CS335: Syntax Analysis

Swarnendu Biswas

Semester 2019-2020-I1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

An Overview of Compilation

source program target program

4 i)

lexical analyzer code generator
, symbol table ,

4

syntax analyzer error handler code optimizer

4 i)

: intermediate code
semantic analyzer | >

generator

CS 335 Swarnendu Biswas

Parser Interface

token

Syntax Rest of IR
Analyzer Front End

source Lexical
program Analyzer

get next
<
token

symbol table

CS 335 Swarnendu Biswas

Need for Checking Syntax

e Given an input program, scanner generates a stream of tokens
classified according to the syntactic category

* The parser determines if the input program, represented by the token
stream, is a valid sentence in the programming language

* The parser attempts to build a derivation for the input program, using
a grammar for the programming language

* |f the input stream is a valid program, parser builds a valid model for later
phases

* |f the input stream is invalid, parser reports the problem and diagnostic
information to the user

Syntax Analysis

* Given a programming language grammar (G and a stream of tokens s,
parsing tries to find a derivation in G that produces s

* In addition, a syntax analyser
* Forward the information as IR to the next compilation phases
* Handle errors if the input string is not in L(G)

Context-Free Grammars

* A context-free grammar (CFG) G is a quadruple (T, NT, S, P)

T Set of terminal symbols (also called words) in the language L(G)
NT Set of nonterminal symbols that appear in the productions of G
S Goal or start symbol of the grammar G

P Set of productions (or rules) in G

Context-Free Grammars

* Terminal symbols correspond to syntactic categories returned by the
scanner
* Terminal symbol is a word that can occur in a sentence

* Nonterminals are syntactic variables introduced to provide
abstraction and structure in the productions

* S represents the set of sentences in L(G)
* Each rulein P is of the form NT — (T U NT)"

Definitions

* Derivation is a a sequence of rewriting steps that begins with the
grammar (G’s start symbol and ends with a sentence in the language

+
S = w wherew € L(G)

* At each point during derivation process, the string is a collection of
terminal or nonterminal symbols

aAp = ayfifA -y

e Such a string is called a sentential form if it occurs in some step of a
valid derivation

* A sentential form can be derived from the start symbol in zero or
more steps

Example of a CFG

CFG (a+b) Xc
Expr —» (Expr) Expr — Expr Op name
| Expr Op name — Expr X name
| name — (Expr) X name
Op - +| —| X| + — (Expr Op name) X name

— (Expr + name) X name

— (name + name) X name

Sentential Form and Parse Tree

Expr — Expr Op name Expr
— Expr X name / } \
Expr Op name
— (Expr) X name 1
— (Expr Op name) X name (Expr) X

— (Expr + name) X name

Expr Op name
— (name + name) X name f y

name -+

Parse Tree

CS 335 Swarnendu Biswas

Parse Iree

* A parse tree is a graphical representation of a derivation

* Root is labeled with by the start symbol S

* Each internal node is a nonterminal, and represents the application of a
production

* Leaves are labeled by terminals and constitute a sentential form, read from
left to right, called the yield or frontier of the tree

* Parse tree filters out the order in which productions are applied to
replace nonterminals

* |t just represents the rules applied

Derivations

* At each step during derivation, we have two choices to make
1. Which nonterminal to rewrite?
2. Which production rule to pick?

* Rightmost (or canonical) derivation rewrites the rightmost

nonterminal at each step, denoted by a = [
rm

e Similarly, leftmost derivation rewrites the leftmost nonterminal at each step,
denoted by a = I
m

* Every leftmost derivation can be written as wAy l=> woy
m

Leftmost Derivation

Expr — Expr Op name

CS 335

— (Expr) Op name

— (Expr Op name) Op name

— (name Op name) Op name

— (name + name) Op name

— (name + name) X name

Swarnendu Biswas

Expr
P N
Expr Op name

(Expr) X

Expr Op name

name -+

Parse Tree

Ambiguous Grammars

A grammar (G is ambiguous if
some sentence in L(G) has more
than one rightmost (or leftmost)
derivation

* An ambiguous grammar can
produce multiple derivations
and parse trees

Example of Ambiguous Grammar

* Agrammar G is ambiguous if some sentence in L(G) has more than
one rightmost (or leftmost) derivation

* An ambiguous grammar can produce multiple derivations and parse
trees

Stmt — if Expr then Stmt
| if Expr then Stmt else Stmt
| Assign

Ambiguous Dangling-Else Grammar

if Expr; then if Expr, then Assign, else Assign,

Stmt Stmt
if FExpr; then Stmt if Expr; then Stmt else Stmt
if Expr, then Stmt else Stmt if Expr, then Stmt

Assign, Assign, Assign, Assign,

Dealing with Ambiguous Grammars

* Ambiguous grammars are problematic for compilers

* Compilers use parse trees to interpret the meaning of the expressions during
later stages

* Multiple parse trees can give rise to multiple interpretations

* Fixing ambiguous grammars
* Transform the grammar to remove the ambiguity

* Include rules to disambiguate during derivations
* For e.g., associativity and precedence

Fixing the Ambiguous Dangling-Else Grammar

* In all programming languages, an else is matched with the closest
then

Stmt — if Expr then Stmt
| if Expr then ThenStmt else Stmt
| Assign

ThenStmt — if Expr then ThenStmt else ThenStmt
| Assign

Fixed Dangling-Else Grammar

if Expr; then if Expr, then Assign, else Assign,

!
Stmt — if Expr then Stmt
— if Expr then if Expr then ThenStmt else Stmt
— if Expr then if Expr then ThenStmt else Assign
— if Expr then if Expr then Assign else Assign

Interpreting the Meaning

CFG

Expr — (Expr)
| Expr Op name
| name

Op - +| —| x| +

a+ b Xc

Expr — Expr Op name

rightmost
derivation

— Expr X name
— Expr Op name X name
— Expr + name X name

— name + name X name

Corresponding Parse Tree

a+ b Xc

Expr
Expr — Expr Op name TN
Expr Op name
— Expr X name A/l\ 1
— Expr Op name X name Expr Op name X
— Expr + name X name 1 1

name +
— name + name X name

How do we evaluate the
expression?

Assoclativity

string — string + string|string — string|0|1|2] ... |9

9—-5+2
string string
string + string string — string
string — string 2 9 string + string

l l l l

9 5 5 2

Assoclativity

* If an operand has operator on both the sides, the side on which
operator takes this operand is the associativity of that operator

e + - * [are left associative
A =areright associative

* Grammar to generate strings with right associative operators

right — letter = right|letter
letter — alb| ... |z

Parse Tree for Right Associative Grammars

right

= b =
d C / 1 \
letter = right
l 1
a letter = right
l l
b letter

l

C

Encode Precedence into the Grammar

Start - Expr

Expr —» Expr + Term|Expr — Term|Term
Term — Term X Factor|Term =+ Factor|Factor
Factor - (Expr)|num|name

priority

Corresponding Parse Tree

a—b+c

Start —» Expr
— Expr + Term
— Expr + Factor
— Expr + name
— Expr — Term + name
— Expr — Factor + name
— Expr — name + name
— Term — name + name
— Factor — name + name
— name — name + name

Expr
Expr / -{ \TeArm
T ,
Expr — Term Factor
T e7'”m F a"ctor na‘me
F a;tor na}ne

name

Types of Parsers

Top-down

e Starts with the root and grows the tree toward the leaves

Bottom-up

e Starts with the leaves and grow the tree toward the root

Universal

e More general algorithms, but inefficient to use in production compilers

CS 335 Swarnendu Biswas

Error Handling

* The scanner cannot deal with all errors

 Common source of programming errors

* Lexical errors
* Fore.g., illegal characters, missing quotes around strings

* Syntactic errors
* For e.g., misspelled keywords, misplaced semicolons or extra or missing braces

* Semantic errors
* Fore.g., type mismatches between operators and operands, undeclared variables

* Logical errors

Handling Errors

Panic-mode recovery

e Parser discards input symbols one at a time until a synchronizing token is
found

e Synchronizing tokens are usually delimiters (for e.g., ; or })

Phrase-level recovery

e Perform local correction on the remaining input

e Can go into an infinite loop because of wrong correction, or the error may have
occurred before it is detected

CS 335 Swarnendu Biswas

Handling Errors

Error productions

e Augment the grammar with productions that generate erroneous constructs
e WWorks only for common mistakes, complicates the grammar

Global correction

e Given an incorrect input string x and grammar G, find a parse tree for a related
string y such that the number of modifications (insertions, deletions, and
changes) of tokens required to transform x into y is as small as possible

CS 335 Swarnendu Biswas

Context-Free vs Regular Grammar

* CFGs are more powerful than REs
* Every regular language is context-free, but not vice versa
* We can create a CFG for every NFA that simulates some RE

* Language that can be described by a CFG but not by a RE
[L={a"h" |n =1}]

Limitations of Syntax Analysis

e Cannot determine whether
* Avariable has been declared before use
* Avariable has been initialized
* Variables are of types on which operations are allowed
* Number of formal and actual arguments of a function match

* These limitations are handled during semantic analysis

References

* A. Aho et al. Compilers: Principles, Techniques, and Tools, 2"? edition, Chapters 2 and 4.

* K. Cooper and L. Torczon. Engineering a Compiler, 2" edition, Chapter 3.

