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Correctness of Shared-Memory Programs

“To write correct and efficient shared memory programs,
programmers need a precise notion of how memory behaves with
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. Journal of Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.
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Busy-Wait Paradigm

1 Object X = null;
2 boolean done = false;

Thread 1

1 X = new Object ();
2 done = true;
3

Thread 2

1 while (!done) {}
2 if (X != null)
3 X.compute ();
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What Value Can a Read Return?

1 X = 0;
2 done = 0;

Core 1

1 S1: ST X, 10
2 S2: ST done , 1
3

Core 2

1 L1: LD r1, done
2 B1: if (r1 != 1) goto L1
3 L2: LD r2, X
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Reordering of Accesses by Hardware

Accesses are to different addresses

• Store-store reordering
▶ Non-FIFO write buffer (first store misses in the cache while the second hits or the

second store can coalesce with an earlier sore)

• Load-load reordering
▶ Cache hits, dynamic scheduling, execute out of order

• Load-store reordering
▶ Cache hits, out-of-order core

• Store-load reordering
▶ FIFO write buffer with bypassing, out-of-order core
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Reordering of Accesses by Hardware

Accesses are to different addresses

• Store-store reordering
▶ Non-FIFO write buffer (first store misses in the cache while the second hits or the

second store can coalesce with an earlier sore)

• Load-load reordering
▶ Cache hits, dynamic scheduling, execute out of order

• Load-store reordering
▶ Cache hits, out-of-order core

• Store-load reordering
▶ FIFO write buffer with bypassing, out-of-order core

• Correct in a single-threaded context

• Non-trivial in a multithreaded context
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What values can a load return?

Return the “last” write
• Uniprocessor: program order defines the “last” write

• Multiprocessor: ?
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Memory Consistency Model

Set of rules that govern how systems process memory operation requests from
multiple processors

Determines the order in which memory operations appear to execute

Specifies the allowed behaviors of multithreaded programs executing with shared
memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors
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Importance of Memory Consistency Models

+ Determines what optimizations are correct

+ Contract between the programmer and the hardware

+ Influences ease of programming and program performance

+ Impacts program portability
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Dekker’s Algorithm

1 flag1 = 0;
2 flag2 = 0;

Core 1

1 S1: ST flag1 , 1
2 L1: LD r1, flag2

Core 2

1 S2: ST flag2 , 1
2 L2: LD r2, flag1

Can both r1 and r2 be set to zero?
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Issues with Memory Consistency

Visibility

When are the effects of one thread (e.g., updating a memory location) visible to another?

Ordering

When can operations of any given thread appear out of order to another thread?
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Sequential Consistency

A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all processors were executed in some sequential
order, and the operations of each individual processor appear in the order
specified by the program.

Uniprocessor • Operations execute in the order specified by the program

Multiprocessor • All operations execute in order, and the operations of each individual
core appear in program order
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Uniprocessor Memory Model

• Memory operations occur in program order, and maintain data and control
dependences

• Read from memory returns the value from the last write in program order

• Compiler optimizations preserve these semantics
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Interleavings with SC

1 data = null;
2 flag = false;

Core 1

1 S1: data = new Object ();
2 S2: flag = true;
3

4

Core 2

1

2 L1: r1 = flag;
3 B1: if (r1 != true) goto L1;
4 L2: r2 = data;

Should r2 always be set to the new Object() stored?
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Interleavings with SC

memory
order (<m)

program order
(<p) of C1

program order
(<p) of C2

S1: data = new Object();

S2: flag = true;

L1: r1 = flag; /* false */

L1: r1 = flag; /* false */

L1: r1 = flag; /* false */

L1: r1 = flag; /* true */

L2: r2 = data;
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SC Formalism

Every load gets its value from the last store before it (in
global memory order) to the same address

Suppose we have two addresses a and b (a == b or a != b). L(a) is a load from a and S(a)
is a store to a.

Constraints (i) If L(a) <p L(b) ⇒ L(a) <m L(b)
(ii) If L(a) <p S(b) ⇒ L(a) <m S(b)
(iii) If S(a) <p S(b) ⇒ S(a) <m S(b)
(iv) If S(a) <p L(b) ⇒ S(a) <m L(b)
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Challenges in Implementing SC

Is preserving program order on a per-location basis sufficient?

• Hardware implementations of SC need to satisfy the following requirements
Program order ▶ Previous memory operation completes before proceeding with the

next memory operation in program order
Write atomicity ▶ Writes to the same location should be serialized, i.e., writes to the

same location should be visible in the same order to all processors
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Need for Write Atomicity
ti

m
e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A

What should A
return?
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Need for Write Atomicity
ti

m
e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A

What should A
return?

• Important to maintain a single sequential order among operations
from all processors

• The effect of a write operation should be visible to all the
processors at the same time (i.e., instantaneous)
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Importance of Maintaining Write-Read Order

• Assume a bus-based system with no caches

• Includes a write buffer with bypassing capabilities

1 flag1 = 0;
2 flag2 = 0;

Core 1

1 S1: ST flag1 , 1
2 L1: LD r1, flag2

Core 2

1 S2: ST flag2 , 1
2 L2: LD r2, flag1
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Importance of Maintaining Write-Read Order

• Assume a bus-based system with no caches

• Includes a write buffer with bypassing capabilities

1 flag1 = 0;
2 flag2 = 0;

Core 1

1 S1: ST flag1 , 1
2 L1: LD r1, flag2

Core 2

1 S2: ST flag2 , 1
2 L2: LD r2, flag1

Shared bus

Core 1 Core 2

write buffer write buffer3. LD r1, flag2 4. LD r2, flag1

1. ST flag1, 1 2. ST flag2, 1
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SC in Architecture with Caches

• Replication of data requires a cache coherence protocol
▶ Several definitions of cache coherence protocols exist

• Propagating new values to multiple other caches is non-atomic
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Providing Write Atomicity with Caches

• Consider a system with caches, and assume that all variables are cached by all the
cores

• SC can be violated with a network with no ordering guarantees

ti
m

e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A
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Providing Write Atomicity with Caches

• Consider a system with caches, and assume that all variables are cached by all the
cores

• SC can be violated with a network with no ordering guarantees

ti
m

e

Core 1

A = 1

Core 2

if (A == 1)
B = 1

Core 3

if (B == 1)
tmp = A

Prohibit a read from returning a newly written value until all cached
copies have acknowledged the receipt of the invalidation or update
messages generated by the write
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Serialization of Writes

Core 1

1 A = 1
2 B = 1
3

Core 2

1 A = 2
2 C = 1
3

Core 3

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp1 = A

Core 4

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp2 = A

Writes to A in Cores 1 and 2 should not reach Cores 3 and 4 out of order even if
the network is out of order or does not provide guarantees—it would violate SC
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Serialization of Writes

Core 1

1 A = 1
2 B = 1
3

Core 2

1 A = 2
2 C = 1
3

Core 3

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp1 = A

Core 4

1 while (B != 1) {}
2 while (C != 1) {}
3 tmp2 = A

Writes to A in Cores 1 and 2 should not reach Cores 3 and 4 out of order even if
the network is out of order or does not provide guarantees—it would violate SC

• Cache coherence must serialize writes to the same memory
location

• Writes to the same memory location must be seen in the
same order by all

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2024-25-II 23 / 95



Cache Coherence



Block Diagram of a SMP

C0 C1 C2 C3

L1 + L2 L1 + L2 L1 + L2 L1 + L2

Interconnect (On-chip network)

LLC
Bank

LLC
Bank

LLC
Bank

LLC
Bank

Main Memory
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Data Coherence

Private caches create data coherence problem

• Copies of a variable can be present in multiple caches

• Private copies of shared data must be coherent, i.e., all copies must have the same
value (okay if the requirement holds eventually)

Consider the following sequence of operations on a single core system

Final value of x will be 30

C0x = x + 5
x = x + 15 L1 + L2

Main
Memory

x = 10

write-back
cache
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Coherence Challenge with Multicores

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

Main
Memory

x = 10

(i) Multicore system setup

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

x = 10

x = 10

Main
Memory

x = 10

(ii) Each core reads x
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Coherence Challenge with Multicores

C0x = x + 5 L1 + L2

Main
Memory

x = 10

C1 L1 + L2

x = 15

x = 25x = x + 15

(iii) Each core updates x in its private cache

C0x = x + 5 L1 + L2

Main
Memory

x = 25

C1 L1 + L2

x = 15

x = 25x = x + 15

1

2

(iv) Cores write back x, a store is lost
depending on the order of write backs
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Can Write-through Caches Avoid the Coherence Problem?

Assume 3 cores with write-through caches

(i) Core C0 reads x from memory, caches it, and gets the value 10

(ii) Core C1 reads x from memory, caches it, and gets the value 10

(iii) C1 writes x=20, and updates its cached and memory values

(iv) C0 reads x from its cache and gets the value 10

(v) C2 reads x from memory, caches it, and gets the value 20

(vi) C2 writes x=30, and updates its cached and memory value
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Sources of Errors in the Previous Examples

Write-back cache
• Stores are not visible to memory immediately

• Order of write backs are important

• Lesson learned: do not allow more than one copy of a cache line in dirty state

Write-through cache

• The value in memory may be correct if the writes are correctly ordered

• Our example system allowed a store to proceed when there is already a cached copy

• Lesson learned: must invalidate all cached copies before allowing a store to
proceed
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Understanding Coherence

A memory system is coherent if the following hold:

(i) A read from a location X by a core C that follows a write by C to X always returns the
value written by C provided there are no writes of X by another processor between
the two accesses by C.

(ii) A read from a location X by a core C that follows a write to X by another core returns
the written value if the read and write are sufficiently separated in time and no other
writes to X occur between the two accesses.

(iii) Writes to the same location are serialized. That is, two writes to the same location by
any two cores are seen in the same order by all processors.
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Correctness Requirement

For sequential programs, there is only one correct output

A read from a memory location must return the “latest” value written to it

For parallel programs, there can be multiple correct outputs

• Defining “latest” precisely is crucial

• Assume that the latest value of a location is the latest value “committed” by any
thread/process
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Cache Coherence Protocol

Multicore processors implement a cache coherence protocol to keep private caches in
sync

A “cache coherence protocol” is a set of actions that ensure that a load to
address A returns the “last committed” value to A
• Essentially, makes one core’s write visible to other cores by propagating the write to

other caches

• Aims to make the presence of private caches functionally invisible

• Coherence protocols can operate on granularities from 1–64 bytes, usually operate
on whole cache blocks (e.g., 64 bytes)
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Cache Coherence Protocol Invariants

1. Enforces the Single-Writer-Multiple-Reader (SWMR) invariant

For any given memory location, at any given moment in time, there is either a single core
that may write it (including read) or some number of cores that may read it

2. Data values must be propagated correctly (data invariant)

The value of a memory location at the start of a read-only time period is the same as the
value of the location at the end of its last read-write time period

read-only read-onlyread-write read-write

Cores 2 & 3 Core 2 Core 1 Cores 0 & 1
time
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Alternate Definitions of Coherence

Definition 2
A coherent system must appear to execute all threads’ loads and stores to a single
memory location in a total order that respects the program order of each thread

Definition 3
A coherent system satisfies two invariants:

write propagation every store is eventually made visible to all cores, and

write serialization writes to the same memory location are serialized (i.e., observed in
the same order by all cores)
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Memory Consistency vs Cache Coherence

Memory Consistency

• Defines shared memory behavior

• Related to all shared-memory
locations

• Policy on when new value is
propagated to other cores

• Memory consistency implementations
can use cache coherence as a “black
box”

Cache Coherence

• Does not define shared memory
behavior

• Specific to a single shared-memory
location

• Propagates a new value to other
cached copies

• Invalidation-based or update-based
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Sequential Consistency



End-to-end SC

• Simple memory model that can be implemented both in hardware and in languages

− Performance can take a hit
▶ Naïve hardware
▶ Maintain program order—expensive for a write

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.
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SC-Preserving Optimizations

Redundant load Original

t = X; u = X;
=⇒ Optimized

t = X; u = t;

Forwarded load Original

X = t; u = X;

=⇒ Optimized

X = t; u = t;

Dead store Original

X = t; X = u;

=⇒ Optimized

X = u;

Redundant load Original

t = X; u = X;
=⇒ Optimized

t = X; u = t;
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Optimizations Forbidden in SC

Loop invariant code motion, common sub-expression elimination, . . .

Original

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

=⇒

Optimized

L1: t = X*2;
L2: u = Y;
L3: v = t;

CSE reorders the memory accesses to Y and the second read from X (relaxes L→L
constraint, performs an eager load)
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Optimizations Forbidden in SC

X = 0;
Y = 0;

Original

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

=⇒

Optimized

L1: t = X*2;
L2: u = Y;
L3: v = t;

Concurrent Thread

C1: X = 1;
C2: Y = 1;

u == 1 && v == 0 is not
possible in the original
code
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Problematic Optimizations with SC

Constant/copy
propagation

Original

L1: X = 1;
L2: P = Q;
L3: t = X;

=⇒

Optimized

L1: X = 1;
L2: P = Q;
L3: t = 1;

Eager load optimizations involve S→L and L→L reordering.
These optimizations perform a load earlier than would have
been performed without the optimizations.
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Problematic Optimizations with SC

Dead store
Original

L1: X = 1;
L2: P = Q;
L3: X = 2;

=⇒

Optimized

L1: ;
L2: P = Q;
L3: X = 2;

Redundant store
Original

L1: t = X;
L2: P = Q;
L3: X = t;

=⇒

Optimized

L1: t = X;
L2: P = Q;
L3: ;
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Implementing SC with Compiler Support

Implement a compiler pass (e.g., in LLVM) to deal with non-SC preserving optimizations

L1: t = X*2;
L2: u = Y;
L3: v = X*2;

=⇒ L1: t = X*2
L2: u = Y
L3: v = t
C3: if (X modified since L1)
L3: v = X*2

D. Marino et al. A Case for an SC-Preserving Compiler. PLDI’11.
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SC Semantics

− SC is not a strong memory model
▶ Does not guarantee data race freedom

Thread 1

a++;

Thread 2

a++;

Thread 3

buffer[index ++];

Thread 4

buffer[index ++];
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Questions

• How would you implement an RMW instruction with SC?

• Are memory models only relevant in systems with support for caches?

• Is memory consistency not needed in presence of cache coherence?

• Do memory models only impact hardware design?
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Hardware Memory Models



Characterizing Hardware Memory Models

Relax program order

• For example, Store → Load and Store → Store

• Applicable to pairs of operations with different addresses

Relax write atomicity

• Read other core’s write early

• Applicable to only cache-based systems

Relax both program order and write atomicity

Read own write early
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Possible Interleavings Under SC and TSO

1 x = 0;
2 y = 0;

Core 1

1 S1: x = new Object ();
2 L1: r1 = y;

Core 2

1 S2: y = new Object ();
2 L2: r2 = x;

Can both r1 and r2 be set to zero?

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2024-25-II 46 / 95



Total Store Order

• Allows reordering stores to loads
▶ A read is not allowed to return the value of another processor’s write until it is made

visible to all other processors (as in SC)

• Requires write atomicity, can read own write early, not other’s writes

• Conjecture: widely-used x86 memory model is equivalent to TSO
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TSO Formalism

Suppose we have two addresses a and b (a == b or a != b)

Constraints 1. If L(a) <p L(b) ⇒ L(a) <m L(b)
2. If L(a) <p S(b) ⇒ L(a) <m S(b)
3. If S(a) <p S(b) ⇒ S(a) <m S(b)
4. If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO write buffer */

Every load gets its value from the last store before it to
the same address
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Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)
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Possible Outcomes with TSO

1 x = 0;
2 y = 0;

Core 1

1 S1: x = NEW;
2 L1: r1 = x;
3 L2: r2 = y;

Core 2

1 S2: y = NEW;
2 L3: r3 = y;
3 L4: r4 = x;

Assume r2 and r4 are zero. Can r1 or r3 be
set to zero?
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Possible Outcomes with TSO

memory
order (<m)

program order
(<p) of C1

program order
(<p) of C2

S1: x = NEW;

L1: r1 = x; /* NEW */
S2: y = NEW;

L3: r3 = y; /* NEW */

L4: r4 = x; /* 0 */
L2: r2 = y; /* 0 */

bypass
bypass

Outcome: r2 ==0, r4 == 0, r1 ==  NEW, and r3 == NEW
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RMW in TSO

• Load of a RMW cannot be performed until earlier stores are performed (i.e., exited
the write buffer). Why?
▶ Effectively drains the write buffer

• Load requires read–write coherence permissions, not just read permissions

• To guarantee atomicity, the cache controller may not relinquish coherence
permission to the block between the load and the store
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Relationship among Memory Models

• A memory model Y is strictly more relaxed (weaker) than a memory model X if all X
executions are also Y executions, but not vice versa

• If Y is more relaxed than X, then all X implementations are also Y implementations
• Two memory models may be incomparable if both allow executions precluded by the

other

SC

TSO

TSO

SC

Which is correct?
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Processor Consistency (PC) and Partial Store Order (PSO)

PC is similar to TSO, but does not guarantee write atomicity

Writes may become visible to different processors in different order

PSO allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be pipelined or overlapped
and are allowed to reach memory or other cached copies out of program order

• Can read own write early, not other’s writes

• Write-write reordering is present in many architectures, including Alpha, IA64, and
POWER
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Opportunities to Reorder Memory Operations

1 data1 = null;
2 data2 = null;
3 flag = false;

Core 1

1 S1: data1 = new Object ();
2 S2: data2 = new Object ();
3 S3: flag = true;
4

Core 2

1 L1: r1 = flag;
2 B1: if (!r1) goto L1;
3 L2: r2 = data1;
4 L3: r3 = data2;

What order ensures r2 and r3 always
see initialized objects?

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2024-25-II 55 / 95



Reorder Operations Within a Synchronization Block

Core 1

1 A1: acquire(lock);
2 // Begin critical section
3 // Loads L1i arbitrarily
4 // interleaved with stores S1j

5 // End critical section
6 R1: release(lock);

Core 2

1

2

3

4

5

6

7

8 A2: acquire(lock);
9 // Begin critical section

10 // Loads L2i arbitrarily
11 // interleaved with stores S2j

12 // End critical section
13 R2: release(lock);

What order ensures correct handoff from critical section 1
to 2?
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Optimization Opportunities

(i) Non-FIFO coalescing write buffer

(ii) Support non-blocking reads
▶ Hide latency of reads
▶ Use lockup-free caches and speculative execution

(iii) Simpler support for speculation
▶ Need not compare addresses of loads to coherence requests
▶ For SC, need support to check whether the speculation is correct
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Relaxed Consistency Rules

Maintain TSO rules for ordering two accesses to the same address
only

• Every load gets its value from the last store before it to the
same address

Constraints 1. If L(a) <p L’(a) ⇒ L(a) <m L’(a)
2. If L(a) <p S(b) ⇒ L(a) <m S(b)
3. If S(a) <p S(b) ⇒ S(a) <m S(b)
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Relaxed Consistency Rules

Maintain TSO rules for ordering two accesses to the same address
only

• Every load gets its value from the last store before it to the
same address

Constraints 1. If L(a) <p L’(a) ⇒ L(a) <m L’(a)
2. If L(a) <p S(b) ⇒ L(a) <m S(b)
3. If S(a) <p S(b) ⇒ S(a) <m S(b)

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)
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Correct Implementation under Relaxed Consistency

1 data1 = null;
2 data2 = null;
3 flag = false;

Core 1

1 S1: data1 = new Object ();
2 S2: data2 = new Object ();
3 *@ \ul{F1: FENCE} @*
4 S3: flag = true;
5

6

7

8

Core 2

1

2

3

4 L1: r1 = flag;
5 B1: if (!r1) goto L1;
6 F2: FENCE
7 L2: r2 = data1;
8 L3: r3 = data2;

Are both fences required?
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Correct Implementation Under Relaxed Consistency

Core 1

1 F11: FENCE
2 A11: acquire(lock);
3 F12: FENCE
4 // Loads L1i arbitrarily
5 // interleaved with stores S1j

6 F13: FENCE
7 R12: release(lock);
8 F14: FENCE

Core 2

1

2

3

4

5

6

7 F21: FENCE
8 A21: acquire(lock);
9 F22: FENCE

10 // Loads L2i arbitrarily
11 // interleaved with stores S2j

12 F23: FENCE
13 R22: release(lock);
14 F24: FENCE
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Examples of Relaxed Consistency Memory Models

Weak ordering

• Distinguishes between data and synchronization operations

• A synchronization operation is not issued until all previous operations are complete

• No operations are issued until the previous synchronization operation completes

Release consistency

• Relaxes WO further, distinguishes between acquire and release synchronization
operations

• All previous acquire operations must be performed before an ordinary load or store
access is allowed to perform

• Previous accesses have to complete before a release is performed

• RCsc maintains SC between synchronization operations

• Acquire → all, all → release, and sync → sync
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Correct Implementation Under Relaxed Consistency

Core 1

1 F11: FENCE
2 A11: acquire(lock);
3 F12: FENCE
4 // Loads L1i arbitrarily
5 // interleaved with stores S1j

6 F13: FENCE
7 R12: release(lock);
8 F14: FENCE
9

10

11

12

13

14

Core 2

1

2

3

4

5

6

7 F21: FENCE
8 A21: acquire(lock);
9 F22: FENCE

10 // Loads L2i arbitrarily
11 // interleaved with stores S2j

12 F23: FENCE
13 R22: release(lock);
14 F24: FENCE

Which fences are needed to ensure correct
ordering and visibility between C1 and C2?
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Relaxed Consistency Memory Models

Why should we use them?

Performance

Why should we not use them?

Complexity
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Hardware Memory Models: One Slide Summary

Model W → R W → W R → RW
Read Own Read Other’s

Write Early Write Early

SC ✓

TSO ✓ ✓

PC ✓ ✓ ✓

PSO ✓ ✓ ✓

WO ✓ ✓ ✓ ✓

RCSC ✓ ✓ ✓ ✓

RCPC ✓ ✓ ✓ ✓ ✓
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Desirable Properties of a Memory Model

Desirable properties: Programmability, Performance, and Portability

− Hard to satisfy all three properties

Evaluating SC

+ Intuitive when we think of uniprocessor executions

+ Serializability of instructions

− No atomicity of regions

− Inhibits many compiler transformations

− Almost all recent architectures violate SC
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Programming Language Memory
Models



Language Memory Models

• Data-Race-Free-0 (DRF0) model is conceptually similar to Weak Ordering (WO)

• Assumes no data races
▶ DRF0 ensures SC for data-race-free programs
▶ No guarantees for racy programs

• Allows many optimizations in the compiler and hardware

• Language memory models were developed much later than hardware models
▶ Recent standardizations are largely driven by languages

• Most language models are based on DRF0

Why do we need one? Is the hardware memory
model not enough?
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C++ Memory Model and Catch-Fire Semantics

• Adaptation of the DRF0 memory model
▶ Provides SC for data-race-free programs
▶ C/C++ simply ignores data races

• No safety guarantees in the language

1 X* x = null;
2 bool done = false;

Thread 1

1 X = new X();
2 done = true;

Thread 2

1 if (done)
2 X->func();
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2 bool done = false;
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1 if (done)
2 X->func();
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Memory Operations in C++

Synchronization Lock, unlock, atomic load, atomic store, atomic RMW

Data Load, store

Compiler reordering is allowed for memory operations M1 and M2 if

• M1 is a data operation and M2 is a read synchronization operation

• M1 is write synchronization and M2 is data

• M1 and M2 are both data with no synchronization between them

• M1 is data and M2 is the write of a lock operation

• M1 is unlock and M2 is either a read or write of a lock
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Writing Correct Concurrent C++ Code Using Locks

1 std:: mutex mtx;
2 bool ready = false;

Thread 1

1 mtx.lock ();
2 prepareData ();
3 ready = true;
4 mtx.unlock ();

Thread 2

1 mtx.lock ();
2 if (ready)
3 consumeData ();
4 mtx.unlock ();
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Using Atomics Available from C++11

• “Data race free” by definition (e.g., std::atomic<int>)
▶ A store synchronizes with operations that load the stored value - Similar to volatile in

Java

• C++ volatile is different!
▶ Does not establish inter-thread synchronization
▶ Can be part of a data race

std::atomic <bool > ready(false );

Thread 1

1 prepareData ();
2 ready.store(true);

Thread 2

1 if (ready.load ())
2 consumeData ();
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Ensuring Visibility

• Writer thread releases a lock
▶ Flushes all writes from the thread’s working memory

• Reader thread acquires a lock
▶ Forces a (re)load of the values of the affected variables

• std::atomic in C++ and volatile in Java
▶ Values written are made visible immediately before any further memory operations
▶ Readers reload the value upon each access

• Thread join
▶ Parent thread is guaranteed to see the effects made by the child thread
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Memory Order of Atomics

• Specifies how regular, non-atomic
memory accesses are to be ordered
around an atomic operation

• Default is sequential consistency

atomic.h

1 enum memory_order {
2 memory_order_relaxed ,
3 memory_order_consume ,
4 memory_order_acquire ,
5 memory_order_release ,
6 memory_order_acq_rel ,
7 memory_order_seq_cst
8 };
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Memory Model Synchronization Modes

Producer

• Producer thread creates data

• Producer thread stores to an atomic

Consumer

• Consumer threads read from the
atomic

• When the expected value is seen, data
from the producer thread is complete
and visible to the consumer thread

The different memory model modes indicate how strong
this data-sharing bond is between threads

Memory model synchronization modes
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Memory Model Modes in C++

memory_order_seq_cst

x = 0;
y = 0;

Thread 1

y = 1;
x.store (2);

Thread 2

if (x.load() == 2)
assert(y == 1);

Can this assert
fail?
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Memory Model Modes in C++

memory_order_seq_cst

x = 0;
y = 0;

Thread 1

y.store (20);
x.store (10);

Thread 2

if (x.load() == 10)
assert(y.load() == 20);
y.store (10);

Thread 3

if (y.load() == 10)
assert(x.load() == 10);

Can these asserts
fail?
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Memory Model Modes in C++

memory_order_relaxed: no happens-before edge

Thread 1

y.store(20, memory_order_relaxed );
x.store(10, memory_order_relaxed );

Thread 2

if (x.load(memory_order_relaxed) == 10)
assert(y.load(memory_order_relaxed) == 20);
y.store(30, memory_order_relaxed );

Thread 3

if (y.load(memory_order_relaxed) == 30)
assert(x.load(memory_order_relaxed) == 10);

Can these asserts
fail?

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2024-25-II 76 / 95



Memory Model Modes in C++

memory_order_relaxed: no happens-before edge

Thread 1

x.store(10, memory_order_relaxed );
x.store(20, memory_order_relaxed );

Thread 2

y = x.load(memory_order_relaxed );
z = x.load(memory_order_relaxed );
assert(y <= z);

• In the absence of HB edges, a
thread should not rely on the
exact ordering of instructions in
another thread

• Once a value of a variable from
Thread 1 is observed in Thread 2,
Thread 2 cannot see an earlier
value

Can this assert
fail?
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Memory Model Modes in C++

memory_order_acquire and memory_order_release: introduces HB edges only
between dependent variables

Thread 1

y = 20;
x.store(10, memory_order_release );

Thread 2

if (x.load(memory_order_acquire) == 10)
assert(y == 20);

y is a regular
data variable

Can this assert
fail?
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Memory Model Modes in C++

Thread 1

y.store(20, memory_order_release );

Thread 2

x.store(10, memory_order_release );

Thread 3

assert(y.load(memory_order_acquire) == 20
&& x.load(memory_order_acquire) == 0);

Thread 4

assert(y.load(memory_order_acquire) == 0
&& x.load(memory_order_acquire) == 10);

What will happen
with the asserts?
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Memory Model Modes in C++

memory_order_consume: removes HB ordering on non-dependent variables

Thread 1

n = 1;
m = 1;
p.store(&n, memory_order_release );

Thread 2

t = p.load(memory_order_acquire );
assert (*t == 1 && m == 1);

Thread 3

t = p.load(memory_order_consume );
assert (*t == 1 && m == 1);

Can these asserts
fail?

Swarnendu Biswas (IIT Kanpur) CS 636: Memory Consistency Models Sem 2024-25-II 80 / 95



Happens-Before Memory Model (HBMM)

Read operation a = rd(t, x, v) may return the value written by any write operation b
= wr(t, x, v) provided

(i) b does not happen after a, i.e., b ≺HB a or b||a

(ii) There is no intervening write c to x where b ≺HB c ≺HB a

1 x = 0;
2 y = 0;

Thread 1

1 y = 1;
2 r1 = x;
3 assert(r1!=0);

Thread 2

1 x = 1;
2 r2 = y;
3 assert(r2!=0); Can these asserts

fail?
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Happens-Before Memory Model (HBMM)

Read operation a = rd(t, x, v) may return the value written by any write operation b
= wr(t, x, v) provided

(i) b does not happen after a, i.e., b ≺HB a or b||a

(ii) There is no intervening write c to x where b ≺HB c ≺HB a

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = 1;
3 assert(r1 == 0);

Thread 2

1 r2 = y;
2 x = 1;
3 assert(r2 == 0); Can these asserts

fail?
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HBMM

1 x = 0;
2 y = 0;

Thread 1

1 r = x;
2 y = 1;
3 assert (r == 0);

Thread 2

1 while (y == 0) {}
2 x = 1;
3

Will the assertion
pass or fail?
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HBMM

1 x = 0;

Thread 1

1 x = 10;
2

Thread 2

1 if (x != 0) {}
2 r2 = r1/x;

Can anything go
wrong?
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HBMM

HBMM has the potential to generate out-of-thin-air values

1 x = 0;
2 y = 0;

Thread 1

1 x = y;

Thread 2

1 y = x;

• Problematic for garbage-collected languages since the “out-of-thin-air”
value could be an invalid pointer

• Introduces potential security loopholes
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DRF0 vs HBMM

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 if (r1 == 1) {
3 y = 1;
4 }
5 assert (r1 == 0);

Thread 2

1 r2 = y;
2 if (r1 == 1) {
3 x = 1;
4 }
5 assert (r2 == 0);

Is there a data race on x and y?
• Remember that DRF0 provides SC only

for data-race-free programs
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DRF0 vs HBMM

DRF0 allows arbitrary behavior for racy executions

DRF0 is not strictly stronger than HBMM

HBMM does not guarantee SC for DRF programs

HBMM is not strictly stronger than DRF0
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Java Memory Model (JMM)

• First high-level language to incorporate a relaxed memory model

• JMM provides SC for data-race-free executions (like DRF0)

• Provides memory- and type-safety, so has to define some semantics for programs
with data races
▶ JMM prohibits out-of-thin-air values
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Outcomes Possible with JMM

Racy initialization

1 obj = null;
2 x = 0;
3 y = 0;

Thread 1

1 obj = new Circle ();
2

Thread 2

1 if (obj != null)
2 obj.draw();

Can there be a NPE
with JMM?

JVMs may not exhibit all behav-
iors permissible under the JMM
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Outcomes Possible with JMM

1 x = 0;
2 y = 0;

Thread 1

1 y = 1;
2 r1 = x;
3 assert (r1 != 0);

Thread 2

1 x = 1;
2 r2 = y;
3 assert (r2 != 0);

Can these asserts
fail?
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Outcomes Possible with JMM

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = 1;
3 assert (r1 == 0);

Thread 2

1 r2 = y;
2 x = 1;
3 assert (r2 == 0);

Can these asserts
fail?
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Outcomes Not Possible with JMM

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = r1;
3 assert (r1 != 42);

Thread 2

1 r2 = y;
2 x = r2;
3 assert (r2 == 0);

• HBMM permits an execution in which each load
reads say 42

• DRF0 allows any arbitrary behavior

• JMM is strictly stronger than DRF0 and HBMM
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JVMs do not comply with the JMM!

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = r1;
3

4

5

6

7

Thread 2

1 r2 = y;
2 if (r2 == 1) {
3 r3 = y;
4 x = r3;
5 } else {
6 x = 1;
7 }
8 assert (r2 == 0);

Can this assert fail un-
der HBMM and JMM?
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JVMs do not comply with the JMM!

1 x = 0;
2 y = 0;

Thread 1

1 r1 = x;
2 y = r1;
3

4

5

6

7

Thread 2

1 r2 = y;
2 if (r2 == 1) {
3 r3 = y;
4 x = r3;
5 } else {
6 x = 1;
7 }
8 assert (r2 == 0);

Can this assert fail un-
der HBMM and JMM?

• HBMM allows OOTA values

• JMM only permits executions in which load of y sees 0

• JVM’s JIT optimizing compiler can simplify the code in the right
thread
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Lessons Learned

Specifying semantics for racy programs is hard

Simple optimizations may introduce unintended consequences

SC for DRF is now the preferred baseline

• Make sure your program is free of data races

• System guarantees SC execution
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