
CS335: Syntax Analysis
Swarnendu Biswas

Semester 2019-2020-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

An Overview of Compilation

CS 335 Swarnendu Biswas

lexical analyzer

semantic analyzer

source program

syntax analyzer code optimizer

code generator

intermediate code
generator

target program

error handler

symbol table

Parser Interface

CS 335 Swarnendu Biswas

symbol table

token

get next
token

parse
tree

Lexical
Analyzer

IRSyntax
Analyzer

Rest of
Front End

source
program

Need for Checking Syntax

• Given an input program, scanner generates a stream of tokens
classified according to the syntactic category

• The parser determines if the input program, represented by the token
stream, is a valid sentence in the programming language

• The parser attempts to build a derivation for the input program, using
a grammar for the programming language
• If the input stream is a valid program, parser builds a valid model for later

phases

• If the input stream is invalid, parser reports the problem and diagnostic
information to the user

CS 335 Swarnendu Biswas

Syntax Analysis

• Given a programming language grammar 𝐺 and a stream of tokens 𝑠,
parsing tries to find a derivation in 𝐺 that produces 𝑠

• In addition, a syntax analyser
• Forward the information as IR to the next compilation phases

• Handle errors if the input string is not in 𝐿(𝐺)

CS 335 Swarnendu Biswas

Context-Free Grammars

• A context-free grammar (CFG) 𝐺 is a quadruple (𝑇, 𝑁𝑇, 𝑆, 𝑃)

CS 335 Swarnendu Biswas

𝑇 Set of terminal symbols (also called words) in the language 𝐿(𝐺)

𝑁𝑇 Set of nonterminal symbols that appear in the productions of 𝐺

𝑆 Goal or start symbol of the grammar 𝐺

𝑃 Set of productions (or rules) in 𝐺

Context-Free Grammars

• Terminal symbols correspond to syntactic categories returned by the
scanner
• Terminal symbol is a word that can occur in a sentence

• Nonterminals are syntactic variables introduced to provide
abstraction and structure in the productions

• 𝑆 represents the set of sentences in 𝐿(𝐺)

• Each rule in 𝑃 is of the form 𝑵𝑻 → (𝑻 ∪ 𝑵𝑻)∗

CS 335 Swarnendu Biswas

Definitions

• Derivation is a a sequence of rewriting steps that begins with the
grammar 𝐺’s start symbol and ends with a sentence in the language

𝑆 ֜
+
𝑤 where 𝑤 ∈ 𝐿(𝐺)

• At each point during derivation process, the string is a collection of
terminal or nonterminal symbols

𝛼𝐴𝛽 → 𝛼𝛾𝛽 if 𝐴 → 𝛾

• Such a string is called a sentential form if it occurs in some step of a
valid derivation

• A sentential form can be derived from the start symbol in zero or
more steps

CS 335 Swarnendu Biswas

Example of a CFG

CFG

𝐸𝑥𝑝𝑟 → 𝐸𝑥𝑝𝑟

| 𝐸𝑥𝑝𝑟 𝑂𝑝 name

| name

𝑂𝑝 → + − × | ÷

(𝒂 + 𝒃) × 𝒄

𝐸𝑥𝑝𝑟 → 𝐸𝑥𝑝𝑟 𝑂𝑝 name

→ 𝐸𝑥𝑝𝑟 × name

→ (𝐸𝑥𝑝𝑟) × name

→ (𝐸𝑥𝑝𝑟 𝑂𝑝 name) × name

→ (𝐸𝑥𝑝𝑟 + name) × name

→ (name + name) × name

CS 335 Swarnendu Biswas

Sentential Form and Parse Tree

CS 335 Swarnendu Biswas

𝐸𝑥𝑝𝑟 → 𝐸𝑥𝑝𝑟 𝑂𝑝 name

→ 𝐸𝑥𝑝𝑟 × name

→ (𝐸𝑥𝑝𝑟) × name

→ (𝐸𝑥𝑝𝑟 𝑂𝑝 name) × name

→ (𝐸𝑥𝑝𝑟 + name) × name

→ (name + name) × name

𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 𝑂𝑝 name

𝐸𝑥𝑝𝑟() ×

𝐸𝑥𝑝𝑟 𝑂𝑝 name

name +

Parse Tree

Parse Tree

• A parse tree is a graphical representation of a derivation
• Root is labeled with by the start symbol 𝑆

• Each internal node is a nonterminal, and represents the application of a
production

• Leaves are labeled by terminals and constitute a sentential form, read from
left to right, called the yield or frontier of the tree

• Parse tree filters out the order in which productions are applied to
replace nonterminals
• It just represents the rules applied

CS 335 Swarnendu Biswas

Derivations

• At each step during derivation, we have two choices to make
1. Which nonterminal to rewrite?

2. Which production rule to pick?

• Rightmost (or canonical) derivation rewrites the rightmost
nonterminal at each step, denoted by 𝛼

𝑟𝑚
𝛽

• Similarly, leftmost derivation rewrites the leftmost nonterminal at each step,
denoted by 𝛼

𝑙𝑚
𝛽

• Every leftmost derivation can be written as 𝑤𝐴𝛾
𝑙𝑚
𝑤𝛿𝛾

CS 335 Swarnendu Biswas

Leftmost Derivation

CS 335 Swarnendu Biswas

𝐸𝑥𝑝𝑟 → 𝐸𝑥𝑝𝑟 𝑂𝑝 name

→ (𝐸𝑥𝑝𝑟) 𝑂𝑝 name

→ 𝐸𝑥𝑝𝑟 𝑂𝑝 name 𝑂𝑝 name

→ name 𝑂𝑝 name 𝑂𝑝 name

→ name + name 𝑂𝑝 name

→ name + name × name

𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 𝑂𝑝 name

𝐸𝑥𝑝𝑟() ×

𝐸𝑥𝑝𝑟 𝑂𝑝 name

name +

Parse Tree

Ambiguous Grammars

• A grammar 𝐺 is ambiguous if
some sentence in 𝐿(𝐺) has more
than one rightmost (or leftmost)
derivation

• An ambiguous grammar can
produce multiple derivations
and parse trees

CS 335 Swarnendu Biswas

Example of Ambiguous Grammar

• A grammar 𝐺 is ambiguous if some sentence in 𝐿(𝐺) has more than
one rightmost (or leftmost) derivation

• An ambiguous grammar can produce multiple derivations and parse
trees

CS 335 Swarnendu Biswas

S𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡

| if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

| 𝐴𝑠𝑠𝑖𝑔𝑛

Ambiguous Dangling-Else Grammar

CS 335 Swarnendu Biswas

if 𝐸𝑥𝑝𝑟1 then if 𝐸𝑥𝑝𝑟2 then 𝐴𝑠𝑠𝑖𝑔𝑛1 else 𝐴𝑠𝑠𝑖𝑔𝑛2

𝑆𝑡𝑚𝑡

if 𝐸𝑥𝑝𝑟1 then 𝑆𝑡𝑚𝑡

if 𝐸𝑥𝑝𝑟2 then 𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

𝐴𝑠𝑠𝑖𝑔𝑛1 𝐴𝑠𝑠𝑖𝑔𝑛2

if 𝐸𝑥𝑝𝑟1 then 𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

𝑆𝑡𝑚𝑡

if 𝐸𝑥𝑝𝑟2 then 𝑆𝑡𝑚𝑡

𝐴𝑠𝑠𝑖𝑔𝑛1 𝐴𝑠𝑠𝑖𝑔𝑛2

Dealing with Ambiguous Grammars

• Ambiguous grammars are problematic for compilers
• Compilers use parse trees to interpret the meaning of the expressions during

later stages

• Multiple parse trees can give rise to multiple interpretations

• Fixing ambiguous grammars
• Transform the grammar to remove the ambiguity

• Include rules to disambiguate during derivations
• For e.g., associativity and precedence

CS 335 Swarnendu Biswas

Fixing the Ambiguous Dangling-Else Grammar

• In all programming languages, an else is matched with the closest
then

CS 335 Swarnendu Biswas

S𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡

| if 𝐸𝑥𝑝𝑟 then 𝑇ℎ𝑒𝑛𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

| 𝐴𝑠𝑠𝑖𝑔𝑛

𝑇ℎ𝑒𝑛𝑆𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑇ℎ𝑒𝑛𝑆𝑡𝑚𝑡 else 𝑇ℎ𝑒𝑛𝑆𝑡𝑚𝑡

| 𝐴𝑠𝑠𝑖𝑔𝑛

Fixed Dangling-Else Grammar

CS 335 Swarnendu Biswas

if 𝐸𝑥𝑝𝑟1 then if 𝐸𝑥𝑝𝑟2 then 𝐴𝑠𝑠𝑖𝑔𝑛1 else 𝐴𝑠𝑠𝑖𝑔𝑛2

S𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡

→ if 𝐸𝑥𝑝𝑟 then if 𝐸𝑥𝑝𝑟 then 𝑇ℎ𝑒𝑛𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

→ if 𝐸𝑥𝑝𝑟 then if 𝐸𝑥𝑝𝑟 then 𝑇ℎ𝑒𝑛𝑆𝑡𝑚𝑡 else 𝐴𝑠𝑠𝑖𝑔𝑛

→ if 𝐸𝑥𝑝𝑟 then if 𝐸𝑥𝑝𝑟 then 𝐴𝑠𝑠𝑖𝑔𝑛 else 𝐴𝑠𝑠𝑖𝑔𝑛

Interpreting the Meaning

CFG

𝐸𝑥𝑝𝑟 → (𝐸𝑥𝑝𝑟)

| 𝐸𝑥𝑝𝑟 𝑂𝑝 name

| name

𝑂𝑝 → + − × | ÷

𝒂 + 𝒃 × 𝒄

𝐸𝑥𝑝𝑟 → 𝐸𝑥𝑝𝑟 𝑂𝑝 name

→ 𝐸𝑥𝑝𝑟 × name

→ 𝐸𝑥𝑝𝑟 𝑂𝑝 name × name

→ 𝐸𝑥𝑝𝑟 + name × name

→ name + name × name

CS 335 Swarnendu Biswas

rightmost
derivation

Corresponding Parse Tree

𝒂 + 𝒃 × 𝒄

𝐸𝑥𝑝𝑟 → 𝐸𝑥𝑝𝑟 𝑂𝑝 name

→ 𝐸𝑥𝑝𝑟 × name

→ 𝐸𝑥𝑝𝑟 𝑂𝑝 name × name

→ 𝐸𝑥𝑝𝑟 + name × name

→ name + name × name

CS 335 Swarnendu Biswas

𝐸𝑥𝑝𝑟

name

𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 𝑂𝑝 name

×𝑂𝑝 name

+

How do we evaluate the
expression?

Associativity

CS 335 Swarnendu Biswas

𝑠𝑡𝑟𝑖𝑛𝑔 → 𝑠𝑡𝑟𝑖𝑛𝑔 + 𝑠𝑡𝑟𝑖𝑛𝑔 𝑠𝑡𝑟𝑖𝑛𝑔 − 𝑠𝑡𝑟𝑖𝑛𝑔 0 1 2|… |9

𝑠𝑡𝑟𝑖𝑛𝑔

9 5

𝑠𝑡𝑟𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑛𝑔 + 𝑠𝑡𝑟𝑖𝑛𝑔

− 𝑠𝑡𝑟𝑖𝑛𝑔 2

𝑠𝑡𝑟𝑖𝑛𝑔

− 𝑠𝑡𝑟𝑖𝑛𝑔

+𝑠𝑡𝑟𝑖𝑛𝑔 𝑠𝑡𝑟𝑖𝑛𝑔

5 2

𝑠𝑡𝑟𝑖𝑛𝑔

9

9 − 5 + 2

Associativity

• If an operand has operator on both the sides, the side on which
operator takes this operand is the associativity of that operator
• +, -, *, / are left associative

• ^, = are right associative

• Grammar to generate strings with right associative operators

CS 335 Swarnendu Biswas

𝑟𝑖𝑔ℎ𝑡 → 𝑙𝑒𝑡𝑡𝑒𝑟 = 𝑟𝑖𝑔ℎ𝑡|𝑙𝑒𝑡𝑡𝑒𝑟
𝑙𝑒𝑡𝑡𝑒𝑟 → 𝑎 𝑏 … |𝑧

Parse Tree for Right Associative Grammars

CS 335 Swarnendu Biswas

a = b = c
𝑟𝑖𝑔ℎ𝑡

𝑙𝑒𝑡𝑡𝑒𝑟 = 𝑟𝑖𝑔ℎ𝑡

a 𝑙𝑒𝑡𝑡𝑒𝑟 𝑟𝑖𝑔ℎ𝑡

𝑙𝑒𝑡𝑡𝑒𝑟

c

=

b

Encode Precedence into the Grammar

𝑆𝑡𝑎𝑟𝑡 → 𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 → 𝐸𝑥𝑝𝑟 + 𝑇𝑒𝑟𝑚|𝐸𝑥𝑝𝑟 − 𝑇𝑒𝑟𝑚|𝑇𝑒𝑟𝑚

𝑇𝑒𝑟𝑚 → 𝑇𝑒𝑟𝑚 × 𝐹𝑎𝑐𝑡𝑜𝑟|𝑇𝑒𝑟𝑚 ÷ 𝐹𝑎𝑐𝑡𝑜𝑟|𝐹𝑎𝑐𝑡𝑜𝑟

𝐹𝑎𝑐𝑡𝑜𝑟 → (𝐸𝑥𝑝𝑟)|num|name

CS 335 Swarnendu Biswas

p
ri

o
ri

ty

Corresponding Parse Tree

𝒂 − 𝒃 + 𝒄

𝑆𝑡𝑎𝑟𝑡 → 𝐸𝑥𝑝𝑟

→ 𝐸𝑥𝑝𝑟 + 𝑇𝑒𝑟𝑚

→ 𝐸𝑥𝑝𝑟 + 𝐹𝑎𝑐𝑡𝑜𝑟

→ 𝐸𝑥𝑝𝑟 + name

→ 𝐸𝑥𝑝𝑟 − 𝑇𝑒𝑟𝑚 + name

→ 𝐸𝑥𝑝𝑟 − 𝐹𝑎𝑐𝑡𝑜𝑟 + name

→ 𝐸𝑥𝑝𝑟 − name + name

→ 𝑇𝑒𝑟𝑚 − name + name

→ 𝐹𝑎𝑐𝑡𝑜𝑟 − name + name

→ name − name + name

CS 335 Swarnendu Biswas

𝐸𝑥𝑝𝑟

name

𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 + 𝑇𝑒𝑟𝑚

− 𝑇𝑒𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟

name𝐹𝑎𝑐𝑡𝑜𝑟

name

𝑇𝑒𝑟𝑚

𝐹𝑎𝑐𝑡𝑜𝑟

Types of Parsers

Top-down

• Starts with the root and grows the tree toward the leaves

Bottom-up

• Starts with the leaves and grow the tree toward the root

Universal

• More general algorithms, but inefficient to use in production compilers

CS 335 Swarnendu Biswas

Error Handling

• The scanner cannot deal with all errors

• Common source of programming errors
• Lexical errors

• For e.g., illegal characters, missing quotes around strings

• Syntactic errors
• For e.g., misspelled keywords, misplaced semicolons or extra or missing braces

• Semantic errors
• For e.g., type mismatches between operators and operands, undeclared variables

• Logical errors

CS 335 Swarnendu Biswas

Handling Errors

Panic-mode recovery

• Parser discards input symbols one at a time until a synchronizing token is
found

• Synchronizing tokens are usually delimiters (for e.g., ; or })

Phrase-level recovery

• Perform local correction on the remaining input

• Can go into an infinite loop because of wrong correction, or the error may have
occurred before it is detected

CS 335 Swarnendu Biswas

Handling Errors

Error productions

• Augment the grammar with productions that generate erroneous constructs

• Works only for common mistakes, complicates the grammar

Global correction

• Given an incorrect input string 𝑥 and grammar 𝐺, find a parse tree for a related
string 𝑦 such that the number of modifications (insertions, deletions, and
changes) of tokens required to transform 𝑥 into 𝑦 is as small as possible

CS 335 Swarnendu Biswas

Context-Free vs Regular Grammar

• CFGs are more powerful than REs
• Every regular language is context-free, but not vice versa

• We can create a CFG for every NFA that simulates some RE

• Language that can be described by a CFG but not by a RE

CS 335 Swarnendu Biswas

𝐿 = 𝑎𝑛𝑏𝑛 𝑛 ≥ 1}

Limitations of Syntax Analysis

• Cannot determine whether
• A variable has been declared before use

• A variable has been initialized

• Variables are of types on which operations are allowed

• Number of formal and actual arguments of a function match

• These limitations are handled during semantic analysis

CS 335 Swarnendu Biswas

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapters 2 and 4.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 3.

CS 335 Swarnendu Biswas

