppose the state of a queue q is a sequence of items Q (i.e., precondition). Then, a call
to q.enq(z) changes the state of the queue to Q•z, where • denotes concatenation.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 17 / 106

Reasoning about Correctness of Concurrent Data Structures

Multiple threads can access a shared object, e.g., a node in our Set data structure
Situation:

Thread 1 is checking for contains(a) Thread 2 is executing remove(a)

Using pre- and post-conditions no longer work. How do you reason about the outcome?

We need ways to describe the correctness conditions for oper-
ations on a concurrent object

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 18 / 106

Reasoning about Correctness of Concurrent Data Structures

� Correctness for interleaved operations on concurrent objects is determined
by some notion of equivalence with sequential behavior

• Identify invariants and make sure they always hold
▶ For example, an item is in the set if and only if it is reachable from head

• Correctness (or safety) property is linearizability

• Progress (or liveness) properties are starvation and deadlock-freedom

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 19 / 106

Definitions

Program order The order in which a single thread issues method calls is called its program
order.
• Method calls by different threads are unrelated by program order.

Total method A method is total if it is defined for every object state, i.e., it does not need to
wait for certain conditions to become true.
• A total method is used when the caller thread has something useful to do

than wait for certain conditions to be met.

Partial method A partial method is not defined for every object state, it may have to block for
certain conditions to hold.
• For example, a partial Queue::get() call that tries to remove an item

from an empty queue blocks until an item is available to return.

Compositional A correctness property P is compositional if, whenever each object in the system
satisfies P, the system as a whole satisfies P.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 20 / 106

Correct Behavior Expected From a Concurrent Execution

(i) Method calls should appear to happen one-at-a-time in sequential order

r.write(7)

r.write(-3)

Thread 1

Thread 2

time

r.read(-7)

(ii) Method calls should appear to take effect in program order

r.write(-3)r.write(7)

time

r.read(7)Thread 1

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 21 / 106

Sequentially Consistent Execution

An execution is sequentially consistent (SC) if the result is the same as if the operations
from all threads were executed in some sequential order, and the operations of each
individual thread appear in program order.

Consider the following operations on a FIFO queue q, where x and y are objects.

q.enq(x)

q.enq(y)

Thread 1

Thread 2

time

q.deq(x)

q.deq(y)

There are two possible sequential orders that can justify the above execution

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 22 / 106

SC can Violate Real-Time Order

Reordering method calls unrelated by program order is allowed in SC, and so can violate
real-time order

q.enq(x)

q.enq(y)

Thread 1

Thread 2

time

q.deq(y)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 23 / 106

SC is Not Composable

p and q are each sequentially consistent, but the execution as a whole is not

p.enq(x)

q.enq(y)

Thread 1

Thread 2

time

p.enq(y)

q.enq(x) p.deq(y)

q.deq(x)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 24 / 106

Linearizability

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 25 / 106

Linearizability

Linearizability is popularly used to argue that a concurrent algorithm correctly
implements a problem through a sequential specification

• Linearizability has two requirements
(i) Method calls should appear to happen one-at-a-time in sequential order

(ii) Each method call should appear to take effect instantaneously at some moment
between its invocation and response

• Linearization point represents a single atomic step where the method call “takes
effect”
▶ For coarse-grained lock-based implementations, each method’s critical section is its

linearization point
▶ For implementations that do not use locking, the linearization point is a single step

where the effects of the method call become visible to others

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 26 / 106

Concurrent Operations on an Object

• Say you perform some operations on an object (e.g., a method call)

• A history is a sequence of invocations and responses on an object made by
concurrent threads

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x)

Thread 1
succeeds Thread 2 fails

invocation response

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 27 / 106

Sequential History

• Sequential history is where all invocations and responses are instantaneous
▶ Starts with an invocation, last invocation may not have a response
▶ Method calls do not overlap

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x) Thread 1 fails Thread 2

succeeds

Is this sequential
history?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 28 / 106

Sequential History

• Sequential history is where all invocations and responses are instantaneous
▶ Starts with an invocation, last invocation may not have a response
▶ Method calls do not overlap

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x)Thread 1 fails Thread 2

succeeds

This is a sequential
history

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 28 / 106

Linearizable History

• Every concurrent history is equivalent to some sequential history
▶ If one method call precedes another, then the earlier call must have taken effect before

the later call
▶ If two method calls overlap, we can order them in any way

• Consider a concurrent history (set of method calls) H and a valid sequential history S.
The history H is linearizable if:
▶ For every completed call in H, the call returns the same result as it would return if every

operation in H would have been completed one after the other (i.e., in S)
▶ If method call m1 completes before method call m2 in H, then m1 precedes m2 in S

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 29 / 106

Linearizability in Simpler Words

• Sequential history is correct according to the semantics of the object

• Invocations and responses can be reordered to form a sequential history

• If a response preceded an invocation in the original history, it must still precede it in
the sequential reordering

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 30 / 106

Understanding Linearizability

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x)Thread 1 fails Thread 2

succeeds

Is this lineariable?
Is this sequential

history?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 31 / 106

Understanding Linearizability

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x) Thread 1 failsThread 2

succeeds

Successful
linearization

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 31 / 106

Identifying Linearization Points

Linearization point represents a single atomic step where the method call “takes effect”,
and is between the function invocation and response

What are the linearization points for the methods add(), remove(), and
contains() for the coarsely- and finely-synchronized Set?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 32 / 106

Sequential Consistency vs Linearizability

Sequential Consistency

• Method calls appear to happen
instantaneously in some sequential
order

• A sequentially consistent history is not
necessarily linearizable

• Nonblocking but not composable

Linearizability

• Method calls appear to happen
instantaneously at some point between
its invocation and response

• Every linearizable history is sequentially
consistent

• Nonblocking and composable

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 33 / 106

Progress Guarantees

wait-free A method is wait-free if it guarantees that every call finishes in a finite
number of steps

lock-free A method is lock-free if it guarantees that some call always finishes in a
finite number of steps

obstruction-free A method is obstruction-free if it is guaranteed to finish its operations
in the absence of contention

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 34 / 106

Designing a Concurrent Set Data
Structure

How to Design a Concurrent Set?

Coarse-grained synchronization
Easy to get right, low concurrency, not scalable

Fine-grained synchronization
More concurrent and scalable than coarse-grained synchronization, difficult to get right

Optimistic synchronization
Avoid synchronization to search, good for low contention cases

Lazy synchronization
Defer expensive data structure manipulation operations

Nonblocking synchronization
Rely on atomic operations such as compareAndSet() for synchronization

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 35 / 106

Optimistic Synchronization

� Optimistic strategy
• Access data without acquiring a lock
• Lock only when required, and validate that the condition before locking is still

valid
• If valid, then continue with access/mutation
• If invalid, restart by locking again

Optimistic strategy works well if conflicts are rare

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 36 / 106

Concurrent Set with Optimistic Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock(); curr.lock();
11

12

13

14

15

16

17 try {
18 if (validate(pred, curr)) {
19 if (curr.key == key) {
20 return false;
21 } else {
22 Node node = new Node(x);
23 node.next = curr;
24 prev.next = node;
25 return true;
26 }
27 }
28 } finally {
29 curr.unlock(); pred.unlock();
30 }
31 }
32 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 37 / 106

Is Validation Necessary?

Thread 1 is executing remove(p) Other threads execute remove(b–p)

head a

prev1

z tail

b

curr1

p

1

1

2%

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 38 / 106

How to Validate?

Double check that the optimistic result is still valid

1 // Check that prev is reachable from head and prev.next == curr
2 boolean validate(Node prev, Node curr) {
3 Node node = head;
4 while (node.key <= prev.key) {
5 if (node == prev)
6 return prev.next == curr;
7 node = node.next;
8 }
9 return false;

10 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 39 / 106

Concurrent Set with Optimistic Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock(); curr.lock();
11

12

13

14

15 try {
16 if (validate(pred, curr)) {
17 if (curr.key == key) {
18 pred.next = curr.next;
19 return true;
20 } else {
21 return false;
22 }
23 }
24 } finally {
25 curr.unlock(); pred.unlock();
26 }
27 }
28 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 40 / 106

Concurrent Set with Optimistic Synchronization

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock();
11 curr.lock();

12 try {
13 if (validate(pred, curr)) {
14 return curr.key == key;
15 }
16 } finally {
17 curr.unlock();
18 pred.unlock();
19 }
20 }
21 }
22

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 41 / 106

Concurrent Set with Optimistic Synchronization

Are there problems with the optimistic design?
− Validation can be costly (e.g., need to traverse the list again)
− Needs lock operations for contains() which is the most frequent method

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 42 / 106

Lazy Synchronization

� Delay mutation operations for a later time
• Add a mark or flag bit on each node to indicate logical deletion
• Invariant: every unmarked node is reachable from head

m Guarantees
add() traverses the list, locks the predecessor, and inserts the node

remove() marks the target node logically removing it, then redirects the
predecessor’s next link physically removing the target node

contains() needs only one wait-free traversal (no locking is required)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 43 / 106

Concurrent Set with Lazy Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock();
11 try {
12 curr.lock();
13 try {
14 if (validate(pred, curr)) {
15 if (curr.key == key) {
16 return false;

17 } else {
18 Node node = new Node(x);
19 node.next = curr;
20 pred.next = node;
21 return true;
22 }
23 }
24 } finally {
25 curr.unlock(); }
26 }
27 } finally {
28 pred.unlock();
29 }
30 }
31 }
32

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 44 / 106

How to Validate?

Check that both prev and curr are unmarked and prev.next == curr

1 boolean validate(Node prev, Node curr) {
2 return !prev.marked && !curr.marked && prev.next == curr;
3 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 45 / 106

Concurrent Set with Lazy Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock();
11 try {
12 curr.lock();
13 try {
14 if (validate(pred, curr)) {
15 if (curr.key != key) {
16 return false;

17 } else {
18 // Logical deletion
19 curr.marked = true;
20 // Physical deletion
21 pred.next = curr.next;
22 return true;
23 }
24 }
25 } finally {
26 curr.unlock(); }
27 }
28 } finally {
29 pred.unlock();
30 }
31 }
32 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 46 / 106

Detecting Conflicts: Scenario 1

Thread 1 is executing remove(b) Thread 2 is executing remove(a)

head,0 a,1

prev1

b,0

curr1

tail,0

1 1

2 3 3

%

� �

marked bit

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 47 / 106

Detecting Conflicts: Scenario 2

Thread 1 is executing remove(b) Thread 2 is executing add(p)

head,0 a,0

prev1

b,0

curr1

tail,0

p,0

1 1

2

3 3

%

� �

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 48 / 106

Concurrent Set with Lazy Synchronization

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 Node curr = head;
4 while (curr.key < key) {
5 curr = curr.next;
6 }
7 return curr.key == key && !curr.marked;
8 }

wait-free

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 49 / 106

Unsuccessful contains(): Scenario 1

Thread 1 is executing contains(x) Thread 2 is executing remove(p...x)

head,0 a,0

prev1

z,0 tail,0

p,1

curr1

x,1

1

1

2%

Thread 1’s contains(x) can be linearized when it sees that x

is marked for deletion and is no longer in the set

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 50 / 106

Unsuccessful contains(): Scenario 2

Thread 1 is executing contains(x) Thread 2 is executing add(x)

head,0 a,0 z,0 tail,0

p,1

x,0

x,1

curr1
1

2

3

Thread 1 is traversing along the marked portion of the list p...x

Linearize an unsuccessful contains(x) at the earlier of the
following two points:
• A marked node with key x or a node with key greater than x is

found
• The point immediately before a new node with key x is added to

the list

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 51 / 106

Unsuccessful contains(): Scenario 2

Thread 1 is executing contains(x) Thread 2 is executing add(x)

head,0 a,0 z,0 tail,0

p,1

x,0

x,1

curr1
1

2

3

Thread 1 is traversing along the marked portion of the list p...x

Linearize an unsuccessful contains(x) at the earlier of the
following two points:
• A marked node with key x or a node with key greater than x is

found
• The point immediately before a new node with key x is added to

the list

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 51 / 106

Nonblocking Synchronization

� Why do we need nonblocking designs?
− Use of locks can lead to deadlocks, livelocks, and priority inversion
− Blocked threads do not do useful work, problematic for high-priority or real-time

applications
− Getting the right degree of concurrency and correctness with locks is challenging

ò Idea: Use RMW instructions like CAS to update the next field
Eliminate locks altogether

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 52 / 106

Nonblocking Algorithms

+ Failure or suspension of a thread does not impact other threads

+ Guaranteed system-wide progress implies lock-freedom, while per-thread progress
implies wait-freedom
▶ Wait-freedom is the strongest nonblocking progress guarantee
▶ Lock-freedom allows an individual thread to starve
▶ All wait-free algorithms are lock-free

• Lock-free implies “locking up” the application in some way (e.g., deadlock and
livelock)
▶ Lock-free does not only imply absence of synchronization locks

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 53 / 106

Compare-and-Swap (CAS) Primitive
• Modern architectures provide many atomic read-modify-write (RMW) instructions for

synchronization
▶ For example, test-and-set, fetch-and-add, compare-and-swap, and

load-linked/store-conditional

• Compare-and-Swap (CAS) compares the contents of a memory location with a given
value and, only if they are the same, updates the contents of that memory location
to a new given value

1 bool CAS(word* loc, word oldval, word newval) {
2 atomic { // Code block will execute atomically
3 res := (*loc == oldval);
4 if (res)
5 *loc := newval;
6 return res;
7 }
8 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 54 / 106

Compare-and-Swap (CAS) Primitive

• CAS is implemented as the compare-and-exchange (CMPXCHG) instruction in x86
architectures
▶ On a multiprocessor, the LOCK prefix must be used

• CAS is a popular synchronization primitive for implementing both lock-based and
nonblocking concurrent data structures

1 xor %ecx, %ecx /*ecx=0*/
2 inc %ecx /*ecx=1*/
3 RETRY: xor %eax, %eax /*eax=0*/
4 lock compxchg %ecx, &lock
5 jnz RETRY
6 ret
7

1 void spinLock(lock* lk) {
2 // flag attribute is set when the
3 // lock is acquired
4 while (CAS(&lk->flag, 0, 1) == 1) {
5 // Keep spinning
6 }
7 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 55 / 106

Nonblocking Synchronization with CAS on Only next Field

Thread 1 is executing remove(a) Thread 2 is executing add(b)

head,0

prev1

a,1

curr1

c,0 tail,0

b,0

1 1

2 add(b)

3 remove(a)

% %

a is deleted but b is not added to the list

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 56 / 106

Nonblocking Synchronization with CAS on Only next Field

Thread 1 is executing remove(a) Thread 2 is executing remove(b)

head,0

prev1

a,1

curr1

b,1 c,0 tail,0

1 1

2 remove(b)3 remove(a)

% %

a is deleted but b is not deleted from the list

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 57 / 106

Disallow Updates to Deleted Nodes

• Cannot allow updates to a node once it has been logically or physically removed
from the list

• Treat the next and marked fields as atomic
▶ An attempt to update the next field when the marked field is true will fail

Java provides Class AtomicMarkableReference<T> in the
java.util.concurrent.atomic package
public boolean compareAndSet(T expectedReference, T newReference, boolean

expectedMark, boolean newMark);
public T get(boolean[] marked);
public T getReference();
public Boolean isMarked();

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 58 / 106

Designing a Nonblocking Set

• The next field is of type AtomicMarkableReference<Node>

• A thread logically removes a node by setting the marked bit in the next field

• As threads traverse the list, they clean up the list by physically removing marked
nodes
▶ Threads performing add() and remove() do not traverse marked nodes, they remove

them before continuing
Why?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 59 / 106

Challenge in Traversing Marked Nodes

Thread 1 is executing remove(b) Thread 2 marks a

head,0 a,1

prev1

b,1

curr1

c,0 tail,0

1 1

2 Marks a
3 Performs CAS

%

Thread 1 does not delete the marked node a =⇒ Thread 1 cannot redirect a.next

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 60 / 106

Challenge in Traversing Marked Nodes

Thread 1 is executing remove(b) Thread 2 marks a

head,0 a,1

prev1

b,1

curr1

c,0 tail,0

1 1

2 Marks a
3 Performs CAS

%

Thread 1 does not delete the marked node a =⇒ Thread 1 cannot redirect a.next

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 60 / 106

Helper Method

Helper method public Window find(Node head, int key)
Traverses the list seeking to set pred to the node with the largest key less than key, and
curr to the node with the least key greater than or equal to key

1 class Window {
2 public Node pred, curr;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 61 / 106

Helper Method

1 public Window find(Node head, int key) {
2 Node pred = null, curr = null, succ = null;
3 boolean[] marked = {false};
4 boolean snip;
5 retry: while (true) {
6 pred = head; curr = pred.next.getReference();
7 while (true) {
8 succ = curr.next.get(marked);
9 while (marked[0]) {

10 snip = pred.next.compareAndSet(curr, succ, false, false);
11 if (!snip) continue retry;
12 curr = succ; succ = curr.next.get(marked);
13 }
14 if (curr.key >= key)
15 return new Window(pred, curr);
16 pred = curr; curr = succ;
17 } // end while(true) on line 7
18 } }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 62 / 106

Concurrent Set with Nonblocking Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Window w = find(head, key);
5 Node pred = w.pred, curr = w.curr;
6 if (curr.key == key) return false;
7 else {
8 Node node = new Node(x);
9 node.next = new AtomicMarkableReference(curr, false);

10 if (pred.next.compareAndSet(curr, node, false, false))
11 return true;
12 }
13 }
14 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 63 / 106

Concurrent Set with Nonblocking Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 boolean snip;
4 while (true) {
5 Window w = find(head, key);
6 Node pred = w.pred, curr = w.curr;
7 if (curr.key != key) return false;
8 else {
9 Node succ = curr.next.getReference();

10 snip = curr.next.compareAndSet(succ, succ, false, true);
11 if (!snip) continue;
12 pred.next.compareAndSet(curr, succ, false, false);
13 return true;
14 }
15 }
16 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 64 / 106

Concurrent Set with Nonblocking Synchronization

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 Node curr = head;
4 while (curr.key < key) {
5 curr = curr.next.getReference();
6 }
7 return curr.key == key && !curr.next.isMarked();
8 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 65 / 106

ABA Problem

Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a)

head a b c d tail

Assume that deleted nodes can be reused

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 66 / 106

Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a)

head a b c d tail

Thread 1 sees head points to a, but gets delayed before executing the CAS in deq(a)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 67 / 106

Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a) Other threads execute deq(a, b, c,
d), then execute enq(a)

head a

b c d

tail

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 68 / 106

Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a) Other threads execute deq(a, b, c,
d), then execute enq(a)

head a

b c d

tail

Thread 1’s CAS succeeds, incorrectly setting head to the recycled node b

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 69 / 106

Avoiding ABA Problem

• Common workaround is to add extra “tag” to the memory address being compared
▶ Tag can be a counter that tracks the number of updates to the reference
▶ Can steal lower order bits of memory address or use a separate tag field if 128-bit CAS is

available

• LL/SC does not suffer from the ABA problem because it checks whether a value has
changed in between the interval, rather than comparing the value itself

ABA Problem

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 70 / 106

https://en.wikipedia.org/wiki/ABA_problem

Concurrent Queues

Bounded Partial Queue

a b c

tail

head

Enqueue and dequeue operations are at the two ends — allows for
concurrent modifications

deq() enq()

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 71 / 106

Bounded Partial Queue

Given these requirements, what do we need to have a
correct concurrent implementation?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 72 / 106

Bounded Partial Queue

Given these requirements, what do we need to have a
correct concurrent implementation?

• Lock for mutual exclusion of concurrent enqueues
• Lock for mutual exclusion of concurrent dequeues

• Condition variable to indicate queue is empty
• Condition variable to indicate queue is full

• Atomic variable to track the current size

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 72 / 106

Bounded Partial Queue: enq()

1 public void enq(T x) {
2 boolean wakeDeq = false;
3 Node e = new Node(x);
4 enqLock.lock();
5 try {
6 while (size.get() == MAX_CAPACITY)
7 notFull.await();
8 // Linearization point
9 tail.next = e;

10 // Update the tail pointer
11 tail = e;
12 if (size.getAndIncrement() == 0)
13 wakeDeq = true;
14 } finally {
15 enqLock.unlock();
16 }

17 if (wakeDeq) {
18 deqLock.lock();
19 try {
20 notEmpty.signalAll();
21 } finally {
22 deqLock.unlock();
23 }
24 }
25 } // end enq()
26

27

28

29

30

31

32

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 73 / 106

Bounded Partial Queue: deq()

1 public void deq() {
2 boolean wakeEnq = false;
3 T result;
4 deqLock.lock();
5 try {
6 while (head.next == null)
7 notEmpty.await();
8 result = head.next.value;
9 head = head.next;

10 if (size.getAndDecrement() ==
MAX_CAPACITY)

11 wakeEnq = true;
12 } finally {
13 deqLock.unlock();
14 }

15 if (wakeEnq) {
16 enqLock.lock();
17 try {
18 notFull.signalAll();
19 } finally {
20 enqLock.unlock();
21 }
22 }
23 return result;
24 }
25

26

27

28

29

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 74 / 106

Evaluating the Bounded Queue

• Need to ensure correct interleaving of concurrent calls to enq() and deq()
▶ Special cases: Queue has zero or one element (size can become negative temporarily)

− Shared updates to the size variable could be a bottleneck
▶ Can we do something about it?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 75 / 106

Unbounded Total Queue

enq() always enqueues an item, will ignore OOM errors
deq() returns an error if the queue is empty

Simpler conditions, no need for condition variables and no need to track the size

1 public void enq(T x) {
2 Node e = new Node(x);
3 enqLock.lock();
4 try {
5 tail.next = e;
6 tail = e;
7 } finally {
8 enqLock.unlock();
9 }

10 }
11

12

13

1 public T deq() {
2 T result;
3 deqLock.lock();
4 try {
5 if (head.next == null)
6 return null;
7 result = head.next.value;
8 head = head.next;
9 } finally {

10 deqLock.unlock();
11 }
12 return result;
13 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 76 / 106

Unbounded Lock-free Queue

1 public class Node {
2 public T val;
3 public AtomicReference<Node> next;
4 public Node(T value) {
5 this.val = val;
6 next = AtomicReference<Node>(null);
7 }
8 }
9

10 public class LockFreeQueue<T> {
11 AtomicReference<Node> head, tail;
12 public LockFreeQueue() {
13 Node node = new Node(null);
14 head = new AtomicReference(node);
15 end = new AtomicReference(node);
16 }
17 ...
18 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 77 / 106

Unbounded Lock-free Queue: enq()

1 public void enq(T x) {
2 Node node = new Node(x);
3 while (true) {
4 Node last = tail.get(), next = last.next.get();
5 if (last == tail.get()) {
6 if (next == null) {
7 if (last.next.compareAndSet(next, node)) {
8 tail.compareAndSet(last, node);
9 return;

10 }
11 } else { // if (next == null)
12 // Indicates a concurrent enqueuer, tail not yet updated
13 tail.compareAndSet(last, next);
14 }
15 } // end while (true)
16 }
17 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 78 / 106

Unbounded Lock-free Queue: enq()

1 public void enq(T x) {
2 Node node = new Node(x);
3 while (true) {
4 Node last = tail.get(), next = last.next.get();
5 if (last == tail.get()) {
6 if (next == null) {
7 if (last.next.compareAndSet(next, node)) {
8 tail.compareAndSet(last, node);
9 return;

10 }
11 } else { // if (next == null)
12 // Indicates a concurrent enqueuer, tail not yet updated
13 tail.compareAndSet(last, next);
14 }
15 } // end while (true)
16 }
17 }

Where is the linearization
point?

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 78 / 106

Unbounded Lock-free Queue: deq()

1 public void deq(T x) throws EmptyException {
2 while (true) {
3 Node first = head.get(), last = tail.get();
4 Node next = first.next.get();
5 if (first == head.get()) {
6 if (first == last) {
7 if (next == null)
8 throw new EmptyException();
9 // tail is lagging behind head

10 tail.compareAndSet(last, next);
11 } else { // There are valid nodes
12 T val = next.value;
13 if (head.compareAndSet(first, next))
14 return val;
15 }
16 } // end if (first == head.get())
17 } // end while (true)
18 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 79 / 106

Ensure that tail remains valid

a

tail

head

a

tail

b

head

1 Thread 1 is executing enq(b)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 80 / 106

Ensure that tail remains valid

a

tail

b

head

1 Thread 1 is executing enq(b)

a

tail

b
head

2 Thread 2 is executing deq(a)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 81 / 106

Concurrent Hash Sets

Hash Sets

Closed addressing Each table entry refers to a set of items, called a bucket. Closed
addressing is also known as chaining.

Open addressing Each table entry maps to a single item. Open addressing requires a
deterministic probing scheme to search for free slots.

Let l be the number of probing attempts, c be the capacity of the hash set, and s(k, l) the
l-th element in the probe sequence where s(k,0) = h(k).

Linear probing Probing sequence is s(k, l) = (h(k) + l)mod c. Cache efficient but
suffers from clustering.

Quadratic probing Probing sequence is s(k, l) = (h(k) + l2)mod c. Incurs more cache
misses but avoids primary clustering.

Chaotic probing Probing sequence is s(k, l) = (h(k) + l · g(k))mod c where g(k) is a
second hash function. Incurs more cache misses but avoids primary
clustering. Chaotic probing is also known as double hashing.

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 82 / 106

Hash Set with Closed Addressing: Abstract Base Class

1 public abstract class BaseHashSet<T> {
2 protected List<T>[] table;
3 protected int setSize;
4 public BaseHashSet(int capacity) {
5 setSize = 0;
6 table = (List<T>[]) new List[capacity];
7 for (int i = 0; i < capacity; i++)
8 table[i] = new ArrayList<T>();
9 }

10 public boolean contains(T x) {
11 acquire(x);
12 try {
13 int myBucket = x.hashCode() % table.length;
14 return table[myBucket].contains(x);
15 } finally {
16 release(x);
17 }
18 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 83 / 106

Hash Set with Closed Addressing: Abstract Base Class

19 public boolean add(T x) {
20 boolean result = false;
21 acquire(x);
22 try {
23 int myBucket = x.hashCode() % table.length;
24 result = table[myBucket].add(x);
25 setSize = result ? setSize + 1 : setSize;
26 } finally {
27 release(x);
28 }
29 if (policy()) // When to resize the hash set?
30 resize();
31 return result;
32 }
33 } // end class BaseHashSet<T>

Policies: average bucket size exceeds a fixed threshold, more than 1/4 of the buckets
exceed a bucket threshold, or if any single bucket exceeds a global threshold

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 84 / 106

Hash Set with Closed Addressing: Coarse-Grained Locking

1 public class CoarseHashSet<T> extends BaseHashSet<T>{
2 final Lock lock;
3 CoarseHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock();
6 }
7 public final void acquire(T x) {
8 lock.lock();
9 }

10 public void release(T x) {
11 lock.unlock();
12 }
13 public boolean policy() {
14 // Average size of a bucket is > 4
15 return setSize / table.length > 4;
16 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 85 / 106

Hash Set with Closed Addressing: Coarse-Grained Locking

17 public void resize() {
18 int oldCapacity = table.length;
19 lock.lock();
20 try {
21 if (oldCapacity != table.length)
22 return; // Someone beat us to it
23 int newCapacity = 2 * oldCapacity;
24 List<T>[] oldTable = table;
25 table = (List<T>[]) new List[newCapacity];
26 for (int i = 0; i < newCapacity; i++)
27 table[i] = new ArrayList<T>();
28 for (List<T> bucket : oldTable)
29 for (T x : bucket)
30 table[x.hashCode() % table.length].add(x);
31 } finally {
32 lock.unlock();
33 }
34 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 86 / 106

Hash Set with Closed Addressing: Fine-Grained Locking

• How would you design a concurrent hash table with fine-grained synchronization?
• Remember that a dynamically-sized hash table may require resizing

− Associating a lock with every hash table entry would incur large space overhead
− Accesses to the hash table are expected to be more distributed when the table is

large implying low contention
− Resizing the lock array is complicated

− Several locks may be in use, there can be concurrent resizes, need to avoid deadlocks
− Delays threads that have initiated a concurrent operation
− The hash index computed before resizing may no longer be valid after resizing

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 87 / 106

Hash Set with Closed Addressing: Fine-Grained Locking

• How would you design a concurrent hash table with fine-grained synchronization?
• Remember that a dynamically-sized hash table may require resizing

− Associating a lock with every hash table entry would incur large space overhead
− Accesses to the hash table are expected to be more distributed when the table is

large implying low contention
− Resizing the lock array is complicated

− Several locks may be in use, there can be concurrent resizes, need to avoid deadlocks
− Delays threads that have initiated a concurrent operation
− The hash index computed before resizing may no longer be valid after resizing

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 87 / 106

Hash Set with Closed Addressing: Striped Locking

4
5
6
7
8
9
10
11

3
2
1
0

12
13
14
15

0
1
2
3
4
5
6
7

locks

table
Fi

xe
d

si
ze

 L

can grow

• Each lock protects N/L buckets

• Allows more concurrency than
coarse-grained lock

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 88 / 106

Hash Set with Closed Addressing: Striped Locking

1 public class StripedHashSet<T> extends BaseHashSet<T>{
2 final ReentrantLock[] locks;
3 public StripedHashSet(int capacity) {
4 super(capacity);
5 // Number of locks is initially same as the length of the table. The table
6 // can dynamically grow, but not locks. Increasing the number of locks is
7 // challenging.
8 locks = new Lock[capacity];
9 for (int j = 0; j < locks.length; j++)

10 locks[j] = new ReentrantLock();
11 }
12 public final void acquire(T x) {
13 locks[x.hashCode() % locks.length].lock();
14 }
15 public void release(T x) {
16 locks[x.hashCode() % locks.length].unlock();
17 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 89 / 106

Hash Set with Closed Addressing: Striped Locking

15 public void resize() {
16 int oldCapacity = table.length;
17 for (Lock lock : locks)
18 lock.lock();
19 try {
20 if (oldCapacity != table.length) return; // Someone beat us to it
21 int newCapacity = 2 * oldCapacity;
22 List<T>[] oldTable = table;
23 table = (List<T>[]) new List[newCapacity];
24 for (int i = 0; i < newCapacity; i++)
25 table[i] = new ArrayList<T>();
26 for (List<T> bucket : oldTable)
27 for (T x : bucket)
28 table[x.hashCode() % table.length].add(x);
29 } finally {
30 for (Lock lock : locks)
31 lock.unlock();
32 }
33 }
34 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 90 / 106

Hash Set with Closed Addressing: Refinable Hash Set
Allow resizing number of locks

1 public class RefinableHashSet<T> extends BaseHashSet<T> {
2 // Identifies the owner thread who is resizing, and the boolean flag is set to true.
3 // Used for mutual exclusion with other mutation methods (e.g., add()).
4 AtomicMarkableReference<Thread> owner;
5 volatile ReentrantLock[] locks;
6 public RefinableHashSet(int capacity) {
7 super(capacity);
8 locks = new ReentrantLock[capacity];
9 for (int i = 0; i < capacity; i++)

10 locks[i] = new ReentrantLock();
11 owner = new AtomicMarkableReference<Thread>(null, false);
12 }
13 public void release(T x) {
14 locks[x.hashCode() % locks.length].unlock();
15 }
16 protected void quiesce() { // Visit each lock and wait until it is free
17 for (ReentrantLock lock : locks)
18 while (lock.isLocked()) {}
19 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 91 / 106

Hash Set with Closed Addressing: Refinable Hash Set

22 public void acquire(T x) {
23 boolean[] mark = {true};
24 Thread me = Thread.currentThread();
25 Thread who;
26 while (true) {
27 do { // Wait while some other thread is the owner
28 who = owner.get(mark);
29 } while (mark[0] && who != me);
30 ReentrantLock[] oldLocks = locks;
31 ReentrantLock oldLock = oldLocks[x.hashCode() % oldLocks.length];
32 oldLock.lock();
33 // Check again to see if the locks array has been resized in the meantime
34 who = owner.get(mark);
35 // locks array has not changed, mark is not set or mark is set and I am the owner
36 if ((!mark[0] || who == me) && locks == oldLocks) {
37 return;
38 } else {
39 oldLock.unlock();
40 }
41 }
42 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 92 / 106

Hash Set with Closed Addressing: Refinable Hash Set
42 public void resize() {
43 boolean[] mark = {false};
44 int oldCapacity = table.length, newCapacity = 2 * oldCapacity;
45 Thread me = Thread.currentThread();
46 if (owner.compareAndSet(null, me, false, true)) { // Try to make yourself the owner
47 try {
48 if (table.length != oldCapacity) return; // Someone else resized first
49 quiesce();
50 List<T>[] oldTable = table;
51 table = (List<T>[]) new List[newCapacity];
52 for (int i = 0; i < newCapacity; i++)
53 table[i] = new ArrayList<T>();
54 locks = new ReentrantLock[newCapacity];
55 for (int j = 0; j < locks.length; j++)
56 locks[j] = new ReentrantLock();
57 initializeFrom(oldTable); // Copy old data
58 } finally {
59 owner.set(null, false);
60 }
61 }
62 } }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 93 / 106

Hash Set with Closed Addressing: Lock-free Hash Set

Challenging to design a correct algorithm with synchronization primitives like CAS
• Difficult to “stop-the-world” while resizing the bucket
• Not enough to make individual buckets lock-free
• Resizing the table requires atomically moving entries from old buckets to new

buckets
• If the table doubles in capacity, then items in the old bucket must be distributed

between two new buckets
• However, a CAS operates on only one memory location

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 94 / 106

Hash Set with Open Addressing: Cuckoo Hashing

Cuckoo hashing is an open addressing scheme where collisions are resolved by
displacing any earlier item occupying the same slot with a newly added item
• Assume a hash set of size N = 2k, and two tables each of size k (denoted by

table[0] and table[1]
• Two independent hash functions h0 and h1 map the keys to 0, . . . , k− 1 providing

two possible locations for each key

contains(x) Tests whether either table[0][h0(x)] or table[1][h1(x)] is equal to x
remove(x) Checks whether x is in either table[0][h0(x)] or table[1][h1(x)] and

removes it if found
add(x) Repeatedly displace conflicting items until every key has a slot

• May not find an empty slot if the table is full or the sequence of displacements form
a cycle

• May need to resize the hash table, choose new hash functions, and restart the add
operation after a THRESHOLD of successive displacements is reached

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 95 / 106

Sequential Cuckoo Hashing: add()

1 public boolean add(T x) {
2 if (contains(x)) {
3 return false;
4 }
5 for (int i = 0; i < THRESHOLD; i++) {
6 if ((x = swap(h0(x), x)) == null) {
7 return true;
8 } else if ((x = swap(h1(x), x)) == null) {
9 return true;

10 }
11 }
12 resize();
13 add(x);
14 }

12

3 39

23

table[1] table[0]

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

14

h1(x) = x (mod 11) (mod 8) h0(x) = x (mod 9) (mod 8)

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 96 / 106

Concurrent Cuckoo Hashing

Challenge is in the possibly long sequence of swap operations during add()

Break up each method call into a sequence of phases, where each phase adds, removes,
or displaces a single item x

• Hash table is organized as a 2D table of probe sets
▶ Probe set is a constant-sized set of items with the same hash code
▶ Each probe set holds at most PROBE_SIZE items

• Implementation tries to ensure that when the set is quiescent (i.e., no method calls
are in progress), each probe set holds no more than THRESHOLD (< PROBE_SIZE)
items

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 97 / 106

Concurrent Cuckoo Hashing: Abstract Hash Table Structure

1 public abstract class PhasedCuckooHashSet<T> {
2 volatile int capacity;
3 volatile List<T>[][] table;
4 public PhasedCuckooHashSet(int size) {
5 capacity = size;
6 table = (List<T>[][]) new java.util.ArrayList[2][capacity];
7 for (int i = 0; i < 2; i++) {
8 for (int j = 0; j < capacity; j++) {
9 table[i][j] = new ArrayList<T>(PROBE_SIZE);

10 }
11 }
12 }
13 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 98 / 106

Concurrent Cuckoo Hashing: Addition and Relocation

12

24

13

4

40

23

5

14

table[1] table[0]

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

14

h1(x) = x (mod 11) (mod 8) h0(x) = x (mod 9) (mod 8)

threshold

threshold

threshold

threshold

13
?

?

1

2

1

2

4

5

pr
ob

e
se

t

Example of adding to the Hash Set

12

24

13

4

40

23

5

14

table[1] table[0]

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

h1(x) = x (mod 11) (mod 8) h0(x) = x (mod 9) (mod 8)

threshold

threshold

threshold

threshold

1

2

4

5

pr
ob

e
se

t

oldest

Example of relocation

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 99 / 106

Concurrent Cuckoo Hashing: Remove

14 public boolean remove(T x) {
15 acquire(x);
16 try {
17 List<T> set0 = table[0][hash0(x) % capacity];
18 if (set0.contains(x)) {
19 set0.remove(x);
20 return true;
21 } else {
22 List<T> set1 = table[1][hash1(x) % capacity];
23 if (set1.contains(x)) {
24 set1.remove(x);
25 return true;
26 }
27 }
28 return false;
29 } finally {
30 release(x);
31 }
32 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 100 / 106

Concurrent Cuckoo Hashing: Addition
33 public boolean add(T x) {
34 T y = null;
35 acquire(x);
36 int h0 = hash0(x) % capacity;
37 int h1 = hash1(x) % capacity;
38 int i = -1, h = -1;
39 boolean mustResize = false;
40 try {
41 if (contains(x)) return false;
42 List<T> set0 = table[0][h0];
43 List<T> set1 = table[1][h1];
44 if (set0.size() < THRESHOLD) {
45 set0.add(x); return true;
46 } else if (set1.size() < THRESHOLD) {
47 set1.add(x); return true;
48 } else if (set0.size() < PROBE_SIZE) {
49 set0.add(x); i = 0; h = h0; // Relocate
50 } else if (set1.size() < PROBE_SIZE) {
51 set1.add(x); i = 1; h = h1; // Relocate

51 } else {
52 mustResize = true;
53 }
54 } finally {
55 release(x);
56 }
57 // Either resize or relocate
58 if (mustResize) {
59 resize();
60 add(x);
61 } else if (!relocate(i, h)) {
62 // Item already added
63 resize();
64 }
65 return true;
66 }
67
68
69

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 101 / 106

Concurrent Cuckoo Hashing: Relocation
70 protected boolean relocate(int i, int hi) {
71 int hj = 0, j = 1 - i;
72 for (int round=0; round < LIMIT; round++) {
73 List<T> iSet = table[i][hi]; // Probe set to shrink
74 T y = iSet.get(0); // Oldest element is the candidate
75 switch (i) {
76 case 0: hj = hash1(y) % capacity; break;
77 case 1: hj = hash0(y) % capacity; break;
78 }
79 acquire(y);
80 List<T> jSet = table[j][hj]; // Other probe set
81 try {
82 if (iSet.remove(y)) {
83 if (jSet.size() < THRESHOLD) {
84 jSet.add(y); return true;
85 } else if (jSet.size() < PROBE_SIZE) {
86 jSet.add(y); // Relocate other probe set
87 i = 1 - i; hi = hj; j = 1 - j;
88 } else { // jSet is full, trigger resize
89 iSet.add(y); return false;
90 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 102 / 106

Concurrent Cuckoo Hashing: Relocation
91 } else if (iSet.size() >= THRESHOLD) {
92 // y may already have been removed
93 continue;
94 } else {
95 return true;
96 }
97 } finally {
98 release(y);
99 }

100 }
101 return false;
102 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 103 / 106

Concurrent Cuckoo Hashing using Striped Locking

1 public class StripedCuckooHashSet<T> extends PhasedCuckooHashSet<T>{
2 final ReentrantLock[][] lock;
3 public StripedCuckooHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock[2][capacity];
6 for (int i = 0; i < 2; i++) {
7 for (int j = 0; j < capacity; j++)
8 lock[i][j] = new ReentrantLock();
9 }

10 }
11 public final void acquire(T x) {
12 lock[0][hash0(x) % lock[0].length].lock();
13 lock[1][hash1(x) % lock[1].length].lock();
14 }
15 public final void release(T x) {
16 lock[0][hash0(x) % lock[0].length].unlock();
17 lock[1][hash1(x) % lock[1].length].unlock();
18 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 104 / 106

Concurrent Cuckoo Hashing using Striped Locking
19 public void resize() {
20 int oldCapacity = capacity;
21 for (Lock aLock : lock[0]) { aLock.lock(); }
22 try {
23 if (capacity != oldCapacity) { return; }
24 List<T>[][] oldTable = table;
25 capacity = 2 * capacity;
26 table = (List<T>[][]) new List[2][capacity];
27 for (List<T>[] row : table) {
28 for (int i = 0; i < row.length; i++) {
29 row[i] = new ArrayList<T>(PROBE_SIZE);
30 } }
31 for (List<T>[] row : oldTable) {
32 for (List<T> set : row) {
33 for (T z : set) { add(z); }
34 } }
35 } finally {
36 for (Lock aLock : lock[0]) { aLock.unlock(); }
37 }
38 }
39 }

Swarnendu Biswas (IIT Kanpur) CS 636: Concurrent Data Structures Sem 2025-26-II 105 / 106

References

M. Herlihy et al. The Art of Multiprocessor Programming. Chapters 3, 9, 10, 11, 13, 2nd edition, Morgan
Kaufmann.

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three Easy Pieces. Chapter
29, Online.

Mark Moir and Nir Shavit. Concurrent Data Structures In Handbook of Data Structures and Applications,
2nd edition, Chapman and Hall/CRC Press, 2004.

A. Castañeda et al. A Linearizability-based Hierarchy for Concurrent Specifications. In Communications
of the ACM, volume 66, issue 1, 2022, pp. 86–97.

A. Castañeda and S. Rajsbaum. Recent Advances on Principles of Concurrent Data Structures. In
Communications of the ACM, volume 67, issue 8, 2024, pp. 45–46.

https://pages.cs.wisc.edu/~remzi/OSTEP/
https://pages.cs.wisc.edu/~remzi/OSTEP/
http://people.csail.mit.edu/shanir/publications/concurrent-data-structures.pdf
http://people.csail.mit.edu/shanir/publications/concurrent-data-structures.pdf
https://dl.acm.org/doi/10.1145/3546826
https://dl.acm.org/doi/10.1145/3546826
https://dl.acm.org/doi/10.1145/3653290
https://dl.acm.org/doi/10.1145/3653290

	Evaluating Concurrent Data Structures
	Designing a Concurrent Set
	ABA Problem
	Concurrent Queues
	Concurrent Hash Sets

