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Rightmost Derivation of 𝑎𝑏𝑏𝑐𝑑𝑒
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𝑆 → 𝑎𝐴𝐵𝑒
𝐴 → 𝐴𝑏𝑐 | 𝑏
𝐵 → 𝑑

Input string: 𝑎𝑏𝑏𝑐𝑑𝑒

𝑆 → 𝑎𝐴𝐵𝑒

→ 𝑎𝐴𝑑𝑒

→ 𝑎𝐴𝑏𝑐𝑑𝑒

→ 𝑎𝑏𝑏𝑐𝑑𝑒



Bottom-up Parsing
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𝑆 → 𝑎𝐴𝐵𝑒
𝐴 → 𝐴𝑏𝑐 | 𝑏
𝐵 → 𝑑

Input string: 𝑎𝑏𝑏𝑐𝑑𝑒

𝑆 → 𝑎𝐴𝐵𝑒 𝑎𝑏𝑏𝑐𝑑𝑒

→ 𝑎𝐴𝑑𝑒 → 𝑎𝐴𝑏𝑐𝑑𝑒

→ 𝑎𝐴𝑏𝑐𝑑𝑒 → 𝑎𝐴𝑑𝑒

→ 𝑎𝑏𝑏𝑐𝑑𝑒 → 𝑎𝐴𝐵𝑒

→ 𝑆

Constructs the parse tree starting from the leaves and working up 
toward the root

reverse of 
rightmost 
derivation



Bottom-up Parsing
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𝑆 → 𝑎𝐴𝐵𝑒
𝐴 → 𝐴𝑏𝑐 | 𝑏
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Reduction

• Bottom-up parsing reduces a string 𝑤 to the start symbol 𝑆
• At each reduction step, a chosen substring that is the rhs (or body) of a 

production is replaced by the lhs (or head) nonterminal
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Derivation

𝑆
𝑟𝑚

𝛾0
𝑟𝑚
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𝑟𝑚

𝛾2
𝑟𝑚

…
𝑟𝑚

𝛾𝑛−1
𝑟𝑚

𝛾𝑛 = 𝑤

Bottom-up Parser



Handle

• Handle is a substring that matches the body of a production 
• Reducing the handle is one step in the reverse of the rightmost derivation
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Right Sentential Form Handle Reducing Production

id1 ∗ id2 id1 𝐹 → id

𝐹 ∗ id2 𝐹 𝑇 → 𝐹

𝑇 ∗ id2 id2 𝐹 → id

𝑇 ∗ 𝐹 𝑇 ∗ 𝐹 𝑇 → 𝑇 ∗ 𝐹

𝑇 𝑇 𝐸 → 𝑇

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id



Handle
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Right Sentential Form Handle Reducing Production

id1 ∗ id2 id1 𝐹 → id

𝐹 ∗ id2 𝐹 𝑇 → 𝐹

𝑇 ∗ id2 id2 𝐹 → id

𝑇 ∗ 𝐹 𝑇 ∗ 𝐹 𝑇 → 𝑇 ∗ 𝐹

𝑇 𝑇 𝐸 → 𝑇

𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id

Although 𝑇 is the body of the production 𝐸 → 𝑇, 𝑇 is not a handle in the sentential 
form 𝑇 ∗ id2



Handle

• If 𝑆
𝑟𝑚

∗ 𝛼𝐴𝑤
𝑟𝑚

𝛼𝛽𝑤, then 𝐴 →

𝛽 is a handle of 𝛼𝛽𝑤

• String 𝑤 right of a handle must 
contain only terminals
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𝑆

𝐴

𝛼 𝑤𝛽

A handle 𝐴 → 𝛽 in the parse tree for 
𝛼𝛽𝑤



Handle

If grammar 𝐺 is unambiguous, then every right sentential form has 
only one handle

If 𝐺 is ambiguous, then there can be more than one rightmost 
derivation of 𝛼𝛽𝑤
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Shift-Reduce Parsing
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Shift-Reduce Parsing

• Type of bottom-up parsing with two primary actions, shift and reduce
• Other obvious actions are accept and error

• The input string (i.e., being parsed) consists of two parts
• Left part is a string of terminals and nonterminals, and is stored in stack

• Right part is a string of terminals read from an input buffer

• Bottom of the stack and end of input are represented by $
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Shift-Reduce Actions

• Shift: shift the next input symbol from the right string onto the top of 
the stack

• Reduce: identify a string on top of the stack that is the body of a 
production, and replace the body with the head 
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Shift-Reduce Parsing

• Initial

• Final goal
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Stack Input

$ 𝑤$

Stack Input

$𝑆 $

⇒ ∗

ReduceShift



Shift-Reduce Parsing

Stack Input Action

$ 𝐢𝐝1 ∗ 𝐢𝐝2$ Shift

$𝐢𝐝1 ∗ 𝐢𝐝2$ Reduce by 𝐹 → id

$𝐹 ∗ 𝐢𝐝2$ Reduce by 𝑇 → 𝐹

$𝑇 ∗ 𝐢𝐝2$ Shift

$𝑇 ∗ 𝐢𝐝2$ Shift

$𝑇 ∗ 𝐢𝐝2 $ Reduce by 𝐹 → id

$𝑇 ∗ 𝐹 $ Reduce by 𝑇 → 𝑇 ∗ 𝐹

$𝑇 $ Reduce by 𝐸 → 𝑇

$𝐸 $ Accept
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𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id



Handle on Top of the Stack

• Is the following scenario possible?
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Stack Input Action

…

$ 𝛼𝛽𝛾 𝑤$ Reduce by 𝐴 → 𝛾

$ 𝛼𝛽𝐴 𝑤$ Reduce by 𝐵 → 𝛽

$𝛼𝐵𝐴 𝑤$

…



Possible Choices in Rightmost Derivation

1. 𝑆
𝑟𝑚

𝛼𝐴𝑧
𝑟𝑚

𝛼𝛽𝐵𝑦𝑧
𝑟𝑚

𝛼𝛽𝛾𝑦𝑧 2. 𝑆
𝑟𝑚

𝛼𝐵𝑥𝐴𝑧
𝑟𝑚

𝛼𝐵𝑥𝑦𝑧
𝑟𝑚

𝛼𝛾𝑥𝑦𝑧
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𝑆

𝛼 𝑦𝛽 𝛾 𝑧

𝐴

𝐵

𝑆

𝛼 𝑦𝛾 𝑥 𝑧

𝐴𝐵



Handle on Top of the Stack

• Is the following scenario possible?
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Stack Input Action

…

$ 𝛼𝛽𝛾 𝑤$ Reduce by 𝐴 → 𝛾

$ 𝛼𝛽𝐴 𝑤$ Reduce by 𝐵 → 𝛽

$𝛼𝐵𝐴 𝑤$

…

Handle always eventually appears on top of the stack, never inside



Shift-Reduce Actions

• Shift: shift the next input symbol from the right string onto the top of 
the stack

• Reduce: identify a string on top of the stack that is the body of a 
production, and replace the body with the head 
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How do you decide when to shift and when to reduce?



Steps in Shift-Reduce Parsers

• Bottom up parsing is essentially the process of detecting handles and 
reducing them

• Different bottom-up parsers differ in the way they detect handles 
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General shift-reduce technique
If there is no handle on the stack, then shift
If there is a handle on the stack, then reduce



Challenges in Bottom-up Parsing

• Both shift and reduce are valid, 
implies a shift-reduce conflict 

Which action do you 
pick when there is a 

choice?

• Reduce-reduce conflict 

Which rule to use if 
reduction is possible 

by more than one 
rule? 

CS 335 Swarnendu Biswas



Shift-Reduce Conflict

id + id ∗ id

Stack Input Action

$ id + id ∗ id$ Shift

…

$𝐸 + 𝐸 ∗ id$ Reduce by 𝐸 → 𝐸 + 𝐸

$𝐸 ∗ id$ Shift

$𝐸 ∗ id$ Shift

$𝐸 ∗ id $ Reduce by 𝐸 → id

$𝐸 ∗ 𝐸 $ Reduce by 𝐸 → 𝐸 ∗ 𝐸

$𝐸 $

id + id ∗ id
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𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 id

Stack Input Action

$ id + id ∗ id$ Shift

…

$𝐸 + 𝐸 ∗ id$ Shift

$𝐸 + 𝐸 ∗ id$ Shift

$𝐸 + 𝐸 ∗ id $ Reduce by 𝐸 → id

$𝐸 + 𝐸 ∗ 𝐸 $ Reduce by 𝐸 → 𝐸 ∗ 𝐸

$𝐸 + 𝐸 $ Reduce by 𝐸 → 𝐸 + 𝐸

$𝐸 $



Shift-Reduce Conflict

Stack Input Action

… if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else …$
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S𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡

| if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

| 𝑜𝑡ℎ𝑒𝑟



Shift-Reduce Conflict

Stack Input Action

… if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else …$
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S𝑡𝑚𝑡 → if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡

| if 𝐸𝑥𝑝𝑟 then 𝑆𝑡𝑚𝑡 else 𝑆𝑡𝑚𝑡

| 𝑜𝑡ℎ𝑒𝑟

What is a correct thing to 
do for this grammar – shift 
or reduce?



Reduce-Reduce Conflict

𝑐 + 𝑐

Stack Input Action

$ 𝑐 + 𝑐$ Shift

$𝑐 +𝑐$ Reduce by 𝑅 → 𝑐

$𝑅 +𝑐$ Shift

$𝑅 + 𝑐$ Shift

$𝑅 + 𝑐 $ Reduce by 𝑅 → 𝑐

$𝑅 + 𝑅 $ Reduce by 𝑅 → 𝑅 + 𝑅

$𝑀 $

𝑐 + 𝑐
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𝑀 → 𝑅 + 𝑅 𝑅 + 𝑐 𝑅
𝑅 → 𝑐

Stack Input Action

$ 𝑐 + 𝑐$ Shift

$𝑐 +𝑐$ Reduce by 𝑅 → 𝑐

$𝑅 +𝑐$ Shift

$𝑅 + 𝑐$ Shift

$𝑅 + 𝑐 $ Reduce by 𝑀 → 𝑅 + 𝑐

$𝑀 $



LR Parsing
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LR(k) Parsing

• Popular bottom-up parsing scheme
• L is for left-to-right scan of input

• R is for reverse of rightmost derivation

• k is the number of lookahead symbols 

• LR parsers are table-driven, like the nonrecursive LL parser

• LR grammar is one for which we can construct an LR parsing table
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Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL 
parsers
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Why?



Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL parsers

• LL(k) parsing predicts which production to use having seen only the first k tokens of 
the right-hand side

• LR(k) parsing can decide after it has seen input tokens corresponding to the entire 
right-hand side of the production
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Block Diagram of LR Parser
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ACTION

LR Parsing 
Program

𝑎1 … … 𝑎𝑖 … … 𝑎𝑛 $Input

OutputStack 𝑠𝑚

𝑠𝑚−1

…

$

GOTO

Parse Table



LR Parsing

• Remember the basic question: when to shift and when to reduce!

• Information is encoded in a DFA constructed using canonical LR(0) 
collection

I. Augmented grammar 𝐺′ with new start symbol 𝑆′ and rule 𝑆′ → 𝑆

II. Define helper functions Closure() and Goto()
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LR(0) Item

• An LR(0) item (also called item) 
of a grammar 𝐺 is a production 
of 𝐺 with a dot at some position 
in the body

• An item indicates how much of a 
production we have seen
• Symbols on the left of “•” are 

already on the stack 
• Symbols on the right of “•” are 

expected in the input

𝐴 → •𝑋𝑌𝑍 indicates that we expect a 
string derivable from 𝑋𝑌𝑍 next on 
the input
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Production Items

𝐴 → 𝑋𝑌𝑍

𝐴 → •𝑋𝑌𝑍

𝐴 → 𝑋•𝑌𝑍

𝐴 → 𝑋𝑌•𝑍

𝐴 → 𝑋𝑌𝑍•



Closure Operation

• Let 𝐼 be a set of items for a grammar 𝐺

• Closure(𝐼) is constructed by
1. Add every item in 𝐼 to Closure(𝐼)

2. If 𝐴 → 𝛼•𝐵𝛽 is in Closure(𝐼) and 𝐵 → 𝛾 is a rule, then add 𝐵 → 𝛾 to 
Closure(𝐼) if not already added

3. Repeat until no more new items can be added to Closure(𝐼)
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Example of Closure

Suppose 𝐼 = {𝐸′ → •𝐸 }, compute 
Closure(𝐼)
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𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id



Example of Closure

Suppose 𝐼 = {𝐸′ → •𝐸 }

Closure(𝐼) = {

𝐸′ → •𝐸,

𝐸 → •𝐸 + 𝑇,

𝐸 → •𝑇,

𝑇 → •𝑇 ∗ 𝐹,

𝑇 → •𝐹,

𝐹 → • 𝐸 ,

𝐹 → •id

}
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𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id



Kernel and Nonkernel Items

• If one 𝐵-production is added to Closure(𝐼) with the dot at the left 
end, then all 𝐵-productions will be added to the closure

• Kernel items 
• Initial item 𝑆′ → •𝑆, and all items whose dots are not at the left end

• Nonkernel items  
• All items with their dots at the left end, except for 𝑆′ → •𝑆
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Goto Operation

• Suppose 𝐼 is a set of items and 𝑋 is a grammar symbol

• Goto(𝐼, 𝑋) is the closure of set all items [𝐴 → 𝛼𝑋•𝛽] such that [𝐴 →
𝛼•𝑋𝛽] is in 𝐼
• If 𝐼 is a set of items for some valid prefix 𝛼, then Goto(𝐼,𝑋) is set of valid items 

for prefix 𝛼𝑋

• Intuitively, Goto(𝐼, 𝑋) defines the transitions in the LR(0) automaton
• Goto(𝐼, 𝑋) gives the transition from state 𝐼 under input 𝑋
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Example of Goto

Suppose 𝐼 = {

𝐸′ → 𝐸•,

𝐸 → 𝐸• + 𝑇

}

• Compute Goto(𝐼, +)
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𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id



Example of Goto

Suppose 𝐼 = {

𝐸′ → 𝐸•,

𝐸 → 𝐸• + 𝑇

}

Goto(𝐼, +) = {

𝐸 → 𝐸 + •𝑇,

𝑇 → •𝑇 ∗ 𝐹,

𝑇 → •𝐹,

𝐹 → • 𝐸 , 

𝐹 → •id

}

CS 335 Swarnendu Biswas

𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id



Canonical Collection of Sets of LR(0) Items

𝐶 = Closure({𝑆′ → •𝑆})

repeat

for each set of items 𝐼 in 𝐶

for each grammar symbol 𝑋

if Goto(𝐼, 𝑋) is not empty and not in 𝐶

add Goto(𝐼, 𝑋) to 𝐶

until no new sets of items are added to 𝐶
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Canonical Collection of Sets of LR(0) Items

• Compute the canonical 
collection for the expression 
grammar
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𝐸′ → 𝐸
𝐸 → 𝐸 + 𝑇 | 𝑇
𝑇 → 𝑇 ∗ 𝐹 | 𝐹
𝐹 → 𝐸 | id



Canonical Collection of Sets of LR(0) Items

𝐼0 = Closure(𝐸′ → •𝐸)= {
𝐸′ → •𝐸, 
𝐸 → •𝐸 + 𝑇, 
𝐸 → •𝑇,
𝑇 → •𝑇 ∗ 𝐹,
𝑇 → •𝐹,
𝐹 → •(𝐸),
𝐹 → •id,

}

𝐼1 = Goto(𝐼0, 𝐸) = {
𝐸′ → 𝐸•,
𝐸 → 𝐸• + 𝑇

}

𝐼2 = Goto(𝐼0, 𝑇)= {
𝐸 → 𝑇•, 
𝑇 → 𝑇• ∗ 𝐹

}

𝐼3 = Goto(𝐼0, 𝐹)= {
𝑇 → 𝐹•

}

𝐼5 = Goto(𝐼0, id)= {
𝐹 → id•

}
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𝐼4 = Goto(𝐼0, "(")= {
𝐹 → (•𝐸), 
𝐸 → •𝐸 + 𝑇, 
𝐸 → •𝑇,
𝑇 → •𝑇 ∗ 𝐹,
𝑇 → •𝐹,
𝐹 → •(𝐸),
𝐹 → •id,

}

𝐼7 = Goto(𝐼2,∗) = {
𝑇 → 𝑇 ∗ •𝐹,
𝐹 → •(𝐸),
𝐹 → •id

}



Canonical Collection of Sets of LR(0) Items

𝐼6 = Goto(𝐼1, +)= {
𝐸 → 𝐸 + •𝑇, 
𝑇 → •𝑇 ∗ 𝐹,
𝑇 → •𝐹,
𝐹 → •(𝐸),
𝐹 → •id,

}

𝐼8 = Goto(𝐼4, 𝐸)= {
𝐸 → 𝐸• + 𝑇, 
𝐹 → (𝐸•)

}

𝐼9 = Goto(𝐼6, 𝑇)= {
𝐸 → 𝐸 + 𝑇•, 
𝑇 → 𝑇• ∗ 𝐹

}

𝐼10 = Goto(𝐼7, 𝐹)= {
𝑇 → 𝑇 ∗ 𝐹•,

}

𝐼11 = Goto(𝐼8, ")")= {
𝐹 → (𝐸)•

}

CS 335 Swarnendu Biswas

𝐼2 = Goto(𝐼4, 𝑇)

𝐼3 = Goto(𝐼4, 𝐹)

𝐼4 = Goto(𝐼4, "(")

𝐼5 = Goto(𝐼4, id)

𝐼3 = Goto(𝐼6, 𝐹)

𝐼4 = Goto(𝐼6, "(")

𝐼5 = Goto(𝐼6, id)

𝐼4 = Goto(𝐼7, "(")

𝐼5 = Goto(𝐼7, id)

𝐼6 = Goto(𝐼8, +)

𝐼7 = Goto(𝐼9,∗)



LR(0) Automaton

• An LR parser makes shift-reduce decisions by maintaining states 

• Canonical LR(0) collection is used for constructing a DFA for parsing

• States represent sets of LR(0) items in the canonical LR(0) collection
• Start state is Closure({𝑆′ → •𝑆}), where 𝑆′ is the start symbol of the 

augmented grammar 

• State 𝑗 refers to the state corresponding to the set of items 𝐼𝑗
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LR(0) Automaton
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Use of LR(0) Automaton

• How can LR(0) automata help with shift-reduce decisions? 

• Suppose string 𝛾 of grammar symbols takes the automaton from start 
state 𝑆0 to state 𝑆𝑗
• Shift on next input symbol 𝑎 if 𝑆𝑗 has a transition on 𝑎

• Otherwise, reduce 
• Items in state 𝑆𝑗 help decide which production to use
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Shift-Reduce Parser with LR(0) Automaton

Stack Symbols Input Action

0 $ id ∗ id$ Shift to 5

0 5 $id ∗ id$ Reduce by 𝐹 → id

0 3 $𝐹 ∗ id$ Reduce by 𝑇 → 𝐹

0 2 $𝑇 ∗ id$ Shift to 7

0 2 7 $𝑇 ∗ id$ Shift to 5

0 2 7 5 $𝑇 ∗ id $ Reduce by 𝐹 → id

0 2 7 10 $𝑇 ∗ 𝐹 $ Reduce by 𝑇 → 𝑇 ∗ 𝐹

0 2 $𝑇 $ Reduce by 𝐸 → 𝑇

0 1 $𝐸 $ Accept
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Viable Prefix

• A viable prefix is a prefix of a right sentential form that can appear on 
the stack of a shift-reduce parser
• 𝛼 is a viable prefix if ∃𝑤 such that 𝛼𝑤 is a right sentential form

• id ∗ is a prefix of a right sentential form, but it can never appear on 
the stack
• Always reduce by 𝐹 → id before shifting ∗

• Not all prefixes of a right sentential form can appear on the stack

• There is no error as long as the parser has viable prefixes on the stack
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𝐸 → 𝑇 → 𝑇 ∗ 𝐹 → 𝑇 ∗ id → 𝐹 ∗ id → id ∗ id



Example of a Viable Prefix
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Stack Input

$ 𝑋1𝑋2𝑋3$

$𝑋1 𝑋2𝑋3$

$𝑋1𝑋2 𝑋3$

$𝐴 𝑋3$

$𝐴𝑋3 $

𝑆 → 𝑋1𝑋2𝑋3𝑋4
𝐴 → 𝑋1𝑋2

Let 𝑤 = 𝑋1𝑋2𝑋3

𝑋1𝑋2𝑋3 can never appear on a stack



Challenges with LR(0) Parsing

• An LR(0) parser works only if each state with a reduce action has only 
one possible reduce action and no shift action

• Takes shift/reduce decisions without any lookahead token
• Lacks the power to parse programming language grammars
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{
𝐿 → 𝑆, 𝐿•
𝐿 → 𝑆•

}

Reduce-reduce conflict

{
𝐿 → 𝐿, 𝑆•

}

Ok

{
𝐿 → 𝐿, 𝑆•
𝑆 → 𝑆•, 𝐿

}
Shift-reduce conflict



Challenges with LR(0) Parsing

• Consider the following grammar for adding numbers
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𝑆 → 𝑆 + 𝐸 | 𝐸
𝐸 → num

Left associative

𝑆 → 𝐸 + 𝑆 | 𝐸
𝐸 → num

Right associative



Challenges with LR(0) Parsing

• Consider the following grammar for adding numbers
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𝑆 → 𝑆 + 𝐸 | 𝐸
𝐸 → num

Left associative

𝑆 → 𝐸 + 𝑆 | 𝐸
𝐸 → num

Right associative

Not 
LR(0)

𝑆 → 𝐸• + 𝑆
𝑆 → 𝐸•

Shift-reduce conflict



Simple LR Parsing
SLR(1)
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Block Diagram of LR Parser
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ACTION

LR Parsing 
Program

𝑎1 … … 𝑎𝑖 … … 𝑎𝑛 $Input

OutputStack 𝑠𝑚

𝑠𝑚−1

…

$

GOTO

Parse Table

• Same driver program is used for 
all LR parsers

• Different LR parsing techniques 
produce different parse tables



LR Parsing Algorithm

• The parser driver is same for all LR parsers 
• Only the parsing table changes across parsers

• A shift-reduce parser shifts a symbol, and an LR parser shifts a state

• By construction, all transitions to state 𝑗 is for the same symbol 𝑋
• Each state, except the start state, has a unique grammar symbol associated 

with it
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SLR(1) Parsing

• Extends LR(0) parser to eliminate a few conflicts
• Uses LR(0) items and LR(0) automaton

• For each reduction 𝐴 → 𝛽, look at the next symbol 𝑐

• Apply reduction only if 𝑐 ∈ FOLLOW 𝐴 or 𝑐 = 𝜖 and 𝑆 ⇒
∗
𝛾𝐴
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Structure of SLR Parsing Table

• Assume 𝑆𝑖 is top of the stack and 𝑎𝑖 is the current input symbol

• Parsing table consists of two parts: an Action and a Goto function

• Action table is indexed by state and terminal symbols
• Action[𝑆𝑖, 𝑎𝑖] can have four values

• Shift 𝑎𝑖 to the stack, goto state 𝑆𝑗
• Reduce by rule 𝑘

• Accept

• Error (empty cell in the table)

• Goto table is indexed by state and nonterminal symbols

CS 335 Swarnendu Biswas



Constructing SLR Parsing Table

1) Construct LR(0) canonical collection 𝐶 = {𝐼0, 𝐼1, … , 𝐼𝑛} for grammar 
𝐺′

2) State 𝑖 is constructed from 𝐼𝑖
a) If [𝐴 → 𝛼•𝑎𝛽] is in 𝐼𝑖 and Goto(𝐼𝑖, 𝑎) = 𝐼𝑗, then set Action[𝑖, 𝑎] = “Shift 𝑗”

b) If [𝐴 → 𝛼•] is in 𝐼𝑖, then set Action [𝑖, 𝑎] = “Reduce 𝐴 → 𝛼” for all 𝑎 in 
FOLLOW(𝐴)

c) If [𝑆′ → 𝑆•] is in 𝐼𝑖, then set Action [𝑖, $] = “Accept”

3) If Goto(𝐼𝑖, 𝐴) = 𝐼𝑗, then Goto[𝑖, 𝐴] = 𝑗

4) All entries left undefined are “errors”
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SLR Parsing for Expression Grammar

Rule # Rule

1 𝐸 → 𝐸 + 𝑇

2 𝐸 → 𝑇

3 𝑇 → 𝑇 ∗ 𝐹

4 𝑇 → 𝐹

5 𝐹 → (𝐸)

6 𝐹 → id

• 𝑠𝑗 means shift and stack state 𝑖

• 𝑟𝑗 means reduce by rule #𝑗

• 𝑎𝑐𝑐 means accept

• blank means error
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SLR Parsing Table

State
Action Goto

id + ∗ ( ) $ 𝐸 𝑇 𝐹

0 𝑠5 𝑠4 1 2 3

1 𝑠6 𝑎𝑐𝑐

2 𝑟2 𝑠7 𝑟2 𝑟2

3 𝑟4 𝑟4 𝑟4 𝑟4

4 𝑠5 𝑠4 8 2 3

5 𝑟6 𝑟6 𝑟6 𝑟6

6 𝑠5 𝑠4 9 3

7 𝑠5 𝑠4 10

8 𝑠6 𝑠11

9 𝑟1 𝑠7 𝑟1 𝑟1

10 𝑟3 𝑟3 𝑟3 𝑟3

11 𝑟5 𝑟5 𝑟5 𝑟5
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LR Parser Configurations

• A LR parser configuration is a pair <𝑠0, 𝑠1,…, 𝑠𝑚, 𝑎𝑖𝑎𝑖+1… 𝑎𝑛$>
• Left half is stack content, and right half is the remaining input

• Configuration represents the right sentential form 𝑋1𝑋2…𝑋𝑚𝑎𝑖𝑎𝑖+1…
𝑎𝑛
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LR Parsing Algorithm

• If Action[𝑠𝑚, 𝑎𝑖] = shift 𝑠, new configuration is <𝑠0, 𝑠1,…, 𝑠𝑚𝑠, 𝑎𝑖+1…
𝑎𝑛$>

• If Action[𝑠𝑚, 𝑎𝑖] = reduce 𝐴 → 𝛽, new configuration is <𝑠0, 𝑠1,…,
𝑠𝑚−𝑟 , 𝑎𝑖𝑎𝑖+1… 𝑎𝑛$>
• Assume 𝑟 is |𝛽| and 𝑠 = Goto[𝑠𝑚−𝑟 , 𝐴]

• If Action[𝑠𝑚, 𝑎𝑖] = accept, parsing is successful

• If Action[𝑠𝑚, 𝑎𝑖] = error, parsing has discovered an error
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LR Parsing Program

Let 𝑎 be the first symbol of input 𝑤$
while (1) 

let 𝑠 be the top of the stack
if Action[𝑎] == shift 𝑡

push 𝑡 onto the stack
let 𝑎 be the next input symbol

else if Action[𝑠, 𝑎] == reduce 𝐴 → 𝛽

pop |𝛽| symbols off the stack
push Goto[𝑡, 𝐴] onto the stack
output production 𝐴 → 𝛽

else if Action[𝑠, 𝑎] == accept
break

else
invoke error recovery
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Moves of an LR Parser on id ∗ id + id
Stack Symbols Input Action

1 0 id ∗ id + id$ Shift

2 0 5 id ∗ id + id$ Reduce by 𝐹 → id

3 0 3 𝐹 ∗ id + id$ Reduce by 𝑇 → 𝐹

4 0 2 𝑇 ∗ id + id$ Shift

5 0 2 7 𝑇 ∗ id + id$ Shift

6 0 2 7 5 𝑇 ∗ id +id$ Reduce by 𝐹 → id

7 0 2 7 10 𝑇 ∗ 𝐹 +id$ Reduce by 𝑇 → 𝑇 ∗ 𝐹

8 0 2 𝑇 +id$ Reduce by 𝐸 → 𝑇

9 0 1 𝐸 +id$ Shift

10 0 1 6 𝐸 + id$ Shift
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Moves of an LR Parser on id ∗ id + id
Stack Symbols Input Action

11 0 1 6 5 𝐸 + id $ Reduce by 𝐹 → id

12 0 1 6 3 𝐸 + 𝐹 $ Reduce by 𝑇 → 𝐹

13 0 1 6 9 𝐸 + 𝑇 $ Reduce by 𝐸 → 𝐸 + 𝑇

14 0 1 𝐸 $ Accept
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Limitations of SLR Parsing

• If an SLR parse table for a grammar does not have multiple entries in 
any cell then the grammar is unambiguous 

• Every SLR(1) grammar is unambiguous, but there are unambiguous 
grammars that are not SLR(1)
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Limitations of SLR Parsing
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𝑆 → 𝐿 = 𝑅 | 𝑅
𝐿 → ∗𝑅 | id
𝑅 → 𝐿

Unambiguous grammar Example Derivation
𝑆 ⇒ 𝐿 = 𝑅 ⇒ ∗𝑅 = 𝑅

FIRST 𝑆 = FIRST 𝐿 = FIRST 𝑅 = ∗, id

FOLLOW 𝑆 = FOLLOW 𝐿 = FOLLOW 𝑅
= =, $



Canonical LR(0) Collection
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𝐼0 = Closure(𝑆′ →. 𝑆)= {
𝑆′ → •𝑆, 
𝑆 → •𝐿 = 𝑅, 
𝑆 → •𝑅,
𝐿 → •∗𝑅,
𝐿 → •id,
𝑅 → •𝐿

}
𝐼1 = Goto(𝐼0, 𝑆) = {

𝑆′ → 𝑆•
}
𝐼2 = Goto(𝐼0, 𝐿)= {

𝑆 → 𝐿• = 𝑅, 
𝑅 → 𝐿•

}

𝐼3 = Goto(𝐼0, 𝑅)= {
𝑆 → 𝑅•

}
𝐼4 =Goto(𝐼0, 𝑅)= {

𝐿 → ∗•𝑅,
𝑅 → •𝐿,
𝐿 → •∗𝑅,
𝐿 → •id

}
𝐼6 = Goto(𝐼2, ‘=‘)= {

𝑆 → 𝐿 = •𝑅,
𝑅 → •𝐿,
𝐿 → •∗𝑅,
𝐿 → •id

}

𝐼5 = Goto(𝐼0, id)= {
𝐿 → •id

}
𝐼7 =Goto(𝐼4, 𝑅)= {

𝐿 →∗ 𝑅•
}
𝐼8 = Goto(𝐼4, 𝐿)= {

𝑅 → 𝐿•
}
𝐼9 = Goto(𝐼6, 𝑅)= {

𝑆 → 𝐿 = 𝑅•
}



SLR Parsing Table

State
Action Goto

= ∗ id $ 𝑆 𝐿 𝑅

0 𝑠4 𝑠5 1 2 3

1 𝑎𝑐𝑐

2 𝑠6, 𝑟6 𝑟6

3

4 𝑠4 𝑠5 8 7

5 𝑟5 𝑟5

6 𝑠4 𝑠5 8 9

7 𝑟4 𝑟4

8 𝑟6 𝑟6

9 𝑟2
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Shift-Reduce Conflict with SLR Parsing
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𝐼0 = Closure(𝑆′ →. 𝑆)= {
𝑆′ → •𝑆, 
𝑆 → •𝐿 = 𝑅, 
𝑆 → •𝑅,
𝐿 → • ∗ 𝑅,
𝐿 → •id,
𝑅 → •𝐿

}
𝐼1 = Goto(𝐼0, 𝑆) = {

𝑆′ → 𝑆•
}
𝐼2 = Goto(𝐼0, 𝐿)= {

𝑆 → 𝐿• = 𝑅, 
𝑅 → 𝐿•

}

𝐼3 = Goto(𝐼0, 𝑅)= {
𝑆 → 𝑅•

}
𝐼4 =Goto(𝐼0, 𝑅)= {

𝐿 →∗ •𝑅,
𝑅 → •𝐿,
𝐿 → • ∗ 𝑅,
𝐿 → •id

}
𝐼6 = Goto(𝐼2, ‘=‘)= {

𝑆 → 𝐿 = •𝑅,
𝑅 → •𝐿,
𝐿 → •∗ 𝑅,
𝐿 → •id

}

𝐼5 = Goto(𝐼0, id)= {
𝐿 → •id

}
𝐼7 =Goto(𝐼4, 𝑅)= {

𝐿 →∗ 𝑅•
}
𝐼8 = Goto(𝐼4, 𝐿)= {

𝑅 → 𝐿•
}
𝐼9 = Goto(𝐼6, 𝑅)= {

𝑆 → 𝐿 = 𝑅•
}

1. Action[2,=] = Shift 6
2. Action[2,=] = Reduce 𝑅 → 𝐿 since ′ = ′ ∈ FOLLOW(𝑅)



Moves of an LR Parser on id=id
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Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Reduce by 𝑅 → 𝐿

0 𝑅 3 =id$ Error

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Shift 6

0 𝐿 2 = 6 id$ Shift 5

0 𝐿 2 = 6 id 5 $ Reduce by 𝐿 → id

0 𝐿 2 = 6 𝐿 8 $ Reduce by 𝑅 → 𝐿

0 𝐿 2 = 6 𝑅 9 $ Reduce by 𝑆 → 𝐿 = 𝑅

0 𝑆 1 $ Accept



Moves of an LR Parser on id=id
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Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Reduce by 𝑅 → 𝐿

0 𝑅 3 =id$ Error

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Shift 6

0 𝐿 2 = 6 id$ Shift 5

0 𝐿 2 = 6 id 5 $ Reduce by 𝐿 → id

0 𝐿 2 = 6 𝐿 8 $ Reduce by 𝑅 → 𝐿

0 𝐿 2 = 6 𝑅 9 $ Reduce by 𝑆 → 𝐿 = 𝑅

0 𝑆 1 $ Accept

• State 𝑖 calls for a reduction by 𝐴 → 𝛼 if the set of items 𝐼𝑖 contains 
item [𝐴 → 𝛼•] and 𝑎 ∈ FOLLOW(𝐴)

• Suppose 𝛽𝐴 is a viable prefix on top of the stack
• There may be no right sentential form where 𝑎 follows 𝛽𝐴

• No right sentential form begins with 𝑅 = ⋯
➢ Parser should not reduce by 𝐴 → 𝛼



Moves of an LR Parser on id=id
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Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Reduce by 𝑅 → 𝐿

0 𝑅 3 =id$ Error

Stack Input Action

0 id=id$ Shift 5

0 id 5 =id$ Reduce by 𝐿 → id

0 𝐿 2 =id$ Shift 6

0 𝐿 2 = 6 id$ Shift 5

0 𝐿 2 = 6 id 5 $ Reduce by 𝐿 → id

0 𝐿 2 = 6 𝐿 8 $ Reduce by 𝑅 → 𝐿

0 𝐿 2 = 6 𝑅 9 $ Reduce by 𝑆 → 𝐿 = 𝑅

0 𝑆 1 $ Accept

SLR parsers cannot remember the left context
• SLR(1) states only tell us about the sequence on top of the stack, not what is 

below on the stack



Canonical LR Parsing
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LR(1) Item

• An LR(1) item of a CFG 𝐺 is a string of the form [𝐴 → 𝛼•𝛽, 𝑎]
• 𝐴 → 𝛼𝛽 is a production in 𝐺, and 𝑎 ∈ 𝑇 ∪ {$}

• There is now one symbol lookahead

• Suppose [𝐴 → 𝛼•𝛽, 𝑎] where 𝛽 ≠ 𝜖, then the lookahead does not 
help

• If [𝐴 → 𝛼•, 𝑎], reduce only if next input symbol is 𝑎
• Set of possible terminals will always be a subset of FOLLOW(𝐴), but can be a 

proper subset
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LR(1) Item

• An LR(1) item [𝐴 → 𝛼•𝛽, 𝑎] is 
valid for a viable prefix 𝛾 if there 
is a derivation

𝑆
𝑟𝑚

∗ 𝛿𝐴𝑤
𝑟𝑚

𝛿𝛼𝛽𝑤

where 

i. 𝛾 = 𝛿𝑎, and 

ii. 𝑎 is first symbol of 𝑤 or 𝑤 =
𝜖 and 𝑎 = $
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… … 𝑤 $

𝛼

𝛿

…

$

𝛽
LR Parsing 
Program

Input

Stack



Constructing LR(1) Sets of Items

Closure(𝐼)

repeat

for each item [𝐴 → 𝛼•𝐵𝛽, 𝑎] in 𝐼

for each production 𝐵 → 𝛾 in 𝐺′

for each terminal 𝑏 in FIRST(𝛽𝑎)

add [𝐵 → •𝛾, 𝑏] to set 𝐼

until no more items are added to 𝐼

return 𝐼

Goto(𝐼, 𝑋)

initialize 𝐽 to be the empty set

for each item [𝐴 → 𝛼•𝑋𝛽, 𝑎] in 𝐼

add item [𝐴 → 𝛼𝑋•𝛽, 𝑎] to set 𝐽

return Closure(𝐽)
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Constructing LR(1) Sets of Items

Items(𝐺′)

C = Closure({[𝑆′ → •𝑆, $]})

repeat

for each set of items 𝐼 in 𝐶

for each grammar symbol 𝑋

if Goto(𝐼, 𝑋) ≠ 𝜙 and Goto(𝐼, 𝑋) ∉ 𝐶

add Goto(𝐼, 𝑋) to 𝐶

until no new sets of items are added to 𝐶
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Example Construction of LR(1) Items

Rule # Production

0 𝑆′ → 𝑆

1 𝑆 → 𝐶𝐶

2 𝐶 → 𝑐𝐶

3 𝐶 → 𝑑
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𝐼0 = Closure([𝑆′ → •𝑆, $])= {
𝑆′ → •𝑆, $, 
𝑆 → •𝐶𝐶, $, 
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼1 = Goto(𝐼0, 𝑆) = {
𝑆′ → 𝑆•, $

}generates the regular 
language 𝑐∗𝑑𝑐∗𝑑



Example Construction of LR(1) Items
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𝐼6 = Goto(𝐼2, 𝑐)= {
𝐶 → 𝑐•𝐶, $,
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼7 = Goto(𝐼2, 𝑑) = {
𝐶 → 𝑑•, $

}

𝐼8 = Goto(𝐼3, 𝐶) = {
𝐶 → 𝑐𝐶•, 𝑐/𝑑

}

𝐼9 = Goto(𝐼6, 𝐶)= {
𝐶 → 𝑐𝐶•, $

}

𝐼0 = Closure([𝑆′ →. 𝑆, $])= {
𝑆′ → •𝑆, $, 
𝑆 → •𝐶𝐶, $, 
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼1 = Goto(𝐼0, 𝑆) = {
𝑆′ → 𝑆•, $

}

𝐼2 = Goto(𝐼0, 𝐶)= {
𝑆 → 𝐶•𝐶, $, 
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼3 = Goto(𝐼0, 𝑐)= {
𝐶 → 𝑐•𝐶, 𝑐/𝑑,
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼4 = Goto(𝐼0, 𝑑) = {
𝐶 → 𝑑•, 𝑐/𝑑

}

𝐼5 = Goto(𝐼2, 𝐶) = {
𝐶 → 𝐶𝐶•, $

}



LR(1) Automaton
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Construction of Canonical LR(1) Parsing Tables

• Construct 𝐶′ = {𝐼0, 𝐼1, … , 𝐼𝑛}

• State 𝑖 of the parser is constructed from 𝐼𝑖
• If [𝐴 → 𝛼•𝑎𝛽, 𝑏] is in 𝐼𝑖 and Goto(𝐼𝑖,𝑎) = 𝐼𝑗, then set Action[𝑖, 𝑎]=“shift 𝑗”

• If [𝐴 → 𝛼•, 𝑎] is in 𝐼𝑖, 𝐴 ≠ 𝑆′, then set Action[𝑖,𝑎]=“reduce 𝐴 → 𝛼•”

• If [𝑆′ → 𝑆•, $] is in 𝐼𝑖, then set Action[𝑖,$]=“accept”

• If Goto(𝐼𝑖, 𝐴)= 𝐼𝑗, then Goto[𝑖, 𝐴] = 𝑗

• Initial state of the parser is constructed from the set of items 
containing [𝑆′ → •𝑆, $]
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Canonical LR(1) Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠3 𝑠4 1 2

1 𝑎𝑐𝑐

2 𝑠6 𝑠7 5

3 𝑠3 𝑠4 8

4 𝑟3 𝑟3

5 𝑟1

6 𝑠6 𝑠7 9

7 𝑟3

8 𝑟2 𝑟2

9 𝑟2
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Canonical LR(1) Parsing

• If the parsing table has no multiply-defined cells, then the 
corresponding grammar 𝐺 is LR(1)

• Every SLR(1) grammar is an LR(1) grammar
• Canonical LR parser may have more states than SLR
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LALR Parsing
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Example Construction of LR(1) Items
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𝐼6 = Goto(𝐼2, 𝑐)= {
𝐶 → 𝑐•𝐶, $,
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼7 = Goto(𝐼2, 𝑑) = {
𝐶 → 𝑑•, $

}

𝐼8 = Goto(𝐼3, 𝐶) = {
𝐶 → 𝑐𝐶•, 𝑐/𝑑

}

𝐼9 = Goto(𝐼6, 𝐶)= {
𝐶 → 𝑐𝐶•, $

}

𝐼0 = Closure([𝑆′ →. 𝑆, $])= {
𝑆′ → •𝑆, $, 
𝑆 → •𝐶𝐶, $, 
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼1 = Goto(𝐼0, 𝑆) = {
𝑆′ → 𝑆•, $

}

𝐼2 = Goto(𝐼0, 𝐶)= {
𝑆 → 𝐶•𝐶, $, 
𝐶 → •𝑐𝐶, $,
𝐶 → •𝑑, $

}

𝐼3 = Goto(𝐼0, 𝑐)= {
𝐶 → 𝑐•𝐶, 𝑐/𝑑,
𝐶 → •𝑐𝐶, 𝑐/𝑑,
𝐶 → •𝑑, 𝑐/𝑑

}

𝐼4 = Goto(𝐼0, 𝑑) = {
𝐶 → 𝑑•, 𝑐/𝑑

}

𝐼5 = Goto(𝐼2, 𝐶) = {
𝐶 → 𝐶𝐶•, $

}

𝐼3 and 𝐼6, 𝐼4 and 𝐼7, and 𝐼8 and 𝐼9
only differ in the second components



Lookahead LR (LALR) Parsing

• CLR(1) parser  has a large number of states

• Lookahead LR (LALR) parser
• Merge sets of LR(1) items that have the same core, i.e., first component 

• A core is a set of LR(0) items

• LALR parser is used in many parser generators (for e.g., Yacc and Bison)
• Fewer number of states, same as SLR
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Construction of LALR Parsing Table

• Construct 𝐶 = {𝐼0, 𝐼1, … , 𝐼𝑛}, the collection of sets of LR(1) items

• For each core present in LR(1) items, find all sets having the same 
core and replace these sets by their union 

• Let 𝐶′ = {𝐽0, 𝐽1, … , 𝐽𝑛} be the resulting sets of LR(1) items
• Also called LALR collection

• Construct Action table as was done earlier, parsing actions for state 𝑖
is constructed from 𝐽𝑖

• Let 𝐽 = 𝐼1 ∪ 𝐼2 ∪⋯∪ 𝐼𝑘, where the cores of 𝐼1, 𝐼2, … , 𝐼𝑘 are same. 
• Cores of Goto(𝐼1, 𝑋), Goto(𝐼2, 𝑋), …, Goto(𝐼𝑘, 𝑋) will also be the same.
• Let 𝐾 = Goto(𝐼1, 𝑋) ∪ Goto(𝐼2, 𝑋) ∪ …∪ Goto(𝐼𝑘, 𝑋), then Goto(𝐽,𝑋) = 𝐾
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LALR Grammar

• If there are no parsing action conflicts, then the grammar is  LALR(1)
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Rule # Production

0 𝑆′ → 𝑆

1 𝑆 → 𝐶𝐶

2 𝐶 → 𝑐𝐶

3 𝐶 → 𝑑

𝐼36 = Goto(𝐼0, 𝑐)= {
𝐶 → 𝑐•𝐶, 𝑐/𝑑/$,
𝐶 → •𝑐𝐶, 𝑐/𝑑/$,
𝐶 → •𝑑, 𝑐/𝑑/$

}

𝐼47 = Goto(𝐼0, 𝑑) = {
𝐶 → 𝑑•, 𝑐/𝑑/$

}

𝐼89 = Goto(𝐼3, 𝐶) = {
𝐶 → 𝑐𝐶•, 𝑐/𝑑/$

}



LALR Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠36 𝑠47 1 2

1 𝑎𝑐𝑐

2 𝑠36 𝑠47 5

36 𝑠36 𝑠47 89

47 𝑟3 𝑟3 𝑟3

5 𝑟1

89 𝑟2 𝑟2 𝑟2
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Notes on LALR Parsing Table

• Modified parser behaves as original

• Merging items can never produce shift/reduce conflicts 
• Suppose there is a conflict on lookahead 𝑎

• Shift due to item [𝐵 → 𝛽•𝑎𝛾, 𝑏] and reduce due to item [𝐴 → 𝛼•, 𝑎]

• But merged state was formed from states with same cores

• Merging items may produce reduce/reduce conflicts
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Reduce-Reduce Conflicts due to Merging
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{ 𝐴 → 𝑐•, 𝑑 , [𝐵 → 𝑐•, 𝑒]} { 𝐴 → 𝑐•, 𝑒 , [𝐵 → 𝑐•, 𝑑]}

{ 𝐴 → 𝑐•, 𝑑/𝑐 , [𝐵 → 𝑐•, 𝑑/𝑒]}

𝑆′ → 𝑆
𝑆 → 𝑎𝐴𝑑 | 𝑏𝐵𝑑|𝑎𝐵𝑒|𝑏𝐴𝑒
𝐴 → 𝑐
𝐵 → 𝑐

LR(1) grammar

𝑎𝑐𝑑, 𝑎𝑐𝑒, 𝑏𝑐𝑑, 𝑏𝑐𝑒



Dealing with Errors with LALR Parsing

• Consider an erroneous input 𝑐𝑐𝑑
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State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠3 𝑠4 1 2

1 𝑎𝑐𝑐

2 𝑠6 𝑠7 5

3 𝑠3 𝑠4 8

4 𝑟3 𝑟3

5 𝑟1

6 𝑠6 𝑠7 9

7 𝑟3

8 𝑟2 𝑟2

9 𝑟2

CLR Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠36 𝑠47 1 2

1 𝑎𝑐𝑐

2 𝑠36 𝑠47 5

36 𝑠36 𝑠47 89

47 𝑟3 𝑟3 𝑟3

5 𝑟1

89 𝑟2 𝑟2 𝑟2

LALR Parsing Table

# Production

0 𝑆′ → 𝑆

1 𝑆 → 𝐶𝐶

2 𝐶 → 𝑐𝐶

3 𝐶 → 𝑑



Dealing with Errors with LALR Parsing
• Consider an erroneous input 𝑐𝑐𝑑
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State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠3 𝑠4 1 2

1 𝑎𝑐𝑐

2 𝑠6 𝑠7 5

3 𝑠3 𝑠4 8

4 𝑟3 𝑟3

5 𝑟1

6 𝑠6 𝑠7 9

7 𝑟3

8 𝑟2 𝑟2

9 𝑟2

CLR Parsing Table

State
Action Goto

𝑐 𝑑 $ 𝑆 𝐶

0 𝑠36 𝑠47 1 2

1 𝑎𝑐𝑐

2 𝑠36 𝑠47 5

36 𝑠36 𝑠47 89

47 𝑟3 𝑟3 𝑟3

5 𝑟1

89 𝑟2 𝑟2 𝑟2

LALR Parsing Table

• CLR parser will not even reduce before reporting an error 
• SLR and LALR parsers may reduce several times before reporting an 

error
• Will never shift an erroneous input symbol onto the stack



Using Ambiguous Grammars
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Dealing with Ambiguous Grammars
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𝐸′ → 𝐸
𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 | id

𝐼2 = Goto(𝐼0, ′(′)= {
𝐸 → (•𝐸),
𝐸 → •𝐸 + 𝐸, 
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸), 
𝐸 → •id

}
𝐼3 = Goto(𝐼0, id)= {

𝐸 → id•
}
𝐼4 = Goto(𝐼0, ‘+’) = {

𝐸 → 𝐸 + •𝐸, 
𝐸 → •𝐸 + 𝐸, 
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸),
𝐸 → •id

}
𝐼9 = Goto(𝐼6, ‘)’)= {

𝐸 → (𝐸)•
}

𝐼0 = Closure({𝐸′ → •𝐸})= {
𝐸′ → •𝐸, 
𝐸 → •𝐸 + 𝐸, 
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸),
𝐸 → •id

}
𝐼1 = Goto(𝐼0, 𝐸) = {

𝐸′ → 𝐸•, 
𝐸 → 𝐸• + 𝐸, 
𝐸 → 𝐸• ∗ 𝐸

}

𝐼5 = Goto(𝐼0, ‘∗’) = {
𝐸 → 𝐸 ∗ •𝐸, 
𝐸 → •𝐸 + 𝐸, 
𝐸 → •𝐸 ∗ 𝐸,
𝐸 → •(𝐸),
𝐸 → •id

}
𝐼6 = Goto(𝐼2, 𝐸) = {

𝐸 → (𝐸•),
𝐸 → 𝐸• + 𝐸, 
𝐸 → 𝐸• ∗ 𝐸,

}
𝐼7 = Goto(𝐼4, 𝐸) = {

𝐸 → 𝐸 + 𝐸•,
𝐸 → 𝐸• + 𝐸, 
𝐸 → 𝐸• ∗ 𝐸,

}
𝐼8 = Goto(𝐼5, 𝐸) = {

𝐸 → 𝐸 ∗ 𝐸•,
𝐸 → 𝐸• + 𝐸, 
𝐸 → 𝐸• ∗ 𝐸

}



SLR(1) Parsing Table
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State
Action Goto

id + ∗ ( ) $ 𝐸

0 𝑠3 𝑠2 1

1 𝑠4 𝑠5 𝑎𝑐𝑐

2 𝑠3 𝑠2 6

3 𝑟4 𝑟4 𝑟4 𝑟4

4 𝑠3 𝑠2 7

5 𝑠3 𝑠2 8

6 𝑠4 𝑠5 𝑠9

7 𝑠4, 𝑟1 𝑠5, 𝑟1 𝑟1 𝑟1

8 𝑠4, 𝑟2 𝑠5, 𝑟2 𝑟2 𝑟2

9 𝑟3 𝑟3 𝑟3 𝑟3



Moves of an SLR Parser on id + id ∗ id

Stack Symbols Input Action

1 0 id + id ∗ id$ Shift 3

2 0 3 id +id ∗ id$ Reduce by 𝐸 → id

3 0 1 𝐸 +id ∗ id$ Shift 4

4 0 1 4 𝐸 + id ∗ id$ Shift 3

5 0 1 4 3 𝐸 + id ∗ id$ Reduce by 𝐸 → id

6 0 1 4 7 𝐸 + 𝐸 ∗ id$
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SLR(1) Parsing Table
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State
Action Goto

id + ∗ ( ) $ 𝐸

0 𝑠3 𝑠2 1

1 𝑠4 𝑠5 𝑎𝑐𝑐

2 𝑠3 𝑠2 6

3 𝑟4 𝑟4 𝑟4 𝑟4

4 𝑠3 𝑠2 7

5 𝑠3 𝑠2 8

6 𝑠4 𝑠5 𝑠9

7 𝑠4, 𝒓𝟏 𝒔𝟓, 𝑟1 𝑟1 𝑟1

8 𝑠4, 𝒓𝟐 𝑠5, 𝒓𝟐 𝑟2 𝑟2

9 𝑟3 𝑟3 𝑟3 𝑟3



Summary
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Comparisons across Techniques

• SLR(1) = LR(0) items + FOLLOW
• SLR(1) parsers can parse a larger number of grammars than LR(0)

• Any grammar that can be parsed by an LR(0) parser can be parsed by an 
SLR(1) parser 

• SLR(1) ≤ LALR(1) ≤ LR(1) 

• SLR(k) ≤ LALR(k) ≤ LR(k) 

• LL(k) ≤ LR(k) 

• Ambiguous grammars are not LR
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Summary

• Bottom-up parsing is a more powerful technique compared to top-
down parsing
• LR grammars can handle left recursion

• Detects errors as soon as possible, and allows for better error recovery

• Automated parser generators such as Yacc and Bison

CS 335 Swarnendu Biswas



References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 4.5-4.8.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 3.4.

CS 335 Swarnendu Biswas


