
CS 335: Bottom-up Parsing
Swarnendu Biswas

Semester 2019-2020-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Rightmost Derivation of 𝑎𝑏𝑏𝑐𝑑𝑒

CS 335 Swarnendu Biswas

𝑆

𝑎 𝐴 𝐵 𝑒

𝑆

𝑎 𝐴 𝐵 𝑒

𝑑

𝑆

𝑎 𝐴 𝐵 𝑒

𝑑𝑏 𝑐𝐴

𝑆 𝑟𝑚 𝑆

𝑎 𝐴 𝐵 𝑒

𝑑𝑏 𝑐𝐴

𝑏

𝑟𝑚 𝑟𝑚 𝑟𝑚

𝑆 → 𝑎𝐴𝐵𝑒
𝐴 → 𝐴𝑏𝑐 | 𝑏
𝐵 → 𝑑

Input string: 𝑎𝑏𝑏𝑐𝑑𝑒

𝑆 → 𝑎𝐴𝐵𝑒

→ 𝑎𝐴𝑑𝑒

→ 𝑎𝐴𝑏𝑐𝑑𝑒

→ 𝑎𝑏𝑏𝑐𝑑𝑒

Bottom-up Parsing

CS 335 Swarnendu Biswas

𝑆 → 𝑎𝐴𝐵𝑒
𝐴 → 𝐴𝑏𝑐 | 𝑏
𝐵 → 𝑑

Input string: 𝑎𝑏𝑏𝑐𝑑𝑒

𝑆 → 𝑎𝐴𝐵𝑒 𝑎𝑏𝑏𝑐𝑑𝑒

→ 𝑎𝐴𝑑𝑒 → 𝑎𝐴𝑏𝑐𝑑𝑒

→ 𝑎𝐴𝑏𝑐𝑑𝑒 → 𝑎𝐴𝑑𝑒

→ 𝑎𝑏𝑏𝑐𝑑𝑒 → 𝑎𝐴𝐵𝑒

→ 𝑆

Constructs the parse tree starting from the leaves and working up
toward the root

reverse of
rightmost
derivation

Bottom-up Parsing

CS 335 Swarnendu Biswas

𝑆 → 𝑎𝐴𝐵𝑒
𝐴 → 𝐴𝑏𝑐 | 𝑏
𝐵 → 𝑑

Input string: 𝑎𝑏𝑏𝑐𝑑𝑒

𝑎𝑏𝑏𝑐𝑑𝑒

→ 𝑎𝐴𝑏𝑐𝑑𝑒

→ 𝑎𝐴𝑑𝑒

→ 𝑎𝐴𝐵𝑒

→ 𝑆

𝑎𝑏𝑏𝑐𝑑𝑒⇒

𝑏

𝐴 𝑏𝑎 𝑐 𝑑 𝑒

𝑏

𝐴 𝑏 𝑐

𝑎 𝑑 𝑒𝐴

𝑏

𝐴 𝑏 𝑐

𝑎 𝐴

𝑑

𝑒𝐵⇒ ⇒ ⇒

𝑏

𝐴 𝑏 𝑐

𝑎 𝐴

𝑑

𝑒𝐵

𝑆

Reduction

• Bottom-up parsing reduces a string 𝑤 to the start symbol 𝑆
• At each reduction step, a chosen substring that is the rhs (or body) of a

production is replaced by the lhs (or head) nonterminal

CS 335 Swarnendu Biswas

Derivation

𝑆
𝑟𝑚

𝛾0
𝑟𝑚

𝛾1
𝑟𝑚

𝛾2
𝑟𝑚

…
𝑟𝑚

𝛾𝑛−1
𝑟𝑚

𝛾𝑛 = 𝑤

Bottom-up Parser

Handle

• Handle is a substring that matches the body of a production
• Reducing the handle is one step in the reverse of the rightmost derivation

CS 335 Swarnendu Biswas

Right Sentential Form Handle Reducing Production

id1 ∗ id2 id1 𝐹 → id

𝐹 ∗ id2 𝐹 𝑇 → 𝐹

𝑇 ∗ id2 id2 𝐹 → id

𝑇 ∗ 𝐹 𝑇 ∗ 𝐹 𝑇 → 𝑇 ∗ 𝐹

𝑇 𝑇 𝐸 → 𝑇

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Handle

CS 335 Swarnendu Biswas

Right Sentential Form Handle Reducing Production

id1 ∗ id2 id1 𝐹 → id

𝐹 ∗ id2 𝐹 𝑇 → 𝐹

𝑇 ∗ id2 id2 𝐹 → id

𝑇 ∗ 𝐹 𝑇 ∗ 𝐹 𝑇 → 𝑇 ∗ 𝐹

𝑇 𝑇 𝐸 → 𝑇

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Although 𝑇 is the body of the production 𝐸 → 𝑇, 𝑇 is not a handle in the sentential
form 𝑇 ∗ id2

Handle

• If 𝑆
𝑟𝑚

∗ 𝛼𝐴𝑤
𝑟𝑚

𝛼𝛽𝑤, then 𝐴 →

𝛽 is a handle of 𝛼𝛽𝑤

• String 𝑤 right of a handle must
contain only terminals

CS 335 Swarnendu Biswas

𝑆

𝐴

𝛼 𝑤𝛽

A handle 𝐴 → 𝛽 in the parse tree for
𝛼𝛽𝑤

Handle

If grammar 𝐺 is unambiguous, then every right sentential form has
only one handle

If 𝐺 is ambiguous, then there can be more than one rightmost
derivation of 𝛼𝛽𝑤

CS 335 Swarnendu Biswas

Shift-Reduce Parsing

CS 335 Swarnendu Biswas

Shift-Reduce Parsing

• Type of bottom-up parsing with two primary actions, shift and reduce
• Other obvious actions are accept and error

• The input string (i.e., being parsed) consists of two parts
• Left part is a string of terminals and nonterminals, and is stored in stack

• Right part is a string of terminals read from an input buffer

• Bottom of the stack and end of input are represented by $

CS 335 Swarnendu Biswas

Shift-Reduce Actions

• Shift: shift the next input symbol from the right string onto the top of
the stack

• Reduce: identify a string on top of the stack that is the body of a
production, and replace the body with the head

CS 335 Swarnendu Biswas

Shift-Reduce Parsing

• Initial

• Final goal

CS 335 Swarnendu Biswas

Stack Input

$ 𝑤$

Stack Input

$𝑆 $

⇒ ∗

ReduceShift

Shift-Reduce Parsing

Stack Input Action

$ 𝐢𝐝1 ∗ 𝐢𝐝2$ Shift

$𝐢𝐝1 ∗ 𝐢𝐝2$ Reduce by 𝐹 → id

$𝐹 ∗ 𝐢𝐝2$ Reduce by 𝑇 → 𝐹

$𝑇 ∗ 𝐢𝐝2$ Shift

$𝑇 ∗ 𝐢𝐝2$ Shift

$𝑇 ∗ 𝐢𝐝2 $ Reduce by 𝐹 → id

$𝑇 ∗ 𝐹 $ Reduce by 𝑇 → 𝑇 ∗ 𝐹

$𝑇 $ Reduce by 𝐸 → 𝑇

$𝐸 $ Accept

CS 335 Swarnendu Biswas

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Handle on Top of the Stack

• Is the following scenario possible?

CS 335 Swarnendu Biswas

Stack Input Action

…

$ 𝛼𝛽𝛾 𝑤$ Reduce by 𝐴 → 𝛾

$ 𝛼𝛽𝐴 𝑤$ Reduce by 𝐵 → 𝛽

$𝛼𝐵𝐴 𝑤$

…

Possible Choices in Rightmost Derivation

1. 𝑆
𝑟𝑚

𝛼𝐴𝑧
𝑟𝑚

𝛼𝛽𝐵𝑦𝑧
𝑟𝑚

𝛼𝛽𝛾𝑦𝑧 2. 𝑆
𝑟𝑚

𝛼𝐵𝑥𝐴𝑧
𝑟𝑚

𝛼𝐵𝑥𝑦𝑧
𝑟𝑚

𝛼𝛾𝑥𝑦𝑧

CS 335 Swarnendu Biswas

𝑆

𝛼 𝑦𝛽 𝛾 𝑧

𝐴

𝐵

𝑆

𝛼 𝑦𝛾 𝑥 𝑧

𝐴𝐵

Handle on Top of the Stack

• Is the following scenario possible?

CS 335 Swarnendu Biswas

Stack Input Action

…

$ 𝛼𝛽𝛾 𝑤$ Reduce by 𝐴 → 𝛾

$ 𝛼𝛽𝐴 𝑤$ Reduce by 𝐵 → 𝛽

$𝛼𝐵𝐴 𝑤$

…

Handle always eventually appears on top of the stack, never inside

Shift-Reduce Actions

• Shift: shift the next input symbol from the right string onto the top of
the stack

• Reduce: identify a string on top of the stack that is the body of a
production, and replace the body with the head

CS 335 Swarnendu Biswas

How do you decide when to shift and when to reduce?

Steps in Shift-Reduce Parsers

• Bottom up parsing is essentially the process of detecting handles and
reducing them

• Different bottom-up parsers differ in the way they detect handles

CS 335 Swarnendu Biswas

General shift-reduce technique
If there is no handle on the stack, then shift
If there is a handle on the stack, then reduce

Challenges in Bottom-up Parsing

• Both shift and reduce are valid,
implies a shift-reduce conflict

Which action do you
pick when there is a

choice?

• Reduce-reduce conflict

Which rule to use if
reduction is possible

by more than one
rule?

CS 335 Swarnendu Biswas

Shift-Reduce Conflict

id + id ∗ id

Stack Input Action

$ id + id ∗ id$ Shift

…

$𝐸 + 𝐸 ∗ id$ Reduce by 𝐸 → 𝐸 + 𝐸

$𝐸 ∗ id$ Shift

$𝐸 ∗ id$ Shift

$𝐸 ∗ id $ Reduce by 𝐸 → id

$𝐸 ∗ 𝐸 $ Reduce by 𝐸 → 𝐸 ∗ 𝐸

$𝐸 $

id + id ∗ id

CS 335 Swarnendu Biswas

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 id

Stack Input Action

$ id + id ∗ id$ Shift

…

$𝐸 + 𝐸 ∗ id$ Shift

$𝐸 + 𝐸 ∗ id$ Shift

$𝐸 + 𝐸 ∗ id $ Reduce by 𝐸 → id

$𝐸 + 𝐸 ∗ 𝐸 $ Reduce by 𝐸 → 𝐸 ∗ 𝐸

$𝐸 + 𝐸 $ Reduce by 𝐸 → 𝐸 + 𝐸

$𝐸 $

Shift-Reduce Conflict

Stack Input Action

… if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else …$

CS 335 Swarnendu Biswas

S𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡

| if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

| 𝑜𝑡ℎ𝑒𝑟

Shift-Reduce Conflict

Stack Input Action

… if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else …$

CS 335 Swarnendu Biswas

S𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡

| if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

| 𝑜𝑡ℎ𝑒𝑟

What is a correct thing to
do for this grammar – shift
or reduce?

Reduce-Reduce Conflict

𝑐 + 𝑐

Stack Input Action

$ 𝑐 + 𝑐$ Shift

$𝑐 +𝑐$ Reduce by 𝑅 → 𝑐

$𝑅 +𝑐$ Shift

$𝑅 + 𝑐$ Shift

$𝑅 + 𝑐 $ Reduce by 𝑅 → 𝑐

$𝑅 + 𝑅 $ Reduce by 𝑅 → 𝑅 + 𝑅

$𝑀 $

𝑐 + 𝑐

CS 335 Swarnendu Biswas

𝑀 → 𝑅 + 𝑅 𝑅 + 𝑐 𝑅
𝑅 → 𝑐

Stack Input Action

$ 𝑐 + 𝑐$ Shift

$𝑐 +𝑐$ Reduce by 𝑅 → 𝑐

$𝑅 +𝑐$ Shift

$𝑅 + 𝑐$ Shift

$𝑅 + 𝑐 $ Reduce by 𝑀 → 𝑅 + 𝑐

$𝑀 $

LR Parsing

CS 335 Swarnendu Biswas

LR(k) Parsing

• Popular bottom-up parsing scheme
• L is for left-to-right scan of input

• R is for reverse of rightmost derivation

• k is the number of lookahead symbols

• LR parsers are table-driven, like the nonrecursive LL parser

• LR grammar is one for which we can construct an LR parsing table

CS 335 Swarnendu Biswas

Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL
parsers

CS 335 Swarnendu Biswas

Why?

Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL parsers

• LL(k) parsing predicts which production to use having seen only the first k tokens of
the right-hand side

• LR(k) parsing can decide after it has seen input tokens corresponding to the entire
right-hand side of the production

CS 335 Swarnendu Biswas

Block Diagram of LR Parser

CS 335 Swarnendu Biswas

ACTION

LR Parsing
Program

𝑎1 … … 𝑎𝑖 … … 𝑎𝑛 $Input

OutputStack 𝑠𝑚

𝑠𝑚−1

…

$

GOTO

Parse Table

LR Parsing

• Remember the basic question: when to shift and when to reduce!

• Information is encoded in a DFA constructed using canonical LR(0)
collection

I. Augmented grammar 𝐺′ with new start symbol 𝑆′ and rule 𝑆′ → 𝑆

II. Define helper functions Closure() and Goto()

CS 335 Swarnendu Biswas

LR(0) Item

• An LR(0) item (also called item)
of a grammar 𝐺 is a production
of 𝐺 with a dot at some position
in the body

• An item indicates how much of a
production we have seen
• Symbols on the left of “•” are

already on the stack
• Symbols on the right of “•” are

expected in the input

𝐴 → •𝑋𝑌𝑍 indicates that we expect a
string derivable from 𝑋𝑌𝑍 next on
the input

CS 335 Swarnendu Biswas

Production Items

𝐴 → 𝑋𝑌𝑍

𝐴 → •𝑋𝑌𝑍

𝐴 → 𝑋•𝑌𝑍

𝐴 → 𝑋𝑌•𝑍

𝐴 → 𝑋𝑌𝑍•

Closure Operation

• Let 𝐼 be a set of items for a grammar 𝐺

• Closure(𝐼) is constructed by
1. Add every item in 𝐼 to Closure(𝐼)

2. If 𝐴 → 𝛼•𝐵𝛽 is in Closure(𝐼) and 𝐵 → 𝛾 is a rule, then add 𝐵 → 𝛾 to
Closure(𝐼) if not already added

3. Repeat until no more new items can be added to Closure(𝐼)

CS 335 Swarnendu Biswas

Example of Closure

Suppose 𝐼 = {𝐸′ → •𝐸 }, compute
Closure(𝐼)

CS 335 Swarnendu Biswas

𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Example of Closure

Suppose 𝐼 = {𝐸′ → •𝐸 }

Closure(𝐼) = {

𝐸′ → •𝐸,

𝐸 → •𝐸 + 𝑇,

𝐸 → •𝑇,

𝑇 → •𝑇 ∗ 𝐹,

𝑇 → •𝐹,

𝐹 → • 𝐸 ,

𝐹 → •id

}

CS 335 Swarnendu Biswas

𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Kernel and Nonkernel Items

• If one 𝐵-production is added to Closure(𝐼) with the dot at the left
end, then all 𝐵-productions will be added to the closure

• Kernel items
• Initial item 𝑆′ → •𝑆, and all items whose dots are not at the left end

• Nonkernel items
• All items with their dots at the left end, except for 𝑆′ → •𝑆

CS 335 Swarnendu Biswas

Goto Operation

• Suppose 𝐼 is a set of items and 𝑋 is a grammar symbol

• Goto(𝐼, 𝑋) is the closure of set all items [𝐴 → 𝛼𝑋•𝛽] such that [𝐴 →
𝛼•𝑋𝛽] is in 𝐼
• If 𝐼 is a set of items for some valid prefix 𝛼, then Goto(𝐼,𝑋) is set of valid items

for prefix 𝛼𝑋

• Intuitively, Goto(𝐼, 𝑋) defines the transitions in the LR(0) automaton
• Goto(𝐼, 𝑋) gives the transition from state 𝐼 under input 𝑋

CS 335 Swarnendu Biswas

Example of Goto

Suppose 𝐼 = {

𝐸′ → 𝐸•,

𝐸 → 𝐸• + 𝑇

}

• Compute Goto(𝐼, +)

CS 335 Swarnendu Biswas

𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Example of Goto

Suppose 𝐼 = {

𝐸′ → 𝐸•,

𝐸 → 𝐸• + 𝑇

}

Goto(𝐼, +) = {

𝐸 → 𝐸 + •𝑇,

𝑇 → •𝑇 ∗ 𝐹,

𝑇 → •𝐹,

𝐹 → • 𝐸 ,

𝐹 → •id

}

CS 335 Swarnendu Biswas

𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Canonical Collection of Sets of LR(0) Items

𝐶 = Closure({𝑆′ → •𝑆})

repeat

for each set of items 𝐼 in 𝐶

for each grammar symbol 𝑋

if Goto(𝐼, 𝑋) is not empty and not in 𝐶

add Goto(𝐼, 𝑋) to 𝐶

until no new sets of items are added to 𝐶

CS 335 Swarnendu Biswas

Canonical Collection of Sets of LR(0) Items

• Compute the canonical
collection for the expression
grammar

CS 335 Swarnendu Biswas

𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Canonical Collection of Sets of LR(0) Items

𝐼0 = Closure(𝐸′ → •𝐸)= {
𝐸′ → •𝐸,
𝐸 → •𝐸 + 𝑇,
𝐸 → •𝑇,
𝑇 → •𝑇 ∗ 𝐹,
𝑇 → •𝐹,
𝐹 → •(𝐸),
𝐹 → •id,

}

𝐼1 = Goto(𝐼0, 𝐸) = {
𝐸′ → 𝐸•,
𝐸 → 𝐸• + 𝑇

}

𝐼2 = Goto(𝐼0, 𝑇)= {
𝐸 → 𝑇•,
𝑇 → 𝑇• ∗ 𝐹

}

𝐼3 = Goto(𝐼0, 𝐹)= {
𝑇 → 𝐹•

}

𝐼5 = Goto(𝐼0, id)= {
𝐹 → id•

}

CS 335 Swarnendu Biswas

𝐼4 = Goto(𝐼0, "(")= {
𝐹 → (•𝐸),
𝐸 → •𝐸 + 𝑇,
𝐸 → •𝑇,
𝑇 → •𝑇 ∗ 𝐹,
𝑇 → •𝐹,
𝐹 → •(𝐸),
𝐹 → •id,

}

𝐼7 = Goto(𝐼2,∗) = {
𝑇 → 𝑇 ∗ •𝐹,
𝐹 → •(𝐸),
𝐹 → •id

}

Canonical Collection of Sets of LR(0) Items

𝐼6 = Goto(𝐼1, +)= {
𝐸 → 𝐸 + •𝑇,
𝑇 → •𝑇 ∗ 𝐹,
𝑇 → •𝐹,
𝐹 → •(𝐸),
𝐹 → •id,

}

𝐼8 = Goto(𝐼4, 𝐸)= {
𝐸 → 𝐸• + 𝑇,
𝐹 → (𝐸•)

}

𝐼9 = Goto(𝐼6, 𝑇)= {
𝐸 → 𝐸 + 𝑇•,
𝑇 → 𝑇• ∗ 𝐹

}

𝐼10 = Goto(𝐼7, 𝐹)= {
𝑇 → 𝑇 ∗ 𝐹•,

}

𝐼11 = Goto(𝐼8, ")")= {
𝐹 → (𝐸)•

}

CS 335 Swarnendu Biswas

𝐼2 = Goto(𝐼4, 𝑇)

𝐼3 = Goto(𝐼4, 𝐹)

𝐼4 = Goto(𝐼4, "(")

𝐼5 = Goto(𝐼4, id)

𝐼3 = Goto(𝐼6, 𝐹)

𝐼4 = Goto(𝐼6, "(")

𝐼5 = Goto(𝐼6, id)

𝐼4 = Goto(𝐼7, "(")

𝐼5 = Goto(𝐼7, id)

𝐼6 = Goto(𝐼8, +)

𝐼7 = Goto(𝐼9,∗)

LR(0) Automaton

• An LR parser makes shift-reduce decisions by maintaining states

• Canonical LR(0) collection is used for constructing a DFA for parsing

• States represent sets of LR(0) items in the canonical LR(0) collection
• Start state is Closure({𝑆′ → •𝑆}), where 𝑆′ is the start symbol of the

augmented grammar

• State 𝑗 refers to the state corresponding to the set of items 𝐼𝑗

CS 335 Swarnendu Biswas

LR(0) Automaton

CS 335 Swarnendu Biswas

Accept

)

𝐼4 𝐼6

𝐼1

𝐼0

𝐼8 𝐼9 𝐼10 𝐼11

𝐼7

𝐼2 𝐼3 𝐼5

𝐸

+

𝑇

𝑇
id

(

𝐹

𝐹(

id

∗

∗

id
id

𝐸

+(
(

𝐹

Use of LR(0) Automaton

• How can LR(0) automata help with shift-reduce decisions?

• Suppose string 𝛾 of grammar symbols takes the automaton from start
state 𝑆0 to state 𝑆𝑗
• Shift on next input symbol 𝑎 if 𝑆𝑗 has a transition on 𝑎

• Otherwise, reduce
• Items in state 𝑆𝑗 help decide which production to use

CS 335 Swarnendu Biswas

Shift-Reduce Parser with LR(0) Automaton

Stack Symbols Input Action

0 $ id ∗ id$ Shift to 5

0 5 $id ∗ id$ Reduce by 𝐹 → id

0 3 $𝐹 ∗ id$ Reduce by 𝑇 → 𝐹

0 2 $𝑇 ∗ id$ Shift to 7

0 2 7 $𝑇 ∗ id$ Shift to 5

0 2 7 5 $𝑇 ∗ id $ Reduce by 𝐹 → id

0 2 7 10 $𝑇 ∗ 𝐹 $ Reduce by 𝑇 → 𝑇 ∗ 𝐹

0 2 $𝑇 $ Reduce by 𝐸 → 𝑇

0 1 $𝐸 $ Accept

CS 335 Swarnendu Biswas

Viable Prefix

• A viable prefix is a prefix of a right sentential form that can appear on
the stack of a shift-reduce parser
• 𝛼 is a viable prefix if ∃𝑤 such that 𝛼𝑤 is a right sentential form

• id ∗ is a prefix of a right sentential form, but it can never appear on
the stack
• Always reduce by 𝐹 → id before shifting ∗

• Not all prefixes of a right sentential form can appear on the stack

• There is no error as long as the parser has viable prefixes on the stack

CS 335 Swarnendu Biswas

𝐸 → 𝑇 → 𝑇 ∗ 𝐹 → 𝑇 ∗ id → 𝐹 ∗ id → id ∗ id

Example of a Viable Prefix

CS 335 Swarnendu Biswas

Stack Input

$ 𝑋1𝑋2𝑋3$

$𝑋1 𝑋2𝑋3$

$𝑋1𝑋2 𝑋3$

$𝐴 𝑋3$

$𝐴𝑋3 $

𝑆 → 𝑋1𝑋2𝑋3𝑋4
𝐴 → 𝑋1𝑋2

Let 𝑤 = 𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3 can never appear on a stack

Challenges with LR(0) Parsing

• An LR(0) parser works only if each state with a reduce action has only
one possible reduce action and no shift action

• Takes shift/reduce decisions without any lookahead token
• Lacks the power to parse programming language grammars

CS 335 Swarnendu Biswas

{
𝐿 → 𝑆, 𝐿•
𝐿 → 𝑆•

}

Reduce-reduce conflict

{
𝐿 → 𝐿, 𝑆•

}

Ok

{
𝐿 → 𝐿, 𝑆•
𝑆 → 𝑆•, 𝐿

}
Shift-reduce conflict

Challenges with LR(0) Parsing

• Consider the following grammar for adding numbers

CS 335 Swarnendu Biswas

𝑆 → 𝑆 + 𝐸 | 𝐸
𝐸 → num

Left associative

𝑆 → 𝐸 + 𝑆 | 𝐸
𝐸 → num

Right associative

Challenges with LR(0) Parsing

• Consider the following grammar for adding numbers

CS 335 Swarnendu Biswas

𝑆 → 𝑆 + 𝐸 | 𝐸
𝐸 → num

Left associative

𝑆 → 𝐸 + 𝑆 | 𝐸
𝐸 → num

Right associative

Not
LR(0)

𝑆 → 𝐸• + 𝑆
𝑆 → 𝐸•

Shift-reduce conflict

Simple LR Parsing
SLR(1)

CS 335 Swarnendu Biswas

Block Diagram of LR Parser

CS 335 Swarnendu Biswas

ACTION

LR Parsing
Program

𝑎1 … … 𝑎𝑖 … … 𝑎𝑛 $Input

OutputStack 𝑠𝑚

𝑠𝑚−1

…

$

GOTO

Parse Table

• Same driver program is used for
all LR parsers

• Different LR parsing techniques
produce different parse tables

LR Parsing Algorithm

• The parser driver is same for all LR parsers
• Only the parsing table changes across parsers

• A shift-reduce parser shifts a symbol, and an LR parser shifts a state

• By construction, all transitions to state 𝑗 is for the same symbol 𝑋
• Each state, except the start state, has a unique grammar symbol associated

with it

CS 335 Swarnendu Biswas

SLR(1) Parsing

• Extends LR(0) parser to eliminate a few conflicts
• Uses LR(0) items and LR(0) automaton

• For each reduction 𝐴 → 𝛽, look at the next symbol 𝑐

• Apply reduction only if 𝑐 ∈ FOLLOW 𝐴 or 𝑐 = 𝜖 and 𝑆 ⇒
∗
𝛾𝐴

CS 335 Swarnendu Biswas

Structure of SLR Parsing Table

• Assume 𝑆𝑖 is top of the stack and 𝑎𝑖 is the current input symbol

• Parsing table consists of two parts: an Action and a Goto function

• Action table is indexed by state and terminal symbols
• Action[𝑆𝑖, 𝑎𝑖] can have four values

• Shift 𝑎𝑖 to the stack, goto state 𝑆𝑗
• Reduce by rule 𝑘

• Accept

• Error (empty cell in the table)

• Goto table is indexed by state and nonterminal symbols

CS 335 Swarnendu Biswas

Constructing SLR Parsing Table

1) Construct LR(0) canonical collection 𝐶 = {𝐼0, 𝐼1, … , 𝐼𝑛} for grammar
𝐺′

2) State 𝑖 is constructed from 𝐼𝑖
a) If [𝐴 → 𝛼•𝑎𝛽] is in 𝐼𝑖 and Goto(𝐼𝑖, 𝑎) = 𝐼𝑗, then set Action[𝑖, 𝑎] = “Shift 𝑗”

b) If [𝐴 → 𝛼•] is in 𝐼𝑖, then set Action [𝑖, 𝑎] = “Reduce 𝐴 → 𝛼” for all 𝑎 in
FOLLOW(𝐴)

c) If [𝑆′ → 𝑆•] is in 𝐼𝑖, then set Action [𝑖, $] = “Accept”

3) If Goto(𝐼𝑖, 𝐴) = 𝐼𝑗, then Goto[𝑖, 𝐴] = 𝑗

4) All entries left undefined are “errors”

CS 335 Swarnendu Biswas

SLR Parsing for Expression Grammar

Rule # Rule

1 𝐸 → 𝐸 + 𝑇

2 𝐸 → 𝑇

3 𝑇 → 𝑇 ∗ 𝐹

4 𝑇 → 𝐹

5 𝐹 → (𝐸)

6 𝐹 → id

• 𝑠𝑗 means shift and stack state 𝑖

• 𝑟𝑗 means reduce by rule #𝑗

• 𝑎𝑐𝑐 means accept

• blank means error

CS 335 Swarnendu Biswas

SLR Parsing Table

State
Action Goto

id + ∗ () $ 𝐸 𝑇 𝐹

0 𝑠5 𝑠4 1 2 3

1 𝑠6 𝑎𝑐𝑐

2 𝑟2 𝑠7 𝑟2 𝑟2

3 𝑟4 𝑟4 𝑟4 𝑟4

4 𝑠5 𝑠4 8 2 3

5 𝑟6 𝑟6 𝑟6 𝑟6

6 𝑠5 𝑠4 9 3

7 𝑠5 𝑠4 10

8 𝑠6 𝑠11

9 𝑟1 𝑠7 𝑟1 𝑟1

10 𝑟3 𝑟3 𝑟3 𝑟3

11 𝑟5 𝑟5 𝑟5 𝑟5

CS 335 Swarnendu Biswas

LR Parser Configurations

• A LR parser configuration is a pair <𝑠0, 𝑠1,…, 𝑠𝑚, 𝑎𝑖𝑎𝑖+1… 𝑎𝑛$>
• Left half is stack content, and right half is the remaining input

• Configuration represents the right sentential form 𝑋1𝑋2…𝑋𝑚𝑎𝑖𝑎𝑖+1…
𝑎𝑛

CS 335 Swarnendu Biswas

LR Parsing Algorithm

• If Action[𝑠𝑚, 𝑎𝑖] = shift 𝑠, new configuration is <𝑠0, 𝑠1,…, 𝑠𝑚𝑠, 𝑎𝑖+1…
𝑎𝑛$>

• If Action[𝑠𝑚, 𝑎𝑖] = reduce 𝐴 → 𝛽, new configuration is <𝑠0, 𝑠1,…,
𝑠𝑚−𝑟 , 𝑎𝑖𝑎𝑖+1… 𝑎𝑛$>
• Assume 𝑟 is |𝛽| and 𝑠 = Goto[𝑠𝑚−𝑟 , 𝐴]

• If Action[𝑠𝑚, 𝑎𝑖] = accept, parsing is successful

• If Action[𝑠𝑚, 𝑎𝑖] = error, parsing has discovered an error

CS 335 Swarnendu Biswas

LR Parsing Program

Let 𝑎 be the first symbol of input 𝑤$
while (1)

let 𝑠 be the top of the stack
if Action[𝑎] == shift 𝑡

push 𝑡 onto the stack
let 𝑎 be the next input symbol

else if Action[𝑠, 𝑎] == reduce 𝐴 → 𝛽

pop |𝛽| symbols off the stack
push Goto[𝑡, 𝐴] onto the stack
output production 𝐴 → 𝛽

else if Action[𝑠, 𝑎] == accept
break

else
invoke error recovery

CS 335 Swarnendu Biswas

Moves of an LR Parser on id ∗ id + id
Stack Symbols Input Action

1 0 id ∗ id + id$ Shift

2 0 5 id ∗ id + id$ Reduce by 𝐹 → id

3 0 3 𝐹 ∗ id + id$ Reduce by 𝑇 → 𝐹

4 0 2 𝑇 ∗ id + id$ Shift

5 0 2 7 𝑇 ∗ id + id$ Shift

6 0 2 7 5 𝑇 ∗ id +id$ Reduce by 𝐹 → id

7 0 2 7 10 𝑇 ∗ 𝐹 +id$ Reduce by 𝑇 → 𝑇 ∗ 𝐹

8 0 2 𝑇 +id$ Reduce by 𝐸 → 𝑇

9 0 1 𝐸 +id$ Shift

10 0 1 6 𝐸 + id$ Shift

CS 335 Swarnendu Biswas

Moves of an LR Parser on id ∗ id + id
Stack Symbols Input Action

11 0 1 6 5 𝐸 + id $ Reduce by 𝐹 → id

12 0 1 6 3 𝐸 + 𝐹 $ Reduce by 𝑇 → 𝐹

13 0 1 6 9 𝐸 + 𝑇 $ Reduce by 𝐸 → 𝐸 + 𝑇

14 0 1 𝐸 $ Accept

CS 335 Swarnendu Biswas

Limitations of SLR Parsing

• If an SLR parse table for a grammar does not have multiple entries in
any cell then the grammar is unambiguous

• Every SLR(1) grammar is unambiguous, but there are unambiguous
grammars that are not SLR(1)

CS 335 Swarnendu Biswas

Limitations of SLR Parsing

CS 335 Swarnendu Biswas

𝑆 → 𝐿 = 𝑅 | 𝑅
𝐿 → ∗𝑅 | id
𝑅 → 𝐿

Unambiguous grammar Example Derivation
𝑆 ⇒ 𝐿 = 𝑅 ⇒ ∗𝑅 = 𝑅

FIRST 𝑆 = FIRST 𝐿 = FIRST 𝑅 = ∗, id

FOLLOW 𝑆 = FOLLOW 𝐿 = FOLLOW 𝑅
= =, $

Canonical LR(0) Collection

CS 335 Swarnendu Biswas

𝐼0 = Closure(𝑆′ →. 𝑆)= {
𝑆′ → •𝑆,
𝑆 → •𝐿 = 𝑅,
𝑆 → •𝑅,
𝐿 → •∗𝑅,
𝐿 → •id,
𝑅 → •𝐿

}
𝐼1 = Goto(𝐼0, 𝑆) = {

𝑆′ → 𝑆•
}
𝐼2 = Goto(𝐼0, 𝐿)= {

𝑆 → 𝐿• = 𝑅,
𝑅 → 𝐿•

}

𝐼3 = Goto(𝐼0, 𝑅)= {
𝑆 → 𝑅•

}
𝐼4 =Goto(𝐼0, 𝑅)= {

𝐿 → ∗•𝑅,
𝑅 → •𝐿,
𝐿 → •∗𝑅,
𝐿 → •id

}
𝐼6 = Goto(𝐼2, ‘=‘)= {

𝑆 → 𝐿 = •𝑅,
𝑅 → •𝐿,
𝐿 → •∗𝑅,
𝐿 → •id

}

𝐼5 = Goto(𝐼0, id)= {
𝐿 → •id

}
𝐼7 =Goto(𝐼4, 𝑅)= {

𝐿 →∗ 𝑅•
}
𝐼8 = Goto(𝐼4, 𝐿)= {

𝑅 → 𝐿•
}
𝐼9 = Goto(𝐼6, 𝑅)= {

𝑆 → 𝐿 = 𝑅•
}

SLR Parsing Table

State
Action Goto

= ∗ id $ 𝑆 𝐿 𝑅

0 𝑠4 𝑠5 1 2 3

1 𝑎𝑐𝑐

2 𝑠6, 𝑟6 𝑟6

3

4 𝑠4 𝑠5 8 7

5 𝑟5 𝑟5

6 𝑠4 𝑠5 8 9

7 𝑟4 𝑟4

8 𝑟6 𝑟6

9 𝑟2

CS 335 Swarnendu Biswas

Shift-Reduce Conflict with SLR Parsing

CS 335 Swarnendu Biswas

𝐼0 = Closure(𝑆′ →. 𝑆)= {
𝑆′ → •𝑆,
𝑆 → •𝐿 = 𝑅,
𝑆 → •𝑅,
𝐿 → • ∗ 𝑅,
𝐿 → •id,
𝑅 → •𝐿

}
𝐼1 = Goto(𝐼0, 𝑆) = {

𝑆′ → 𝑆•
}
𝐼2 = Goto(𝐼0, 𝐿)= {

𝑆 → 𝐿• = 𝑅,
𝑅 → 𝐿•

}

𝐼3 = Goto(𝐼0, 𝑅)= {
𝑆 → 𝑅•

}
𝐼4 =Goto(𝐼0, 𝑅)= {

𝐿 →∗ •𝑅,
𝑅 → •𝐿,
𝐿 → • ∗ 𝑅,
𝐿 → •id

}
𝐼6 = Goto(𝐼2, ‘=‘)= {

𝑆 → 𝐿 = •𝑅,
𝑅 → •𝐿,
𝐿 → •∗ 𝑅,
𝐿 → •id

}

𝐼5 = Goto(𝐼0, id)= {
𝐿 → •id

}
𝐼7 =Goto(𝐼4, 𝑅)= {

𝐿 →∗ 𝑅•
}
𝐼8 = Goto(𝐼4, 𝐿)= {

𝑅 → 𝐿•
}
𝐼9 = Goto(𝐼6, 𝑅)= {

𝑆 → 𝐿 = 𝑅•
}

1. Action[2,=] = Shift 6
2. Action[2,=] = Reduce 𝑅 → 𝐿 since ′ = ′ ∈ FOLLOW(𝑅)

Moves of an LR Parser on id=id

CS 335 Swarnendu Biswas

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Reduce by 𝑅 → 𝐿

0 𝑅 3 =id$ Error

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Shift 6

0 𝐿 2 = 6 id$ Shift 5

0 𝐿 2 = 6 id 5 $ Reduce by 𝐿 → id

0 𝐿 2 = 6 𝐿 8 $ Reduce by 𝑅 → 𝐿

0 𝐿 2 = 6 𝑅 9 $ Reduce by 𝑆 → 𝐿 = 𝑅

0 𝑆 1 $ Accept

Moves of an LR Parser on id=id

CS 335 Swarnendu Biswas

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Reduce by 𝑅 → 𝐿

0 𝑅 3 =id$ Error

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Shift 6

0 𝐿 2 = 6 id$ Shift 5

0 𝐿 2 = 6 id 5 $ Reduce by 𝐿 → id

0 𝐿 2 = 6 𝐿 8 $ Reduce by 𝑅 → 𝐿

0 𝐿 2 = 6 𝑅 9 $ Reduce by 𝑆 → 𝐿 = 𝑅

0 𝑆 1 $ Accept

• State 𝑖 calls for a reduction by 𝐴 → 𝛼 if the set of items 𝐼𝑖 contains
item [𝐴 → 𝛼•] and 𝑎 ∈ FOLLOW(𝐴)

• Suppose 𝛽𝐴 is a viable prefix on top of the stack
• There may be no right sentential form where 𝑎 follows 𝛽𝐴

• No right sentential form begins with 𝑅 = ⋯
➢ Parser should not reduce by 𝐴 → 𝛼

Moves of an LR Parser on id=id

CS 335 Swarnendu Biswas

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Reduce by 𝑅 → 𝐿

0 𝑅 3 =id$ Error

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Shift 6

0 𝐿 2 = 6 id$ Shift 5

0 𝐿 2 = 6 id 5 $ Reduce by 𝐿 → id

0 𝐿 2 = 6 𝐿 8 $ Reduce by 𝑅 → 𝐿

0 𝐿 2 = 6 𝑅 9 $ Reduce by 𝑆 → 𝐿 = 𝑅

0 𝑆 1 $ Accept

SLR parsers cannot remember the left context
• SLR(1) states only tell us about the sequence on top of the stack, not what is

below on the stack

Canonical LR Parsing

CS 335 Swarnendu Biswas

LR(1) Item

• An LR(1) item of a CFG 𝐺 is a string of the form [𝐴 → 𝛼•𝛽, 𝑎]
• 𝐴 → 𝛼𝛽 is a production in 𝐺, and 𝑎 ∈ 𝑇 ∪ {$}

• There is now one symbol lookahead

• Suppose [𝐴 → 𝛼•𝛽, 𝑎] where 𝛽 ≠ 𝜖, then the lookahead does not
help

• If [𝐴 → 𝛼•, 𝑎], reduce only if next input symbol is 𝑎
• Set of possible terminals will always be a subset of FOLLOW(𝐴), but can be a

proper subset

CS 335 Swarnendu Biswas

LR(1) Item

• An LR(1) item [𝐴 → 𝛼•𝛽, 𝑎] is
valid for a viable prefix 𝛾 if there
is a derivation

𝑆
𝑟𝑚

∗ 𝛿𝐴𝑤
𝑟𝑚

𝛿𝛼𝛽𝑤

where

i. 𝛾 = 𝛿𝑎, and

ii. 𝑎 is first symbol of 𝑤 or 𝑤 =
𝜖 and 𝑎 = $

CS 335 Swarnendu Biswas

… … 𝑤 $

𝛼

𝛿

…

$

𝛽
LR Parsing
Program

Input

Stack

Constructing LR(1) Sets of Items

Closure(𝐼)

repeat

for each item [𝐴 → 𝛼•𝐵𝛽, 𝑎] in 𝐼

for each production 𝐵 → 𝛾 in 𝐺′

for each terminal 𝑏 in FIRST(𝛽𝑎)

add [𝐵 → •𝛾, 𝑏] to set 𝐼

until no more items are added to 𝐼

return 𝐼

Goto(𝐼, 𝑋)

initialize 𝐽 to be the empty set

for each item [𝐴 → 𝛼•𝑋𝛽, 𝑎] in 𝐼

add item [𝐴 → 𝛼𝑋•𝛽, 𝑎] to set 𝐽

return Closure(𝐽)

CS 335 Swarnendu Biswas

Constructing LR(1) Sets of Items

Items(𝐺′)

C = Closure({[𝑆′ → •𝑆, $]})

repeat

for each set of items 𝐼 in 𝐶

for each grammar symbol 𝑋

if Goto(𝐼, 𝑋) ≠ 𝜙 and Goto(𝐼, 𝑋) ∉ 𝐶

add Goto(𝐼, 𝑋) to 𝐶

until no new sets of items are added to 𝐶

CS 335 Swarnendu Biswas

Example Construction of LR(1) Items

Rule # Production

0 𝑆′ → 𝑆

1 𝑆 → 𝐶𝐶

2 𝐶 → 𝑐𝐶

3 𝐶 → 𝑑

CS 335 Swarnendu Biswas

𝐼0 = Closure([𝑆′ → •𝑆, $])= {
𝑆′ → •𝑆, $,
𝑆 → •𝐶𝐶, $,
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼1 = Goto(𝐼0, 𝑆) = {
𝑆′ → 𝑆•, $

}generates the regular
language 𝑐∗𝑑𝑐∗𝑑

Example Construction of LR(1) Items

CS 335 Swarnendu Biswas

𝐼6 = Goto(𝐼2, 𝑐)= {
𝐶 → 𝑐•𝐶, $,
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼7 = Goto(𝐼2, 𝑑) = {
𝐶 → 𝑑•, $

}

𝐼8 = Goto(𝐼3, 𝐶) = {
𝐶 → 𝑐𝐶•, 𝑐/𝑑

}

𝐼9 = Goto(𝐼6, 𝐶)= {
𝐶 → 𝑐𝐶•, $

}

𝐼0 = Closure([𝑆′ →. 𝑆, $])= {
𝑆′ → •𝑆, $,
𝑆 → •𝐶𝐶, $,
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼1 = Goto(𝐼0, 𝑆) = {
𝑆′ → 𝑆•, $

}

𝐼2 = Goto(𝐼0, 𝐶)= {
𝑆 → 𝐶•𝐶, $,
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼3 = Goto(𝐼0, 𝑐)= {
𝐶 → 𝑐•𝐶, 𝑐/𝑑,
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼4 = Goto(𝐼0, 𝑑) = {
𝐶 → 𝑑•, 𝑐/𝑑

}

𝐼5 = Goto(𝐼2, 𝐶) = {
𝐶 → 𝐶𝐶•, $

}

LR(1) Automaton

CS 335 Swarnendu Biswas

𝐼4

𝐼6

𝐼1

𝐼0

𝐼8 𝐼9𝐼7

𝐼2 𝐼3

𝐼5

𝑆

𝐶

𝐶

𝐶

𝐶

𝑑

𝑐

𝑐
𝑐

𝑐

Construction of Canonical LR(1) Parsing Tables

• Construct 𝐶′ = {𝐼0, 𝐼1, … , 𝐼𝑛}

• State 𝑖 of the parser is constructed from 𝐼𝑖
• If [𝐴 → 𝛼•𝑎𝛽, 𝑏] is in 𝐼𝑖 and Goto(𝐼𝑖,𝑎) = 𝐼𝑗, then set Action[𝑖, 𝑎]=“shift 𝑗”

• If [𝐴 → 𝛼•, 𝑎] is in 𝐼𝑖, 𝐴 ≠ 𝑆′, then set Action[𝑖,𝑎]=“reduce 𝐴 → 𝛼•”

• If [𝑆′ → 𝑆•, $] is in 𝐼𝑖, then set Action[𝑖,$]=“accept”

• If Goto(𝐼𝑖, 𝐴)= 𝐼𝑗, then Goto[𝑖, 𝐴] = 𝑗

• Initial state of the parser is constructed from the set of items
containing [𝑆′ → •𝑆, $]

CS 335 Swarnendu Biswas

Canonical LR(1) Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠3 𝑠4 1 2

1 𝑎𝑐𝑐

2 𝑠6 𝑠7 5

3 𝑠3 𝑠4 8

4 𝑟3 𝑟3

5 𝑟1

6 𝑠6 𝑠7 9

7 𝑟3

8 𝑟2 𝑟2

9 𝑟2

CS 335 Swarnendu Biswas

Canonical LR(1) Parsing

• If the parsing table has no multiply-defined cells, then the
corresponding grammar 𝐺 is LR(1)

• Every SLR(1) grammar is an LR(1) grammar
• Canonical LR parser may have more states than SLR

CS 335 Swarnendu Biswas

LALR Parsing

CS 335 Swarnendu Biswas

Example Construction of LR(1) Items

CS 335 Swarnendu Biswas

𝐼6 = Goto(𝐼2, 𝑐)= {
𝐶 → 𝑐•𝐶, $,
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼7 = Goto(𝐼2, 𝑑) = {
𝐶 → 𝑑•, $

}

𝐼8 = Goto(𝐼3, 𝐶) = {
𝐶 → 𝑐𝐶•, 𝑐/𝑑

}

𝐼9 = Goto(𝐼6, 𝐶)= {
𝐶 → 𝑐𝐶•, $

}

𝐼0 = Closure([𝑆′ →. 𝑆, $])= {
𝑆′ → •𝑆, $,
𝑆 → •𝐶𝐶, $,
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼1 = Goto(𝐼0, 𝑆) = {
𝑆′ → 𝑆•, $

}

𝐼2 = Goto(𝐼0, 𝐶)= {
𝑆 → 𝐶•𝐶, $,
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼3 = Goto(𝐼0, 𝑐)= {
𝐶 → 𝑐•𝐶, 𝑐/𝑑,
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼4 = Goto(𝐼0, 𝑑) = {
𝐶 → 𝑑•, 𝑐/𝑑

}

𝐼5 = Goto(𝐼2, 𝐶) = {
𝐶 → 𝐶𝐶•, $

}

𝐼3 and 𝐼6, 𝐼4 and 𝐼7, and 𝐼8 and 𝐼9
only differ in the second components

Lookahead LR (LALR) Parsing

• CLR(1) parser has a large number of states

• Lookahead LR (LALR) parser
• Merge sets of LR(1) items that have the same core, i.e., first component

• A core is a set of LR(0) items

• LALR parser is used in many parser generators (for e.g., Yacc and Bison)
• Fewer number of states, same as SLR

CS 335 Swarnendu Biswas

Construction of LALR Parsing Table

• Construct 𝐶 = {𝐼0, 𝐼1, … , 𝐼𝑛}, the collection of sets of LR(1) items

• For each core present in LR(1) items, find all sets having the same
core and replace these sets by their union

• Let 𝐶′ = {𝐽0, 𝐽1, … , 𝐽𝑛} be the resulting sets of LR(1) items
• Also called LALR collection

• Construct Action table as was done earlier, parsing actions for state 𝑖
is constructed from 𝐽𝑖

• Let 𝐽 = 𝐼1 ∪ 𝐼2 ∪⋯∪ 𝐼𝑘, where the cores of 𝐼1, 𝐼2, … , 𝐼𝑘 are same.
• Cores of Goto(𝐼1, 𝑋), Goto(𝐼2, 𝑋), …, Goto(𝐼𝑘, 𝑋) will also be the same.
• Let 𝐾 = Goto(𝐼1, 𝑋) ∪ Goto(𝐼2, 𝑋) ∪ …∪ Goto(𝐼𝑘, 𝑋), then Goto(𝐽,𝑋) = 𝐾

CS 335 Swarnendu Biswas

LALR Grammar

• If there are no parsing action conflicts, then the grammar is LALR(1)

CS 335 Swarnendu Biswas

Rule # Production

0 𝑆′ → 𝑆

1 𝑆 → 𝐶𝐶

2 𝐶 → 𝑐𝐶

3 𝐶 → 𝑑

𝐼36 = Goto(𝐼0, 𝑐)= {
𝐶 → 𝑐•𝐶, 𝑐/𝑑/$,
𝐶 → •𝑐𝐶, 𝑐/𝑑/$,
𝐶 → •𝑑, 𝑐/𝑑/$

}

𝐼47 = Goto(𝐼0, 𝑑) = {
𝐶 → 𝑑•, 𝑐/𝑑/$

}

𝐼89 = Goto(𝐼3, 𝐶) = {
𝐶 → 𝑐𝐶•, 𝑐/𝑑/$

}

LALR Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠36 𝑠47 1 2

1 𝑎𝑐𝑐

2 𝑠36 𝑠47 5

36 𝑠36 𝑠47 89

47 𝑟3 𝑟3 𝑟3

5 𝑟1

89 𝑟2 𝑟2 𝑟2

CS 335 Swarnendu Biswas

Notes on LALR Parsing Table

• Modified parser behaves as original

• Merging items can never produce shift/reduce conflicts
• Suppose there is a conflict on lookahead 𝑎

• Shift due to item [𝐵 → 𝛽•𝑎𝛾, 𝑏] and reduce due to item [𝐴 → 𝛼•, 𝑎]

• But merged state was formed from states with same cores

• Merging items may produce reduce/reduce conflicts

CS 335 Swarnendu Biswas

Reduce-Reduce Conflicts due to Merging

CS 335 Swarnendu Biswas

{ 𝐴 → 𝑐•, 𝑑 , [𝐵 → 𝑐•, 𝑒]} { 𝐴 → 𝑐•, 𝑒 , [𝐵 → 𝑐•, 𝑑]}

{ 𝐴 → 𝑐•, 𝑑/𝑐 , [𝐵 → 𝑐•, 𝑑/𝑒]}

𝑆′ → 𝑆
𝑆 → 𝑎𝐴𝑑 | 𝑏𝐵𝑑|𝑎𝐵𝑒|𝑏𝐴𝑒
𝐴 → 𝑐
𝐵 → 𝑐

LR(1) grammar

𝑎𝑐𝑑, 𝑎𝑐𝑒, 𝑏𝑐𝑑, 𝑏𝑐𝑒

Dealing with Errors with LALR Parsing

• Consider an erroneous input 𝑐𝑐𝑑

CS 335 Swarnendu Biswas

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠3 𝑠4 1 2

1 𝑎𝑐𝑐

2 𝑠6 𝑠7 5

3 𝑠3 𝑠4 8

4 𝑟3 𝑟3

5 𝑟1

6 𝑠6 𝑠7 9

7 𝑟3

8 𝑟2 𝑟2

9 𝑟2

CLR Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠36 𝑠47 1 2

1 𝑎𝑐𝑐

2 𝑠36 𝑠47 5

36 𝑠36 𝑠47 89

47 𝑟3 𝑟3 𝑟3

5 𝑟1

89 𝑟2 𝑟2 𝑟2

LALR Parsing Table

Production

0 𝑆′ → 𝑆

1 𝑆 → 𝐶𝐶

2 𝐶 → 𝑐𝐶

3 𝐶 → 𝑑

Dealing with Errors with LALR Parsing
• Consider an erroneous input 𝑐𝑐𝑑

CS 335 Swarnendu Biswas

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠3 𝑠4 1 2

1 𝑎𝑐𝑐

2 𝑠6 𝑠7 5

3 𝑠3 𝑠4 8

4 𝑟3 𝑟3

5 𝑟1

6 𝑠6 𝑠7 9

7 𝑟3

8 𝑟2 𝑟2

9 𝑟2

CLR Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠36 𝑠47 1 2

1 𝑎𝑐𝑐

2 𝑠36 𝑠47 5

36 𝑠36 𝑠47 89

47 𝑟3 𝑟3 𝑟3

5 𝑟1

89 𝑟2 𝑟2 𝑟2

LALR Parsing Table

• CLR parser will not even reduce before reporting an error
• SLR and LALR parsers may reduce several times before reporting an

error
• Will never shift an erroneous input symbol onto the stack

Using Ambiguous Grammars

CS 335 Swarnendu Biswas

Dealing with Ambiguous Grammars

CS 335 Swarnendu Biswas

𝐸′ → 𝐸
𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 | id

𝐼2 = Goto(𝐼0, ′(′)= {
𝐸 → (•𝐸),
𝐸 → •𝐸 + 𝐸,
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸),
𝐸 → •id

}
𝐼3 = Goto(𝐼0, id)= {

𝐸 → id•
}
𝐼4 = Goto(𝐼0, ‘+’) = {

𝐸 → 𝐸 + •𝐸,
𝐸 → •𝐸 + 𝐸,
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸),
𝐸 → •id

}
𝐼9 = Goto(𝐼6, ‘)’)= {

𝐸 → (𝐸)•
}

𝐼0 = Closure({𝐸′ → •𝐸})= {
𝐸′ → •𝐸,
𝐸 → •𝐸 + 𝐸,
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸),
𝐸 → •id

}
𝐼1 = Goto(𝐼0, 𝐸) = {

𝐸′ → 𝐸•,
𝐸 → 𝐸• + 𝐸,
𝐸 → 𝐸• ∗ 𝐸

}

𝐼5 = Goto(𝐼0, ‘∗’) = {
𝐸 → 𝐸 ∗ •𝐸,
𝐸 → •𝐸 + 𝐸,
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸),
𝐸 → •id

}
𝐼6 = Goto(𝐼2, 𝐸) = {

𝐸 → (𝐸•),
𝐸 → 𝐸• + 𝐸,
𝐸 → 𝐸• ∗ 𝐸,

}
𝐼7 = Goto(𝐼4, 𝐸) = {

𝐸 → 𝐸 + 𝐸•,
𝐸 → 𝐸• + 𝐸,
𝐸 → 𝐸• ∗ 𝐸,

}
𝐼8 = Goto(𝐼5, 𝐸) = {

𝐸 → 𝐸 ∗ 𝐸•,
𝐸 → 𝐸• + 𝐸,
𝐸 → 𝐸• ∗ 𝐸

}

SLR(1) Parsing Table

CS 335 Swarnendu Biswas

State
Action Goto

id + ∗ () $ 𝐸

0 𝑠3 𝑠2 1

1 𝑠4 𝑠5 𝑎𝑐𝑐

2 𝑠3 𝑠2 6

3 𝑟4 𝑟4 𝑟4 𝑟4

4 𝑠3 𝑠2 7

5 𝑠3 𝑠2 8

6 𝑠4 𝑠5 𝑠9

7 𝑠4, 𝑟1 𝑠5, 𝑟1 𝑟1 𝑟1

8 𝑠4, 𝑟2 𝑠5, 𝑟2 𝑟2 𝑟2

9 𝑟3 𝑟3 𝑟3 𝑟3

Moves of an SLR Parser on id + id ∗ id

Stack Symbols Input Action

1 0 id + id ∗ id$ Shift 3

2 0 3 id +id ∗ id$ Reduce by 𝐸 → id

3 0 1 𝐸 +id ∗ id$ Shift 4

4 0 1 4 𝐸 + id ∗ id$ Shift 3

5 0 1 4 3 𝐸 + id ∗ id$ Reduce by 𝐸 → id

6 0 1 4 7 𝐸 + 𝐸 ∗ id$

CS 335 Swarnendu Biswas

SLR(1) Parsing Table

CS 335 Swarnendu Biswas

State
Action Goto

id + ∗ () $ 𝐸

0 𝑠3 𝑠2 1

1 𝑠4 𝑠5 𝑎𝑐𝑐

2 𝑠3 𝑠2 6

3 𝑟4 𝑟4 𝑟4 𝑟4

4 𝑠3 𝑠2 7

5 𝑠3 𝑠2 8

6 𝑠4 𝑠5 𝑠9

7 𝑠4, 𝒓𝟏 𝒔𝟓, 𝑟1 𝑟1 𝑟1

8 𝑠4, 𝒓𝟐 𝑠5, 𝒓𝟐 𝑟2 𝑟2

9 𝑟3 𝑟3 𝑟3 𝑟3

Summary

CS 335 Swarnendu Biswas

Comparisons across Techniques

• SLR(1) = LR(0) items + FOLLOW
• SLR(1) parsers can parse a larger number of grammars than LR(0)

• Any grammar that can be parsed by an LR(0) parser can be parsed by an
SLR(1) parser

• SLR(1) ≤ LALR(1) ≤ LR(1)

• SLR(k) ≤ LALR(k) ≤ LR(k)

• LL(k) ≤ LR(k)

• Ambiguous grammars are not LR

CS 335 Swarnendu Biswas

Summary

• Bottom-up parsing is a more powerful technique compared to top-
down parsing
• LR grammars can handle left recursion

• Detects errors as soon as possible, and allows for better error recovery

• Automated parser generators such as Yacc and Bison

CS 335 Swarnendu Biswas

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 4.5-4.8.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 3.4.

CS 335 Swarnendu Biswas

