
CS 636: Transactional Memory

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-II

Challenges with Concurrent Programming

Less
synchronization

More
synchronization

Order, atomicity, and
sequential consistency

violations

DeadlockConcurrent
and correct

Poor performance:
lock contention,

serialization

Languages and libraries should
provide efficient portable data
structures as building blocks

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 3 / 119

Challenges with Concurrent Programming

Less
synchronization

More
synchronization

Order, atomicity, and
sequential consistency

violations

DeadlockConcurrent
and correct

Poor performance:
lock contention,

serialization

Languages and libraries should
provide efficient portable data
structures as building blocks

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 3 / 119

Task Parallelism

• Different tasks run on the same data
▶ Threads execute computation

concurrently (e.g., pipelines)
• Explicit synchronization is used to

coordinate threads

program
start

output

10 1 4 2 9 5 7 8

m
ea

n

m
ax

m
in

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 4 / 119

HashMap in Java

1 public Object get(Object key) {
2 int idx = hash(key); // Compute hash to find bucket
3 HashEntry e = buckets[idx];
4 while (e != null) { // Find element in bucket
5 if (equals(key, e.key))
6 return e.value;
7 e = e.next;
8 }
9 return null;

10 } No lock overhead but
thread-unsafe

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 5 / 119

Synchronized HashMap in Java

1 public Object get(Object key) {
2 synchronized (mutex) { // mutex guards all accesses
3 return myHashMap.get(key);
4 }
5 }

Thread-safe but uses explicit
coarse-grained locking

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 6 / 119

Coarse-Grained and Fine-Grained Locking

Coarse-Grained Locking

+ Easy to implement correctly
− Limits concurrency, poor scalability

Fine-Grained Locking

+ More concurrency, better performance
− Difficult to get correct, more

error-prone

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 7 / 119

Data Parallelism

Same task is applied on many data items in parallel
• E.g., processing pixels in an image
• Useful for numeric computations
• Not a universal programming model

10 1 4 2 9 5 7 8

11 2 5 3 10 6 8 9

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 8 / 119

Task vs Data Parallelism

Task Parallelism

• Different operations on same or
different data

• Parallelization depends on task
decomposition

• Speedup is usually less because of
limited opportunities and
synchronization

Data Parallelism

• Same operation on different data
• Parallelization proportional to the

input data size
• Speedup is usually more

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 9 / 119

Abstraction and Composability

Programming models provide abstraction and composition
• For example, procedures, ADTs, and libraries
• Abstraction is a simplified view of an entity or a problem (e.g., procedures and ADT)
• Composability joins smaller units to form larger, more complex units (e.g., library

methods)

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 10 / 119

Abstraction and Composability

Programming models provide abstraction and composition
• For example, procedures, ADTs, and libraries
• Abstraction is a simplified view of an entity or a problem (e.g., procedures and ADT)
• Composability joins smaller units to form larger, more complex units (e.g., library

methods)

Parallel programming lacks abstraction mechanisms
− Low-level parallel programming models, such as threads and explicit synchronization,

are unsuitable for constructing abstractions
− Explicit synchronization is not composable

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 10 / 119

Locks are difficult to program

− If a thread holding a lock is delayed, other contending threads cannot make progress
▶ All contending threads will possibly wake up, but only one can make progress

− Lost wakeup — missed notify for condition variable
− Deadlock
− Priority inversion
− Lock convoying
− Locking relies on programmer conventions

Bradley Kuszmaul

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 11 / 119

Locks are difficult to program

− If a thread holding a lock is delayed, other contending threads cannot make progress
▶ All contending threads will possibly wake up, but only one can make progress

− Lost wakeup — missed notify for condition variable
− Deadlock
− Priority inversion
− Lock convoying
− Locking relies on programmer conventions/* * When a locked buffer is visible to the I/O layer * BH_Launder is set.

This means before unlocking * we must clear BH_Launder,mb() on alpha
and then * clear BH_Lock, so no reader can see BH_Launder set * on an
unlocked buffer and then risk to deadlock. */

Bradley Kuszmaul

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 11 / 119

Lock-based Synchronization is not Composable

1 class HashTable {
2 void synchronized insert(T elem);
3 boolean synchronized remove(T elem);
4 }

You may now want to add a new method move

1 boolean move(HashTable tab1, HashTable tab2, T elem)
2 ⇒ remove()
3 ⇒ insert()

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 12 / 119

Lock-based Synchronization is not Composable

1 class HashTable {
2 void synchronized insert(T elem);
3 boolean synchronized remove(T elem);
4 }

You may now want to add a new method move

1 boolean move(HashTable tab1, HashTable tab2, T elem)
2 ⇒ remove()
3 ⇒ insert()

Option: Add new methods such as LockHashTable() and
UnlockHashTable()

− Breaks the abstraction by exposing an implementation detail
− Lock methods are error prone

▶ A client that locks more than one table must be careful to lock them
in a globally consistent order to prevent deadlock

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 12 / 119

Choosing the right locks!

• Locking schemes for 4 threads may not be the most efficient at 64 threads
• Need to profile the amount of contention

What about hardware atomic primitives?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 13 / 119

Transactional Memory

Transactional Memory

Transaction A computation sequence that executes as if without external interference
• Computation sequence appears indivisible and instantaneous
• Proposed by Lomet [’77] and Herlihy and Moss [’93]

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 14 / 119

Advantages of Transactional Memory (TM)

+ Provides reasonable tradeoff between abstraction and performance
+ No need for explicit locking

▶ Avoids lock-related issues like lock convoying, priority inversion, and deadlock

1 boolean move(HashTable tab1, HashTable tab2, T elem) {
2 atomic {
3 boolean res = tab1.remove(elem);
4 if (res)
5 tab2.insert(\emph{}lem);
6 }
7 return res;
8 }

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 15 / 119

Advantages of TM

Programmer says what needs to be atomic
TM system/runtime implements synchronization

Declarative abstraction
• Programmer says what work should be done
• Programmer has to say how work should be done with imperative abstraction

Easy programmability (like coarse-grained locks)
Performance goal is like fine-grained locks

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 16 / 119

Basic TM Design

• Transactions are executed speculatively
• If the transaction execution completes without a conflict, then the transaction

commits
▶ The updates are made permanent

• If the transaction experiences a conflict, then it aborts

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 17 / 119

Database Systems as a Motivation

• Database systems have successfully exploited parallel hardware for decades
• Achieve good performance by executing many queries simultaneously and by running

queries on multiple processors when possible

ACID properties
• Atomicity
• Consistency
• Isolation
• Durability

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 18 / 119

TM vs Database Transactions

TM

• Supported by language runtime or
hardware

• Not durable
• Operations are from main memory,

performance is critical

Databases

• Application level concept
• Durable
• Operations involve mostly disk

accesses

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 19 / 119

Properties of TM execution

Atomic Appears to happen instantaneously
Commit Appears atomic

Abort Has no side effects
Serializable Appears to happen serially in order

Isolation Other transactions cannot observe writes before commit

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 20 / 119

TM Execution Semantics

Thread 1

1 atomic {
2 a = a - 20;
3 b = b + 20;
4 c = a + b;
5 a = a - b;
6 }

Thread 2

1 atomic {
2 c = c + 40;
3 d = a + b + c;
4 }
5

6

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 21 / 119

TM Execution Semantics

Thread 1

1 atomic {
2 a = a - 20;
3 b = b + 20;
4 c = a + b;
5 a = a - b;
6 }

Thread 2

1 atomic {
2 c = c + 40;
3 d = a + b + c;
4 }
5

6

Thread 1’s updates to a, b,
and c are atomic

Thread 2 either sees ALL updates
to a, b, and c from T1 or NONE

No data race due to TM semantics

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 21 / 119

Linked-List-based Double Ended Queue

Left
sentinel 10 20 90 Right

sentinel

1 void PushLeft(DQueue *q, int val) {
2 QNode *qn = malloc(sizeof(QNode));
3 qn->val = val;
4 atomic {
5 QNode *leftSentinel = q->left;
6 QNode *oldLeftNode = leftSentinel->right;
7 qn->left = leftSentinel;
8 qn->right = oldLeftNode;
9 leftSentinel->right = qn;

10 oldLeftNode->left = qn;
11 }
12 }

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 22 / 119

Linked-List-based Double Ended Queue

Left
sentinel 10 20 90 Right

sentinel

1 void PushLeft(DQueue *q, int val) {
2 QNode *qn = malloc(sizeof(QNode));
3 qn->val = val;
4 atomic {
5 QNode *leftSentinel = q->left;
6 QNode *oldLeftNode = leftSentinel->right;
7 qn->left = leftSentinel;
8 qn->right = oldLeftNode;
9 leftSentinel->right = qn;

10 oldLeftNode->left = qn;
11 }
12 }

Challenges with a lock-based implementation
− A single lock would prevent concurrent operations at both ends
− Need to be careful to avoid deadlocks with multiple locks
− Take care of corner cases (for example, only one element is left)

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 22 / 119

Atomicity Violations

Thread 1

1 . . .
2 if (thd->proc_info) {
3

4

5

6 puts(thd->proc_info, . . .)
7 }
8 . . .

Thread 2

1

2 . . .
3

4 thd->proc_info = NULL;
5

6 . . .
7

8

MySQL: ha_innodb.cc

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 23 / 119

Fixing Atomicity Violations with TM

Thread 1

1 . . .
2 atomic {
3 if (thd->proc_info) {
4 puts(thd->proc_info, . . .)
5 }
6 }
7 . . .
8

9

10

Thread 2

1

2

3

4

5

6 . . .
7 atomic {
8 thd->proc_info = NULL;
9 }

10 . . .

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 24 / 119

Fixing Atomicity Violations with TM

Thread 1

1

2

3

4 . . .
5 atomic {
6 if (thd->proc_info) {
7 puts(thd->proc_info, . . .)
8 }
9 }

10 . . .

Thread 2

1 . . .
2 atomic {
3 thd->proc_info = NULL;
4 }
5 . . .
6

7

8

9

10

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 25 / 119

TM vs synchronized in Java

TM

• A transaction is atomic w.r.t. all other
transactions in the system

• Nested transactions never deadlock

synchronized

• Provides mutual exclusion compared
to other blocks on the same lock

• Nested blocks can deadlock if locks
are acquired in wrong order

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 26 / 119

TM Interface

1 void startTx();
2 bool commitTx();
3 void abortTx();
4 T readTx(T *addr);
5 void writeTx(T *addr, T val);

Read set Set of variables read by the Tx
Write set Set of variables written by the

Tx

Functions can be overloaded by types or we
can use generics

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 27 / 119

Linked-List-based Double Ended Queue

Left
sentinel 10 20 90 Right

sentinel

1 void PushLeft(DQueue *q, int val) {
2 QNode *qn = malloc(sizeof(QNode));
3 qn->val = val;
4 do {
5 StartTx();
6 QNode *leftSentinel = ReadTx(&(q->left));
7 QNode *oldLeftNode = ReadTx(&(leftSentinel->right));
8 WriteTx(&(qn->left), leftSentinel);
9 WriteTx(&(qn->right), oldLeftNode);

10 WriteTx(&(leftSentinel->right), qn);
11 WriteTx(&(oldLeftNode->left), qn);
12 } while(!commitTx());
13 }

• Similar to sequential code
• No explicit locks

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 28 / 119

Transactions cannot replace all uses of locks

Thread 1

1 do {
2 startTx();
3 writeTx(&x, 1);
4 } while (!commitTx());
5

Thread 2

1 do {
2 startTx();
3 int tmp = readTx(&x);
4 while (tmp == 0) {}
5 } while (!commitTx());

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 29 / 119

Concurrency in TM

startTx() readTx(p) writeTx(q) commitTx()

startTx() readTx(x) writeTx(y) commitTx()

Thread 1

Thread 2

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 30 / 119

Concurrency in TM

startTx() readTx(p) writeTx(q) commitTx()

startTx() readTx(x) writeTx(y) commitTx()

Thread 1

Thread 2

Two levels
(i) Among Txs from concurrent thread

(ii) Among individual Tx operations

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 30 / 119

Design Choices

Concurrency Control, Version Management, and Conflict Detection

TM Terminology

• A conflict occurs when two transactions perform conflicting operations on the same
memory location
▶ Let Ri and Wj be the read and write sets of Txs i and j . Then, a conflict occurs iff

▶ Ri ∩Wj ̸= 0, or
▶ Rj ∩Wi ̸= 0, or
▶ Wi ∩Wj ̸= 0,

• The conflict is detected when the underlying TM system determines that the conflict
has occurred

• The conflict is resolved when the underlying TM system takes some action to avoid
the conflict
▶ For example, delay or abort one of the conflicting transactions

• A conflict, its detection, and its resolution can occur at different times

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 31 / 119

TM Example Execution

Thread 1

1 atomic {
2 tmp = bal;
3 bal = tmp + 100;
4 }

Thread 2

1 atomic {
2 tmp = bal;
3 bal = tmp - 100;
4 }

Location Value read Value written Location Value read Value written

bal = 1000;

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 32 / 119

TM Example Execution

Thread 1

1 atomic {
2 tmp = bal;
3 bal = tmp + 100;
4 }

Thread 2

1 atomic {
2 tmp = bal;
3 bal = tmp - 100;
4 }

Location Value read Value written Location Value read Value written

bal 1000

bal = 1000;

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 33 / 119

TM Example Execution

Thread 1

1 atomic {
2 tmp = bal;
3 bal = tmp + 100;
4 }

Thread 2

1 atomic {
2 tmp = bal;
3 bal = tmp - 100;
4 }

Location Value read Value written

bal 1000

Location Value read Value written

bal 1000

bal = 1000;

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 34 / 119

TM Example Execution

Thread 1

1 atomic {
2 tmp = bal;
3 bal = tmp + 100;
4 }

Thread 2

1 atomic {
2 tmp = bal;
3 bal = tmp - 100;
4 }

Location Value read Value written

bal 1000 1100

Location Value read Value written

bal 1000

bal = 1000;

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 35 / 119

TM Example Execution

Thread 1

1 atomic {
2 tmp = bal;
3 bal = tmp + 100;
4 }

Thread 2

1 atomic {
2 tmp = bal;
3 bal = tmp - 100;
4 }

Location Value read Value written

bal 1000 1100

Thread 1’s Tx ends, updates are committed,
value of bal is written to memory, Tx log is
discarded

Location Value read Value written

bal 1000

bal = 1100;

✓

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 36 / 119

TM Example Execution

Thread 1

1 atomic {
2 tmp = bal;
3 bal = tmp + 100;
4 }

Thread 2

1 atomic {
2 tmp = bal;
3 bal = tmp - 100;
4 }

Location Value read Value written

bal 1000 900

bal = 1100;

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 37 / 119

TM Example Execution

Thread 1

1 atomic {
2 tmp = bal;
3 bal = tmp + 100;
4 }

Thread 2

1 atomic {
2 tmp = bal;
3 bal = tmp - 100;
4 }

Location Value read Value written

bal 1000 900

Thread 2’s Tx ends, but commit fails, because
value of bal in memory does not match the
read log, Tx needs to rerun

bal = 1100;

✗

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 38 / 119

Concurrency Control

Pessimistic
• Occurrence, detection, and resolution happen at the same time during execution
• Claims ownership of data before modifications

Optimistic
• Conflict detection and resolution can happen after the conflict occurs
• Multiple conflicting transactions can continue to keep running, as long as the conflicts

are detected and resolved before the Txs commit

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 39 / 119

Pessimistic Concurrency Control

startTx() readTx(p) writeTx(q) commitTx()

startTx() readTx(p) writeTx(q) commitTx()

Thread 1

Thread 2

writeTx(r)

writeTx(r)

Conflict occurs, is detected, and is
resolved by delaying Thread 2's Tx

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 40 / 119

Time of Locking

• When the Tx first accesses a location
• When the Tx is about to commit

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 41 / 119

Optimistic Concurrency Control

startTx() readTx(p) writeTx(q) Conflict
detected and
resolved by
aborting the

Txs and
reexecuting

one or both of
themstartTx() readTx(p) writeTx(q)

Thread 1

Thread 2

writeTx(r)

writeTx(r)

Conflict
occurs

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 42 / 119

Pessimistic vs Optimistic Concurrency Control

Pessimistic

• Usually claims exclusive ownership of
data before accessing

• Needs to avoid or detect and recover
from deadlock situations

+ Effective in high contention cases

Optimistic

• Avoids claiming exclusive ownership
of data, provides more conflict
resolution choices

• Needs to avoid livelock situations
through contention management
schemes

+ Effective in low contention cases

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 43 / 119

Hybrid Concurrency Control

• Use pessimistic control for writes and optimistic control for reads

• Use optimistic control TM with pessimistic control of irrevocable Txs
▶ Irrevocable Tx means that the changes cannot be rolled back
▶ A Tx that has performed I/O or a Tx that has experienced frequent conflicts in the past

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 44 / 119

Version Management

TMs need to track updates for conflict resolution

• Eager
▶ Tx directly updates data in memory

(direct update)
▶ Maintains an undo log with

overwritten values
▶ Values in the undo log are used to

revert updates on an abort

Eager version
management

Upon commit

Flush undo log

On abort

Write back
undo log

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 45 / 119

Version Management

TMs need to track updates for conflict resolution

• Lazy
▶ Tx updates data in a private redo log
▶ Updates are made visible at commit

(deferred update)
▶ Tx reads must look up redo logs
▶ Discard redo log on an abort

Lazy version
management

Upon commit

Write back
redo log

On abort

Flush redo log

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 45 / 119

Understanding Conflict Detection

• Pessimistic concurrency control is straightforward

• Which concurrency control type should we use with eager version management,
pessimistic or optimistic?

• How do you check for conflicts in optimistic concurrency control?

▶ Validation operation — Successful validation means Tx had no conflicts

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 46 / 119

Understanding Conflict Detection

• Pessimistic concurrency control is straightforward

• Which concurrency control type should we use with eager version management,
pessimistic or optimistic?

• How do you check for conflicts in optimistic concurrency control?

▶ Validation operation — Successful validation means Tx had no conflicts

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 46 / 119

Understanding Conflict Detection

• Pessimistic concurrency control is straightforward
• Which concurrency control type should we use with eager version management,

pessimistic or optimistic?

• How do you check for conflicts in optimistic concurrency control?

▶ Validation operation — Successful validation means Tx had no conflicts

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 46 / 119

Understanding Conflict Detection

• Pessimistic concurrency control is straightforward
• Which concurrency control type should we use with eager version management,

pessimistic or optimistic?

• How do you check for conflicts in optimistic concurrency control?

▶ Validation operation — Successful validation means Tx had no conflicts

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 46 / 119

Understanding Conflict Detection

• Pessimistic concurrency control is straightforward
• Which concurrency control type should we use with eager version management,

pessimistic or optimistic?
• How do you check for conflicts in optimistic concurrency control?

▶ Validation operation — Successful validation means Tx had no conflicts

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 46 / 119

Understanding Conflict Detection

• Pessimistic concurrency control is straightforward
• Which concurrency control type should we use with eager version management,

pessimistic or optimistic?
• How do you check for conflicts in optimistic concurrency control?

▶ Validation operation — Successful validation means Tx had no conflicts

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 46 / 119

Conflict Detection in Optimistic Concurrency Control

Conflict granularity
• Object or field in software TM, line offset or whole cache line in hardware TM
• What are the tradeoffs?

Time of conflict detection
• Just before access (eager), during validation, during final validation before commit

(lazy)
• Validation can occur at any time, and can occur multiple times

Conflicting access types
Among concurrent ongoing Txs, or between active and committed Txs

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 47 / 119

Object Layout

Header

field1

field2

field3

Object layout

Object Model in Jikes RVM

ObjectModel (Jikes RVM API)

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 48 / 119

https://www.jikesrvm.org/JavaDoc/org/jikesrvm/objectmodel/ObjectModel.html

Issues with Conflict Granularity

1 x = 0;
2 y = 0;

Thread 1

1 do {
2 startTx();
3 tmp = readTx(&x);
4 writeTx(x, 10);
5 } while (!commitTx());

Thread 2

1 . . .
2 y = 20;
3 . . .
4

5

• Detect conflicts at the granularity of objects or fields
• A hardware technique can detect conflicts at the line/block level

or at the level of individual byte offsets
• What are the tradeoffs?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 49 / 119

Transaction Semantics

Concurrency in TM

Two levels
(i) Among Txs from concurrent thread

(ii) Among individual Tx operations

startTx() readTx(p) writeTx(q) commitTx()

startTx() readTx(x) writeTx(y) commitTx()

Thread 1

Thread 2

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 50 / 119

Serializability
The result of executing concurrent transactions must be identical to a result in
which these transactions executed serially
• Widely-used correctness condition in databases
• The TM system can reorder transactions
• Serializability requires the Txs appear to run in serial order

▶ Does not require that the order has to be real-time

startTx() readTx(p) writeTx(q)

Thread 1

Thread 2

commitTx()

startTx() readTx(x) writeTx(y) commitTx()

time

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 51 / 119

Strict Serializability

In strict serializability, if transaction TA completes before transaction TB starts,
then TA must occur before TB in the equivalent serial execution

startTx() readTx(p) writeTx(q)

Thread 1

Thread 2

commitTx()

startTx() readTx(x) writeTx(y) commitTx()

time

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 52 / 119

Limitations of Strict Serializability

startTx() readTx(x) writeTx(y)

Thread 1

Thread 2

commitTx()

time

readTx(y)startTx() readTx(x) commitTx()

What value of y will
be returned?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 53 / 119

Linearizability
• A method call is the interval that starts with an invocation event and ends with a

response event
• A method call is pending if the response event has not yet occurred
• Linearizability of an operation (e.g., method call): each operation appears to execute

atomically at some point between its invocation and its completion

startTx() readTx(p) writeTx(q)

Thread 1

Thread 2

commitTx()

startTx() readTx(x) writeTx(y) commitTx()

time

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 54 / 119

Linearizability
Linearizability of a transaction: a transaction is a single operation extending from the
beginning of startTx() until the completion of its final commitTx()

startTx() readTx(p) writeTx(q)

Thread 1

Thread 2

commitTx()

time

startTx() readTx(x) commitTx() readTx(y)

Allows “readTx(y)” to see the
write to y from Thread 1

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 55 / 119

Linearizability
Linearizability of a transaction: a transaction is a single operation extending from the
beginning of startTx() until the completion of its final commitTx()

startTx() readTx(p) writeTx(q)

Thread 1

Thread 2

commitTx()

time

startTx() readTx(x) commitTx() readTx(y)

Allows “readTx(y)” to see the
write to y from Thread 1

If each transaction appears to execute atomically at a single instant,
then conflicts between transactions will not occur

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 55 / 119

Snapshot Isolation (SI)

• Weaker isolation requirement than serializability
▶ Can potentially allow greater concurrency between Txs
▶ Many database implementations actually provide SI

• SI allows a Tx’s reads to be serialized before the Tx’s writes
• All reads must see a valid snapshot of memory
• Updates must not conflict

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 56 / 119

Example of SI

1 x = 0;
2 y = 0;

Thread 1

1 do {
2 startTx();
3 int tmp_x = readTx(x);
4 int tmp_y = readTx(y);
5 int tmp = tmp_x + tmp_y + 1;
6 writeTx(x, tmp);
7 } while (!commitTx());

Thread 2

1 do {
2 startTx();
3 int tmp_x = readTx(x);
4 int tmp_y = readTx(y);
5 int tmp = tmp_x + tmp_y + 1;
6 writeTx(y, tmp);
7 } while (!commitTx());

What are possible values of x and y after execution?

• With serializability

• With SI

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 57 / 119

Understanding SI

1 X = 0;
2 y = 0;

Thread 1

1 int t = x + 1; // 1
2 x = t;

Thread 2

1 int t = x + 1; // 1
2 x = t;

Sequentially consistent but no SI

M. Zhang et al. Avoiding Consistency Exceptions Under Strong Memory Models. ISMM 2017.

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 58 / 119

https://dl.acm.org/doi/10.1145/3156685.3092271

Understanding SI

1 X = 0;
2 y = 0;

Thread 1

1 x = 1;
2 int t = y; // 0

Thread 2

1 y = 1;
2 int t = x; // 0

SI but not sequentially consistent
and not serializable

M. Zhang et al. Avoiding Consistency Exceptions Under Strong Memory Models. ISMM 2017.

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 58 / 119

https://dl.acm.org/doi/10.1145/3156685.3092271

Understanding SI

• Semantics of SI may seem unexpected when compared with simpler models based
on serial ordering of complete transactions

• Potential increased concurrency often does not manifest as a performance advantage
when compared with models such as strict serializability

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 59 / 119

Other TM Considerations

Consistency During Transactions

• Semantics such as serializability characterize the behavior of committed Txs
• What about the Txs which fail to commit?

▶ Tx may abort or may be slow to reach commitTx()

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 60 / 119

Inconsistent Reads and Zombie Txs

1 x = 0;
2 y = 0;

Thread 1

1 do {
2 startTx();
3 int tmp1 = readTx(&x);
4

5

6

7

8

9 int tmp2 = readTx(&y);
10 while (tmp1 != tmp2) {}
11 } while (!commitTx());

Thread 2

1

2

3

4 do {
5 startTx();
6 writeTx(&x, 10);
7 writeTx(&y, 10);
8 } while (!commitTx());
9

10

11

Assume eager version management
and lazy conflict detection

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 61 / 119

Inconsistent Reads and Zombie Txs

1 x = 0;
2 y = 0;

Thread 1

1 do {
2 startTx();
3 int tmp1 = readTx(&x);
4

5

6

7

8

9 int tmp2 = readTx(&y);
10 while (tmp1 != tmp2) {}
11 } while (!commitTx());

Thread 2

1

2

3

4 do {
5 startTx();
6 writeTx(&x, 10);
7 writeTx(&y, 10);
8 } while (!commitTx());
9

10

11

Assume eager version management
and lazy conflict detection

Validation only during commit is
insufficient for this TM design

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 61 / 119

Considerations with Zombie Txs

• A Tx that is inconsistent but is not yet detected is called a zombie Tx
• Careful handling of zombie Txs are required, especially for unsafe languages like

C/C++
▶ Inconsistent values can potentially be used in pointer arithmetic to access unwanted

memory locations
• Possible workarounds: perform periodic validations

▶ Increases run-time overhead, validating n locations once requires n memory accesses
▶ Couples the program to the TM system

▶ A TM using eager updates allows a zombie transaction’s effects to become visible to other
transactions

▶ A TM using lazy updates only allows the effects of committed transactions to become visible

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 62 / 119

Challenges with Mixed-Mode Accesses

• TM semantics must consider the interaction between transactional and
non-transactional memory accesses

• Many TMs do not detect conflicts between transactional and non-transactional
accesses
▶ Can lead to unexpected behavior with zombie Txs

• Requires the non-Tx thread to participate in conflict detection

Weak Atomicity
• Provides Tx semantics only among Txs
• Checks for conflicts only among Txs

Strong Atomicity
Guarantees Tx semantics among Txs and non-Txs

Often referred to as weak and strong isolation (inspired by databases)
Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 63 / 119

Think of Challenges with Weak Atomicity

(i) Data races between Tx and non-Tx code
(ii) Mismatched conflict detection granularity

▶ Tx detects conflicts at a coarser granularity
(iii) Complicated sharing idioms

▶ Use a Tx to initialize shared data, expect other threads to read the data transactionally

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 64 / 119

Lock-Based Synchronization

• java.util.LinkedList list is shared
• Initially list == [Itemval1==0,val2==0]

Thread 1

1 Item item;
2 synchronized(list) {
3 item = list.removeFirst();
4 }
5 int r1 = item.val1;
6 int r2 = item.val2;
7

Thread 2

1 synchronized(list) {
2 if (!list.isEmpty()) {
3 Item item = list.getFirst();
4 item.val1++;
5 item.val2++;
6 }
7 }

T. Shpeisman et al. Enforcing Isolation and Ordering in STM, PLDI 2007.

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 65 / 119

https://dl.acm.org/doi/10.1145/1273442.1250744

Can we safely replace synchronize with atomic?

Consider a TM design with eager versioning and lazy conflict detection

• java.util.LinkedList list is shared
• Initially list == [Item{val1==0,val2==0}]

Thread 1

1 Item item;
2 weakly_atomic(list) {
3 item = list.removeFirst();
4 }
5 int r1 = item.val1;
6 int r2 = item.val2;
7

Thread 2

1 weakly_atomic(list) {
2 if (!list.isEmpty()) {
3 Item item = list.getFirst();
4 item.val1++;
5 item.val2++;
6 }
7 }

T. Shpeisman et al. Enforcing Isolation and Ordering in STM, PLDI 2007.
Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 66 / 119

https://dl.acm.org/doi/10.1145/1273442.1250744

Few Issues to Consider with Weak Isolation

• Non-repeatable reads
• Intermediate lost updates
• Intermediate dirty reads
• Granular lost updates
• . . .

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 67 / 119

Non-repeatable Reads

A non-repeatable read can occur if a Tx reads the same variable multiple times, and a
non-Tx write is made to it in between.

Thread 1

1 atomic {
2 r1 = x;
3

4 r2 = x;
5 }

Thread 2

1

2

3 x = 1;
4

5

Unless the TM buffers the value seen by the first read, the transaction will see the update.

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 68 / 119

Intermediate Lost Update

An intermediate lost update can occur if a non-Tx write interposes in a transactional
read-modify-write sequence. The non-Tx write can be lost, without being seen by the Tx
read.

1 x = 0;

Thread 1

1 atomic {
2 r = x;
3

4 x = r + 1;
5 }

Thread 2

1

2

3 x = 10;
4

5

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 69 / 119

Intermediate Dirty Read

An intermediate dirty read can occur with a TM using eager version management in which
a non-Tx read sees an intermediate value written by a transaction, rather than the final,
committed value.

1 assert (x%2 == 0); // even

Thread 1

1 atomic {
2 x++;
3

4 x++;
5 }

Thread 2

1

2

3 r = x;
4

5

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 70 / 119

Single-Lock Atomicity for Transactions

• How do we provide semantics for mixed-mode accesses?
• A program executes as if all transactions acquire a single, program-wide mutual

exclusion lock

Thread 1

1 startTx();
2 while (true) {}
3 commitTx();

Thread 2

1 startTx();
2 int tmp = readTx(&x);
3 commitTx();

There are many other proposed models like DLA and TSC

What will happen with SLA?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 71 / 119

Nested Transactions

• Nested parallelism is important
▶ Utilizes increasing number of cores
▶ Integrates with programming models like

OpenMP
• Execution of a nested Tx is wholely contained

in the dynamic extent of another Tx
• Many choices on how nested Txs interact

▶ Flattened
▶ Aborting the inner Tx causes the outer Tx to

abort
▶ Committing the inner Tx has no effect until

the outer Tx commits
▶ Closed

▶ Inner Tx can abort without terminating its
parent Tx

1 // Parallelize loops
2 FOR I := . . .
3 FOR J := . . .
4 FOR K := . . .

1 int x = 1;
2 do {
3 StartTx();
4 WriteTx(&x, 2);
5 do {
6 StartTx();
7 WriteTx(&x, 3);
8 AbortTx();
9 ...

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 72 / 119

Providing Txs: TM Implementations

Software Transactional Memory (STM)

Hardware Transactional Memory (HTM)

STM

+ Supports flexible techniques in TM
design

+ Easy to integrate STMs with PL
runtimes

+ Easier to support unbounded Txs with
dynamically-sized logs

− More expensive than HTMs

HTM

− Restricted variety of implementations
− Need to adapt existing runtimes to

make use of HTM
− Limited by bounded-sized structures

like caches
+ Better performance than STMs

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 73 / 119

Software Transactional Memory

Software Transactional Memory (STM)

Data structures • Need to maintain per-thread Tx state
• Maintain either redo log or undo log
• Maintain per-Tx read/write sets

• McRT-STM, PPoPP’06

• Bartok-STM, PLDI’06

• JudoSTM, PACT’07

• RingSTM, SPAA’08

• NoRec STM, PPoPP’10

• DeuceSTM, HiPEAC’10

• LarkTM, PPoPP’15

• . . .

C. Cascaval et al. Software Transactional Memory: Why Is It Only a Research Toy? ACM Queue, vol. 6, no. 5, Sep. 2008.

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 74 / 119

https://dl.acm.org/doi/10.1145/1454456.1454466

We love questions?

Remember well-designed applications should have low conflict rates

• Is the design of undo log important in a TM with eager version management?

• Is the design of redo log important in a TM with lazy version management?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 75 / 119

We love questions?

Remember well-designed applications should have low conflict rates

• Is the design of undo log important in a TM with eager version management?
• Is the design of redo log important in a TM with lazy version management?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 75 / 119

Implementing STM

• Use compilation passes to instrument
the program

startTx() Tx entry point (prologue)
commitTx() Tx exit point (epilogue)

readTx() Tx read access
writeTx() Tx write access

• TM runtime tracks memory accesses,
detects conflicts, and commits/aborts
Txs

1 atomic {
2 tmp = x;
3 y = tmp + 1;
4 }

⇓

1 // Per-TX data structure
2 td = getTxDesc(thr);
3 startTx(td);
4 tmp = readTx(&x);
5 writeTx(&y, tmp+1);
6 commitTx(td);

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 76 / 119

Object Metadata and Word Metadata

metadata

field1

field2

field3

Object1 layout

metadata1

field1

metadata2

field2

Object2 layout

metadata3

field3

address 1 metadata 1

address 2

address 3

address 4

metadata 2

metadata 3

metadata 4

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 77 / 119

Pros and Cons of Metadata in Object Header

metadata

field1

field2

field3

Object1 layout

metadata1

field1

metadata2

field2

Object2 layout

metadata3

field3

Pro

+ May lie on the same
cache line

+ Single update for
accesses to all fields

Con

− Potential for false
conflicts

− Increases coupling
(e.g., complicates GC)

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 78 / 119

Variants of Word-based Metadata

address 1 metadata 1

address 2

address 3

address 4

metadata 2

metadata 3

metadata 4

address 1 metadata 1

address 2

address 3

address 4

metadata 2

metadata 3

metadata 4

Use hash functions to map
addresses to a fixed-size

metadata space

address 1 metadata 1

address 2

address 3

address 4

metadata 2

metadata 3

metadata 4

Process-wide metadata space

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 79 / 119

Which granularity to use?

Potential impact due to false conflicts

Impact on memory usage

Impact on performance, i.e., speed of mapping location to metadata

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 80 / 119

Major STM Designs

Per-object versioned locks (McRT-STM, Bartok-STM)
• Use locks for protecting updates, and use versions to detect conflicts involving reads

Global clock with per-object metadata (TL2)

Fixed global metadata (JudoSTM, RingSTM, NOrec STM)

Nonblocking STMs (DSTM)
• Does not use locks

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 81 / 119

Lock-Based STM with Versioned Reads

High-level design
• Pessimistic concurrency control for writes

▶ Locks are acquired dynamically
• Optimistic concurrency control for reads

▶ Validation using per-object version numbers

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 82 / 119

Header Word Optimizations in Bartok STM

TM metadata 00 Normal lock 01 Hash code 10

00 00

11

Hash code

Normal lock

TM metadata

1. Header word is
initially zero

2. First type of use is
encoded in header word

3. Second type of use
triggers inflation

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 83 / 119

Other Design Choices

• Eager vs lazy version management
• Access-time locking or commit-time locking

• Access-time locking
▶ Can support both eager or lazy version management
▶ Detects conflicts between active transactions, irrespective of whether they ultimately

commit

• Commit-time locking
▶ Can support only lazy version management

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 84 / 119

STM Metadata

• Versioned locks
Lock mutual exclusion of writes

Version number detect conflicts involving reads

• Lock is available — no pending writes, holds the current version of the object
• Lock is taken — refers to the owner Tx
• Invisible reads — presence of a reading Tx is not visible to concurrent Txs which might

try to commit updates to the objects being read

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 85 / 119

Read and Write Operations

1 readTx(tx, obj, off) {
2 tx.readSet.obj = obj;
3 tx.readSet.ver = getVerFromMd(obj);
4 tx.readSet++;
5

6 return read(obj, off);
7 }

1 writeTx(tx, obj, off, newVal) {
2 acquire(obj);
3

4 tx.undoLog.obj = obj;
5 tx.undoLog.offset = off,
6 tx.undoLog.val = read(obj, off);
7 tx.undoLog++;
8

9 tx.writeSet.obj = obj;
10 tx.writeSet.off = off;
11 tx.writeSet.ver = ver;
12 tx.writeSet++;
13

14 write(obj, off, newVal);
15 release(obj);
16 }

eager version
management

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 86 / 119

Read and Write Operations

1 readTx(tx, obj, off) {
2 tx.readSet.obj = obj;
3 tx.readSet.ver = getVerFromMd(obj);
4 tx.readSet++;
5

6 return read(obj, off);
7 }

1 writeTx(tx, obj, off, newVal) {
2 acquire(obj);
3 undoLogInt(tx, obj, off);
4 tx.writeSet.obj = obj;
5 tx.writeSet.off = off;
6 tx.writeSet.ver = ver;
7 tx.writeSet++;
8 write(obj, off, newVal);
9 release(obj);

10 }
11

12 undoLogInt(tx, obj, off) {
13 tx.undoLog.obj = obj;
14 tx.undoLog.offset = off,
15 tx.undoLog.val = read(obj, off);
16 tx.undoLog++;
17 }

type specialization

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 87 / 119

Conflict Detection on Writes

Writes Reads

How do you detect conflicts
on writes?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 88 / 119

Conflict Detection on Reads

Writes Reads

1 bool commitTx(tx) {
2 foreach (entry e in tx.readSet)
3 if (!validateTx(e.obj, e.ver))
4 abortTx(tx);
5 return false;
6 foreach (entr e in tx.writeSet)
7 unlock(e.obj, e.ver);
8 return true;
9 }

Unlock increments the
version number

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 89 / 119

No Conflict on Read from Addr=200

ver = 100

x == 42 addr = 200, ver = 100

Read set

Addr = 200

Transaction read from the object, and its version
number is unchanged at commit time

Metadata doubles as
version and lock

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 90 / 119

No Conflict on Read from and Write to Addr=200

x = 17 addr = 200, ver = 100

Read set

Addr = 200

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo logTransaction read from and then wrote to the
object, and the version numbers are the same

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 91 / 119

No Conflict on Write to and Read from Addr=200

x = 17 addr = 200,

Read set

Addr = 200

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo logTransaction wrote to and then read from the
object, and the version numbers are the same

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 92 / 119

Conflict on Read from Addr=200, Concurrent Tx Updates and
Commits

ver = 101

x == 2 addr = 200, ver = 100

Read set

Addr = 200

Transaction read from the object, and there is
a version mismatch during commitTx()

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 93 / 119

Conflict on Read from Addr=200, Concurrent Write

ver = 105

x == 22 addr = 200,

Read set

Addr = 200

Transaction read from the object when it was
owned by some other Tx

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 94 / 119

Conflict on Read from Addr=200 during Commit

x == 47 addr = 200, ver = 100

Read set

Addr = 200

Transaction is owned by some other Tx when
the current reader Tx tries to commit

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 95 / 119

Conflict Between Read and Write from Addr=200

x = 17 addr = 200, ver = 100

Read set

Addr = 200

addr = 200, ver = 101

Write set

addr = 200, val = 42

Undo log
Transaction read from and wrote to the object,
but a concurrent Tx updated the object in be-
tween

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 96 / 119

Practical Issues

Version overflow
• Theoretical concern, is a practical concern if the metadata is “packed”
• Globally renumber objects if overflow is rare
• Distinguish between an “old” and a wrapped-around “new” version

▶ Ensure that each thread validates its current Tx at least once within n version increments

Do these techniques (McRT, Bartok) allow zombie txs?

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 97 / 119

Semantics of McRT and Bartok

Read set may not remain consistent during txs

Does not detect conflicts between txs and non-txs

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 98 / 119

Hardware Transactional Memory

Hardware Transactional Memory (HTM)

• Can provide strong isolation without
modifications to non-Tx accesses

• Easy to extend to unmanaged
languages

• TCC, ISCA’04
• LogTM, HPCA’06
• Rock HTM, ASPLOS’09
• FlexTM, ICS’09
• Azul HTM
• Intel TSX
• IBM Blue Gene/Q

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 99 / 119

Possible ISA Extensions

Similar to STMs, HTMs need to demarcate Tx boundaries and trans-
actional memory accesses

Explicit

• begin_transaction
• end_transaction
• load_transactional
• store_transactional

Implicit

• begin_transaction
• end_transaction

Memory accessed within a Tx through ordinary memory
instructions do not participate in any transactional
memory protocol

All memory accesses are transactional

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 100 / 119

Possible ISA Extensions

Similar to STMs, HTMs need to demarcate Tx boundaries and trans-
actional memory accesses

Explicit

• begin_transaction
• end_transaction
• load_transactional
• store_transactional

Implicit

• begin_transaction
• end_transaction

Memory accessed within a Tx through ordinary memory
instructions do not participate in any transactional
memory protocol

All memory accesses are transactional

Which is simpler?
Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 100 / 119

Explicitly vs Implicitly Transactional HTMs

Explicitly Transactional

• Provides flexibility to choose desired
memory locations
▶ Reduced read and write set size

• May require multiple library versions
▶ Limits reuse of legacy libraries in

HTMs

Implicitly Transactional

• Larger read and write sets
• Easy to reuse software libraries

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 101 / 119

Design Issues in HTMs

Tracking read and write sets
• Introducing additional structures like transactional cache complicates the data path
• Recent ideas extend existing data caches to track accesses

▶ Granularity matters (one read bit for a cache line)
• Need to be careful with writes

Conflict detection
• Natural to piggyback on cache coherence protocols to detect conflicts
• Most HTMs detect conflicts eagerly, and transfer control to a software handler

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 102 / 119

Intel Transactional Synchronization Extensions (TSX)

• TSX supported by Intel in selected series based on Haswell microarchitecture
• TSX hardware can dynamically determine whether threads need to serialize

lock-protected critical sections

Transactional Synchronization with Intel® Core™ 4th Generation Processor
Coarse-grained Locks and Transactional Synchronization Explained

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 103 / 119

https://www.intel.com/content/www/us/en/developer/articles/community/transactional-synchronization-in-haswell.html
https://www.intel.com/content/www/us/en/developer/articles/community/coarse-grained-locks-and-tsx-explained.html

High-Level Goal with Transactions

• Hardware dynamically determines whether threads need to serialize
▶ For example, with lock-protected critical sections

• Hardware serializes only when required
• Thus, processor exposes and exploits concurrency that is hidden due to unnecessary

synchronization
• Lock elision idea introduced by Ravi Rajwar and James R. Goodman in 2001

▶ Remove locks, run code as a transaction
▶ If there are conflicts, abort and rerun code with locks intact
▶ On success, commit the transaction’s writes to memory

R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution, MICRO 2001.

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 104 / 119

https://ieeexplore.ieee.org/document/991127

Intel Transactional Synchronization Extensions

TSX operation
• Optimistically executes critical sections eliding lock operations
• Commit if the Tx executes successfully
• Otherwise abort — discard all updates, restore architectural state, and resume

execution
• Resumed execution may fall back to locking

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 105 / 119

TSX Interface

Hardware Lock Elision (HLE)

• xacquire
• xrelease

Restricted Transactional Memory (RTM)

• xbegin
• xend
• xabort

Extends HTM support to legacy hardware New ISA extensions

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 106 / 119

Hardware Lock Elision (HLE)

• Application uses legacy-compatible prefix hints to identify critical sections
▶ Hints ignored on hardware without TSX

• HLE provides support to execute critical section transactionally without acquiring
locks

• Abort causes a re-execution without lock elision
• Hardware manages all state

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 107 / 119

Goal with Intel TSX

Coarse-grained Locks and Transactional Synchronization Explained

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 108 / 119

https://www.intel.com/content/www/us/en/developer/articles/community/coarse-grained-locks-and-tsx-explained.html

Lock Acquire Code

1 acquire(mutex);
2 /* critical section */
3 release(mutex);

application

1 mov eax, 1
2 Try: lock xchg mutex, eax
3 cmp eax, 0
4 jz Success
5 Spin: pause
6 cmp mutex, 1
7 jz Spin
8 jmp Try

1 mov mutex, 0

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 109 / 119

HLE Interface

1 acquire(mutex);
2 /* critical section */
3 release(mutex);

application

1 mov eax, 1
2 Try: xacquire lock xchg mutex, eax
3 cmp eax, 0
4 jz Success
5 Spin: pause
6 cmp mutex, 1
7 jz Spin
8 jmp Try

1 xrelease mov mutex, 0

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 110 / 119

Restricted Transactional Memory (RTM)

• Software uses new instructions to identify critical sections
▶ Similar to HLE, but more flexible interface for software
▶ Requires programmers to provide an alternate fallback path

• Processor may abort RTM transactional execution for several reasons
• Abort transfers control to target specified by XBEGIN operand

▶ Abort information encoded in the EAX GPR

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 111 / 119

RTM Interface

1 Retry: xbegin Abort
2 cmp mutex, 0
3 jz Success
4 xabort $0xff
5

6 Abort:
7 // check eax and do retry
8 // policy actually acquire
9 // lock or wait to retry

10 ...

1 cmp mutex, 0
2 jnz Rel
3 xend

1 mov eax, 1
2 Try: lock xchg mutex, eax
3 cmp eax, 0
4 jz Success
5

6 Spin: pause
7 cmp mutex, 1
8 jz Spin
9 jmp Try

10

1 Rel: mov mutex, 0
2

3

acquire(mutex)

release(mutex)

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 112 / 119

XTEST Instruction

Queries whether the logical processor is transactionally executing in a transactional region
identified by either HLE or RTM

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 113 / 119

Aborts in TSX

• Conflicting accesses from different cores (data, locks, false sharing)
▶ TSX maintains read/write sets at the granularity of cache lines

• Capacity misses
• Some instructions always cause aborts (system calls, I/O)
• Eviction of a transactionally-written cache line
• Eviction of transactionally-read cache lines do not cause immediate aborts

▶ Backed up in a secondary structure which might overflow

Section 12.2.4 in Intel 64 and IA-32 Architectures Optimization Reference Manual

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 114 / 119

Finding Reasons for Aborts can be Hard

EAX register Meaning
bit position

0 Set if abort caused by XABORT instruction
1 If set, the transaction may succeed on a retry. This bit is always clear if

bit 0 is set.
2 Set if another logical processor conflicted with a memory address that

was part of the transaction that aborted.
3 Set if an internal buffer overflowed
4 Set if debug breakpoint was hit
5 Set if an abort occurred during execution of a nested transaction

23:6 Reserved
31:24 XABORT argument (only valid if bit 0 set, otherwise reserved)

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 115 / 119

TSX Implementation Details

• Every detail is not known
▶ Read and write sets are at cache line granularity
▶ Uses L1 data cache as the storage

• Conflict detection is through cache coherence protocol

TSX caveats
• No guarantees that Txs will commit
• There should be a software fallback independent of TSX to guarantee forward

progress

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 116 / 119

Applying Intel TSX

R. Rajwar. Going Under the Hood with Intel’s Next Generation Microarchitecture Codename Haswell. QCon 2012.

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 117 / 119

https://qconsf.com/sf2012/dl/qcon-sanfran-2012/slides/RaviRajwar_GoingUnderTheHoodWithIntelsNextGenerationMicroarchitectureCodenameHaswell.pdf

Relevance of TSX-like Concepts

• GNU glibc 2.18 added support for lock elision of pthread mutexes of type
PTHREAD_MUTEX_DEFAULT

• Glibc 2.19 added support for elision of read/write mutexes
▶ Depends whether the –enable-lock-elision=yes parameter was set at compilation time of

the library
• Java JDK 8u20 onward support adaptive elision for synchronized sections when the

-XX:+UseRTMLocking option is enabled
• Intel Thread Building Blocks (TBB) 4.2 supports elision with the

speculative_spin_rw_mutex

Swarnendu Biswas (IIT Kanpur) CS 636: Transactional Memory Sem 2024-25-II 118 / 119

References

T. Harris et al. Transactional Memory. 2nd edition, Morgan Kaufmann.

Web Resources About Intel® Transactional Synchronization Extensions

R. Rajwar and M. Dixon. Intel®Transactional Synchronization Extensions. Intel Developer
Forum, 2012.

A. Kleen. Adding lock elision to Linux. Linux Plumbers Conference, 2012.

Dr. Roman Dementiev. Making the Most of Intel®Transactional Synchronisation Extension.

R. Rajwar. Going Under the Hood with Intel’s Next Generation Microarchitecture Codename
Haswell. QCon 2012.

https://www.intel.com/content/www/us/en/developer/articles/community/web-resources-about-intel-tsx.html
https://www.intel.com/content/dam/develop/external/us/en/documents/sf12-arcs004-100-393551.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/sf12-arcs004-100-393551.pdf
http://www.halobates.de/adding-lock-elision-to-linux.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/making-the-most-of-intel-transactional-synchronization-extensions-roman-dementiev-10-may-2016-393551.pdf
https://qconsf.com/sf2012/dl/qcon-sanfran-2012/slides/RaviRajwar_GoingUnderTheHoodWithIntelsNextGenerationMicroarchitectureCodenameHaswell.pdf
https://qconsf.com/sf2012/dl/qcon-sanfran-2012/slides/RaviRajwar_GoingUnderTheHoodWithIntelsNextGenerationMicroarchitectureCodenameHaswell.pdf

	Transactional Memory
	Design Choices
	Transaction Semantics
	Other TM Considerations
	Software Transactional Memory
	Hardware Transactional Memory

