CS 335: Bottom-up Parsing

Swarnendu Biswas

Semester 2019-2020-I1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Rightmost Derivation of abbcde
S > aABe

A — Abc|b S — aABe
B—>d — aAde
— aAbcde
— abbcde
T s rm s i s T s
a A B e a A B e a A B e a A B e

| 1 | —) |

d A b ¢ d A b ¢ d

l

b

Bottom-up Parsing

r A
Constructs the parse tree starting from the leaves and working up

toward the root

g ,
S~ aABe
A — Abc | b S — aABe abbcde
Sl — aAde — aAbcde
— aAbcde — aAde
— abbcde — aABe }
— S reverse of

rightmost
derivation

Bottom-up Parsing

abbcde= a

A b

l

b

S - aABe
A - Abc | b
B-d

c d e = a A

Input string: abbcde

abbcde
— aAbcde
— aAde
— aABe
- S

Reduction

e Bottom-up parsing reduces a string w to the start symbol S

* At each reduction step, a chosen substring that is the rhs (or body) of a
production is replaced by the lhs (or head) nonterminal

Derivation
S=Vo=2V1=2V2= 0. XVn-1=Vn =W
rm ™m ™m ™T™m rm ™m

Bottom-up Parser

Handle

* Handle is a substring that matches the body of a production
* Reducing the handle is one step in the reverse of the rightmost derivation

E>E+T|T _ Right Sentential Form | Handle _____Reducing Production
T >T+F|F idy *1d; i F—id
F - (E)|id F «id; F T—>F

T *id, id, F - id

T+ F T *xF T—->Tx*F

T T E->T

Handle

Although T is the body of the production E = T, T is not a handle in the sentential

form T *id,

E->E+T|T _Right Sentential Form ___Handle _____Reducing Production __
T >Tx*F|F idy *id; i F—id
F - (E)|id F id, F T—>F

T *id, id, F - id

T xF T xF T -TxF

T T E-T

CS 335 Swarnendu Biswas

Handle

e If S =" aAw = afflw, then A -
rm rm
£ is a handle of affw

e String w right of a handle must
contain only terminals

o BN

A handle A — f in the parse tree for
afw

CS 335 Swarnendu Biswas

Handle

If grammar G is unambiguous, then every right sentential form has
only one handle

If ¢ is ambiguous, then there can be more than one rightmost
derivation of affw

CS 335 Swarnendu Biswas

Shift-Reduce Parsing

Shift-Reduce Parsing

* Type of bottom-up parsing with two primary actions, shift and reduce
* Other obvious actions are accept and error

* The input string (i.e., being parsed) consists of two parts
* Left partis a string of terminals and nonterminals, and is stored in stack
* Right part is a string of terminals read from an input buffer
* Bottom of the stack and end of input are represented by $

Shift-Reduce Actions

e Shift: shift the next input symbol from the right string onto the top of
the stack

* Reduce: identify a string on top of the stack that is the body of a
production, and replace the body with the head

Shift-Reduce Parsing

* Initial
stk | nput
$ w$
DT
* Final goal
stk | nput

$S $

Shift-Reduce Parsing

E-E+T|T
T->Tx*F|F
F - (E)|id

$

$id,

$F

$T

$T *

$T = id,
$T = F
$T

$SE

id, *id,$
*id,$
*id, $
*id,$

id,$
$

$
$
$

Shift

Reduce by F — id
Reduceby T — F
Shift

Shift

Reduce by F — id
ReducebyT - T * F
Reduce by E - T
Accept

Handle on Top of the Stack

* |s the following scenario possible?

$ aBy w$ Reduceby A -y
$ afA w$ Reduceby B — B
$aBA w$

Possible Choices in Rightmost Derivation

1. § = aAz = afByz = afyyz 2. S = aBxAz = aBxyz = ayxyz

S S

Handle on Top of the Stack

* |s the following scenario possible?

4)

Handle always eventually appears on top of the stack, never inside

Shift-Reduce Actions

* Shift: shift the next input symbol from the right string onto the top of
the stack

e Reduce: identify a string on top of the stack that is the body of a
production, and replace the body with the head

How do you decide when to shift and when to reduce?

CS 335 Swarnen du Biswas

Steps in Shift-Reduce Parsers

General shift-reduce technique

If there is no handle on the stack, then shift
If there is a handle on the stack, then reduce

* Bottom up parsing is essentially the process of detecting handles and
reducing them

* Different bottom-up parsers differ in the way they detect handles

CS 335 Swarnen du Biswas

Challenges in Bottom-up Parsing

WULELEREELIEERTEEEN o Both shift and reduce are valid,
pick when there is a

choice? implies a shift-reduce conflict

Which rule to use if
reduction is possible
by more than one
rule?

e Reduce-reduce conflict

CS 335 Swarnendu Biswas

E>E+E|E+E|id

Shift-Reduce Conflict

id + id = id id + id = id

id + id = id$ Shift id + id = id$ Shift
$E + E *id$ ReducebyE - E+ E $E + E *id$ Shift
$E *id$ Shift $E + E id$ Shift
$E * id$ Shift $E + E *id $ Reduce by E — id
$E = id $ Reduceby E — id $E+E +E $ ReducebyE - E +E
$E * E $ ReducebyE — E *xE $E + E $ ReducebyE - E+E
$E $ $E $

Shift-Reduce Conflict

Stmt — if Expr then Stmt
| if Expr then Stmt else Stmt
| other

..if Expr then Stmt else ... $

Shift-Reduce Conflict

Stmt — if Expr then Stmt
| if Expr then Stmt else Stmt
| other

..if Expr then Stmt else ... $

What is a correct thing to
do for this grammar — shift
or reduce?

M->R+R|R+c|R

Reduce-Reduce Conflict Roc
c+c c+c

c +c$ Shift c + c$ Shift
$C +c$ ReducebyR — ¢ $C +c$ ReducebyR — ¢
$R +c$ Shift $R +c$ Shift
$R + c$ Shift $R + c$ Shift
$R + ¢ $ ReducebyR — ¢ $R + ¢ $ ReducebyM — R + ¢
$R + R $ ReducebyR - R+ R $M $
$M $

LR Parsing

LR(k) Parsing

* Popular bottom-up parsing scheme
* Lis for left-to-right scan of input
* Ris for reverse of rightmost derivation
* kis the number of lookahead symbols

* LR parsers are table-driven, like the nonrecursive LL parser
* LR grammar is one for which we can construct an LR parsing table

Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL
parsers

CS 335 Swarnendu Biswas

Popularity of LR Parsing

Can recognize all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL parsers

e LL(k) parsing predicts which production to use having seen only the first k tokens of
the right-hand side

e LR(k) parsing can decide after it has seen input tokens corresponding to the entire
right-hand side of the production

CS 335 Swarnendu Biswas

Block Diagram of LR Parser

Input | a; | ... o | o w lan | S

LR Parsing
Stack Sm » Output
Program
Sm-1
ACTION
$

Parse Table

CS 335 Swarnendu Biswas

LR Parsing

 Remember the basic question: when to shift and when to reduce!

* Information is encoded in a DFA constructed using canonical LR(O)
collection
l. Augmented grammar G’ with new start symbol S’ and rule S - S
II. Define helper functions Closure() and Goto()

LR(O) Item

* An LR(O) item (also called item) m
of a grammar G is a production
of G with a dot at some position A — o XYZ
in the body A = XeV7

A- XYZ
A - XYe/

* An item indicates how much of a
production we have seen A —> XYZe

* Symbols on the left of “¢” are

already on the stack A — XY 7 indicates that we expect a

* Symbols on the right of “e” are string derivable from XY Z next on
expected in the input the input

Closure Operation

* Let I be a set of items for a grammar G

* Closure(!) is constructed by
1. Add every itemin I to Closure([)

2. IfA - aeBf isin Closure(I)and B = y isarule, thenadd B — y to
Closure(I) if not already added

3. Repeat until no more new items can be added to Closure([)

Example of Closure

Suppose I = {E’ — oE }, compute

Bk Closure(I)

E—-E+T|T
T >T+F|F
F - (E)|id

Example of Closure

Suppose [= {E' — *E'}
E' > E
E->E+TI|T Closure(I) = {
T >TxF|F
F-E|d | T moTT-oTIT

Kernel and Nonkernel ltems

* If one B-production is added to Closure(l) with the dot at the left
end, then all B-productions will be added to the closure

* Kernel items
e |nitial item S’ — S, and all items whose dots are not at the left end

* Nonkernel items
 All items with their dots at the left end, except for S' — oS

Goto Operation

e Suppose I is a set of items and X is a grammar symbol

* Goto(/, X) is the closure of set all items [A = aXef] such that [A —
aeXf]isinl
* If | is a set of items for some valid prefix a, then Goto(/,X) is set of valid items
for prefix aX

* Intuitively, Goto(I, X) defines the transitions in the LR(0) automaton
* Goto(/, X) gives the transition from state I under input X

Example of Goto

E' > E
E—->FE

T >T+F|F
F - (E)|id

+T|T

Suppo

sel ={
E' = Eo,
E—>Ee+T

 Compute Goto(/, +)

Example of Goto

E' > E
E—->FE

T >T+F|F
F - (E)|id

+T|T

Suppo

sel ={
E' = Eo,
E—>Ee+T

Goto(l, +) ={
E = E + oT,
T - oT x F,
T — oF,
F — «(E),
F — eid

Canonical Collection of Sets of LR(0O) ltems

C = Closure({S’ — S})
repeat
for each setofitems I in C
for each grammar symbol X
if Goto(/, X) is not empty and notin C
add Goto(I, X) to C
until no new sets of items are added to C

Canonical Collection of Sets of LR(0O) ltems

 Compute the canonical

E'~E llection for th '
ESE+T | T colliection r1or e expreSSIOn
T >T+F|F grammar

F - (E)|id

Canonical Collection of Sets of LR(0O) ltems

I, = Closure(E' — oE)= { I, = Goto(ly, T)= { I, = Goto(ly,"(")= {
E' — oF, E - To, F — (eF),
E > ¢E+ T, T >TexF E > ¢E+T,
E — oT, } E — oT,

T — oT x F, T — oT x F,
T — oF, I; = Goto(ly, F)= { T — oF,
F — o(E), T — Fe F — o(E),
F - oid’ } F - 'id,
) }
15 — GOtO(Io,id): {

I; = Goto(ly, E) = { F —ide I; = Goto(l,*) = {
E'—)Eo’ } T =T xeF,
E—>Ee+T F — (E),

) F — eid

Canonical Collection of Sets of LR(0O) ltems

I = Goto(I,+)={

E—> E + T,

T —> oT % F,
T — oF,

F — o(E),
F — eid,

}
Ig = Goto(l,, E)={

E—>Ee+T,

F > (Eo)

19 — GOtO(I6, T)= {

E > E +To,
T > TexF

}

[19 = Goto(l, F)= {
T = T % Foe,

}

I;, = Goto(lg, ")")={
F - (E)o

}

I, = Goto(l,,T)
I3 = Goto(I,, F)
I, = Goto(l,, " (")
I = Goto(l,,id)
I35 = Goto(lg, F)
1, = Goto(lg, " (")
Iz = Goto(l,,id)
I, = Goto(I,,"(")
I = Goto(I, id)
I = Goto(/g, +)
I; = Goto(lq,*)

LR(0) Automaton

* An LR parser makes shift-reduce decisions by maintaining states
e Canonical LR(0) collection is used for constructing a DFA for parsing

e States represent sets of LR(0) items in the canonical LR(O) collection

* Start state is Closure({S’" — «S}), where S’ is the start symbol of the
augmented grammar

* State j refers to the state corresponding to the set of items J;

LR(0) Automaton

Use of LR(O) Automaton

 How can LR(0) automata help with shift-reduce decisions?

* Suppose string ¥ of grammar symbols takes the automaton from start
state S to state 5;
* Shift on next input symbol a if §; has a transition on a

* Otherwise, reduce
* Items in state S; help decide which production to use

Shift-Reduce Parser with LR(0) Automaton

05
03
02
027
0275
02710
02
01

$ki
$F
$T
$T *
$T * id
$T = F
$T
$SE

id * id$
* id$

* id$

* id$
id$

$
$
$
$

Shiftto 5

Reduce by F — id
Reduce by T — F
Shiftto 7

Shiftto 5

Reduce by F — id
Reduce by T - T * F
Reduce by E - T
Accept

Viable Prefix

* A viable prefix is a prefix of a right sentential form that can appear on
the stack of a shift-reduce parser

* a is a viable prefix if 3w such that aw is a right sentential form
E->T->T+«F->Tx+id—- F*xid - id xid

* id * is a prefix of a right sentential form, but it can never appear on
the stack

* Always reduce by F — id before shifting *
* Not all prefixes of a right sentential form can appear on the stack

* There is no error as long as the parser has viable prefixes on the stack

Example of a Viable Prefix

| stack | Input

S - X1 X,X3X, $ X1X,X5$
A- XX, $X, X,X3$
Letw = X, X,Xs S, *s$

$4 X5$

$AX, $

[X1X,X3 can never appear on a stack]

Challenges with LR(O) Parsing

* An LR(O) parser works only if each state with a reduce action has only
one possible reduce action and no shift action

({ {
L L Se L—L,Se L—> S, Le
| S > Se, L L —>Se
} }
Ok Shift-reduce conflict Reduce-reduce conflict

* Takes shift/reduce decisions without any lookahead token
* Lacks the power to parse programming language grammars

Challenges with LR(O) Parsing

e Consider the following grammar for adding numbers

S->S+E|E
E — num

Left associative

S>E+S|E
E = num

Right associative

Challenges with LR(O) Parsing

e Consider the following grammar for adding numbers

S->S+E|E S>E+S|E
E — num E — num
Left associative Right associative

S—>FEe+ S
S > Ee

Shift-reduce conflict

CS 335 Swarnendu Biswas

Simple LR Parsing

Block Diagram of LR Parser

Stack

CS 335

Input | a, a;

LR Parsing

Program

ACTION

Parse Table

Swarnendu Biswas

» Qutput

e Same driver program is used for
all LR parsers

e Different LR parsing techniques
produce different parse tables y

LR Parsing Algorithm

* The parser driver is same for all LR parsers
* Only the parsing table changes across parsers

* A shift-reduce parser shifts a symbol, and an LR parser shifts a state

* By construction, all transitions to state j is for the same symbol X

* Each state, except the start state, has a unique grammar symbol associated
with it

SLR(1) Parsing

* Extends LR(0) parser to eliminate a few conflicts
e Uses LR(0) items and LR(0) automaton

* For each reduction 4 — [, look at the next symbol ¢

* Apply reduction only if c € FOLLOW(A) orc = €and S SN YA

Structure of SLR Parsing Table

* Assume S; is top of the stack and a; is the current input symbol
* Parsing table consists of two parts: an Action and a Goto function

* Action table is indexed by state and terminal symbols

* Action[S;, a;] can have four values
* Shift a; to the stack, goto state S§;

* Reduce by rule k
* Accept
* Error (empty cell in the table)

* Goto table is indexed by state and nonterminal symbols

Constructing SLR Parsing Table

1) Construct LR(0) canonical collection C = {I,, 11, ..., I, } for grammar
Gl

2) State i is constructed from [;
a) If [A - aeaf]isinl; and Goto(l;, a) = I;, then set Action[i, a] = “Shift j”

b) If[A - ae]isin I;, then set Action [i, a] = “Reduce A — a” forall a in
FOLLOW(A)
c) If[S" = Se]isin[;, then set Action [i, $] = “Accept”

3) If Goto(l;, A) = I;, then Gotoli, A] = j

4) All entries left undefined are “errors”

SLR Parsing for Expression Grammar

| Rule# | Rue [sj means shift and stack state i

o 1 A W N =

E->E+T . .
oo * rj means reduce by rule #;j
T >Tx*F * acc means accept

I=F * blank means error

F - (E)

F —id

SLR Parsing Table

0 s5 s4 1 2 3
1 s6 acc

2 T2 s7 T2 T2

3 r4 r4 r4 r4

4 s5 s4 8 2 3
5 6 6 6 6

6 s5 s4 9 3
7 s5 s4 10
8 s6 s11

9 rl s7 rl rl

10 73 73 73 73

11 r5 r5 r5 r5

LR Parser Configurations

* A LR parser configuration is a pair <sy, S1,..., S, AjAjyq1... An$>
 Left half is stack content, and right half is the remaining input

* Configuration represents the right sentential form X X, ... X,,,a;a;,1...
a’l’l

LR Parsing Algorithm

* If Action[s,,,, a;] = shift s, new configuration is <sg, S¢,..., S, S, Aj4+1--.
a,$>

* If Action[s,,, a;] = reduce A — 5, new configuration is <sg, S4,...,
Sy Qi Aj4q... A $>
* Assumeris || and s = Goto[s,,_, A]

* If Action[s,,,, a;] = accept, parsing is successful
* |If Actionl[s,,, a;] = error, parsing has discovered an error

LR Parsing Program

Let a be the first symbol of input w$
while (1)
let s be the top of the stack
if Action[a] == shift t
push t onto the stack
let a be the next input symbol
else if Action[s, a] == reduce A-p
pop |B| symbols off the stack
push Goto[t, A] onto the stack
output production A—-pf
else if Action[s, a] == accept
break
else
invoke error recovery

Moves of an LR Parser onid * id + id

S Simbos L nput L Action

id * id + id$ Shift

2 05 id *id + id$ Reduce by F — id

3 03 F *id + id$ ReducebyT — F

4 02 T *id + id$ Shift

5 027 T * id + id$ Shift

6 0275 T *id +id$ Reduce by F — id

7 02710 T+F +id$ ReducebyT —» T * F
8 02 T +id$ ReducebyE - T

9 01 E +id$ Shift

10 016 E + id$ Shift

Moves of an LR Parser onid * id + id

S Symbols L nput______Action__

0165 E+id $ ReducebyF - id
12 0163 E+F $ ReducebyT — F
13 0169 E+T $ ReducebyE - E+T
14 01 E $ Accept

Limitations of SLR Parsing

* If an SLR parse table for a grammar does not have multiple entries in
any cell then the grammar is unambiguous

e Every SLR(1) grammar is unambiguous, but there are unambiguous
grammars that are not SLR(1)

Limitations of SLR Parsing

Unambiguous grammar Example Derivation
S=>=L=R=>*xR=R

S—>L=R|R

L - *R|id

R—-L

FIRST(S) = FIRST(L) = FIRST(R) = {*,id}

FOLLOW(S) = FOLLOW(L) = FOLLOW(R)
={=$}

Canonical LR(0O) Collection

I, = Closure(S’" —.5)={

S' > oS,
S —> el =R,
S > oR,
L — exR,
L — eid,
R — oL

}

11 — GOtO(Io, S) — {
S'—> Se

}

IZ =Got0(10,L)={
S - Le =R,
R — Le

}

13 — GOtO(Io,R)= {
S = Re
}

1, =Goto(ly, R)= {
L — xeR,
R — e[,
L — exR,
L — eid

}

I = Goto(I,, =)= {
S > L = eR,
R — o,
L — exR,
L — eid

Iz = Goto(l,,id)= {

L — eid

}

I, =Goto(l4, R)= {
L —>* Re

}

18 — Got0(14, L)= {
R — Le

}

Ig — Got0(16,R)= {
S > L = Re

}

SLR Parsing Table

0
1
2
3
4
5
6
7
8
9

s6,1r6

r5

r4
6

s4

s4

s4

id
s5

s5

s5

acc
6

r5

r4

r6
T2

Shift-Reduce Conflict with SLR Parsing

I = Closure(S' —.5)={ I; = Goto(Iy, R)= { Is = Goto(ly, id)= {
S' > oS, S — Re L — eid
S — oL =R, } }

(J‘é.l? | —CGnotnll. RY\— S L —Gotall DR\— [
1. Action[2,=] = Shift 6

, | 2. Action[2,=] = Reduce R - Lsince’ =" € FOLLOW(R)
L =0 J

S — Se V)6/=Goto(12, == { Iy = Goto(lg, R)= {
} S —> L =eR, S —> L = Re
IZ — GOtO(Io, L)= { R — .L, }

S > Le =R, L > exR,

R — Le L — eid

} }

Moves of an LR Parser on id=id

id=id$ Shift5 id=id$ Shift5
0id 5 =id$ Reduce by L — id 0id 5 =id$ Reduce by L — id
0L2 =id$ ReducebyR — L 0L2 =id$ Shift 6
OR3 =id$ Error 0L2=6 id$ Shift 5
0L2=6id5 $ Reduce by L - id
0L2=6LS8 $ ReducebyR — L
0L2=6R9 $ ReducebyS —>L =R
0S1 $ Accept

Moves of an LR Parser on id=id

rState i calls for a reduction by A — « if the set of items [; contains1
item [A - ae¢] and a € FOLLOW(A)

* Suppose [A is a viable prefix on top of the stack

* There may be no right sentential form where a follows A
* No right sentential form begins with R = ---

\ » Parser should not reduceby A - « /
OL2=6RO $ Reducebys > L =R

0S1 $ Accept

Moves of an LR Parser on id=id

id=id$ Shift 5 id=id$ Shift 5

SLR parsers cannot remember the left context

e SLR(1) states only tell us about the sequence on top of the stack, not what is
below on the stack

0L2=6id5 $ Reduce by L — id
0L2=6LS8 $ ReducebyR — L
OL2=6R9 $ ReducebyS—>L=R

0S1 $ Accept

CS 335 Swarnendu Biswas

Canonical LR Parsing

LR(1) Item

* An LR(1) item of a CFG G is a string of the form [A — aef, a]
* A - afisaproductioninG,anda € T U {$}
* There is now one symbol lookahead

* Suppose [A = ae*f,a] where # €, then the lookahead does not
help

* If [A = ae, a], reduce only if next input symbol is a

* Set of possible terminals will always be a subset of FOLLOW(A), but can be a
proper subset

LR(1) Item

* An LR(1) item [A = aef,a] is
valid for a viable prefix y if there

is a derivation
Stack

S ="0Aw = dafiw
rm rm

where
i. vy =0a,and

ii. aisfirst symbol of worw =
eanda = $

CS 335 Swarnendu Biswas

Input

LR Parsing

Program

Constructing LR(1) Sets of Items

Closure(/)

repeat
for eachitem [A —» a*Bp,alin |
for each production B - y in G’
for each terminal b in FIRST(fa)
add [B — ey,b]| toset [
until no more items are added to [

return [

Goto(/, X)

initialize | to be the empty set
for eachitem [A = aeXf,a] in |
add item [A — aXef,a] toset]

return Closure(/)

Constructing LR(1) Sets of Items

ltems(G')
C = Closure({[S’ — S, $]})
repeat
for each set of items I in C
for each grammar symbol X
if Goto(/, X) # ¢ and Goto(l, X) &€ C
add Goto(/, X)to C
until no new sets of items are added to C

Example Construction of LR(1) ltems
Rule# |Production Io = Closure([S' — »5, $])= {

S' > oS §,

0 S'"> S el d
1 5> CC C - ecC,c/d,
2 C - cC } C —ed,c/d
3 C->d

I; = Goto(ly, S) ={

S' - So,$
generates the regular)
language c*dc™d

Example Construction of LR(1) ltems

I, = Closure([S’ —.5,$])={ I; = Goto(ly, c)={ I = Goto(l,, c)={
S' > oS §, C - ceC,c/d, C - coC, $,
S — ¢CC,$, C - ecC,c/d, C - ocC,$,
C — ecC,c/d, C - ed,c/d C > ed,$
C - ed,c/d } }
}
I, = Goto(l,,d) = { I, = Goto(l,,d) = {
I, = Goto(I,,S) = { C - de,c/d C > de$
S’ — Se,$ } }
}
Is = Goto(l,,C) = { Ig = Goto(I3,C) = {
I, = Goto(l,, C)= { C - CCe,$ C > cCe,c/d
S > CeC,$, } }
C - ocC,$,
C—>ed$ Iy = Goto(I, C)= {
} C > cCe$

}

LR(1) Automaton

CS 335 Swarnendu Biswas

Construction of Canonical LR(1) Parsing Tables

* Construct C' = {ly, I, ..., I,}

* State i of the parser is constructed from [;
* If [A > aeaf, b]isinI; and Goto(l;,a) = [;, then set Action[i, a]="shift j”
* If[A > ae,a]isinl;, A + S’, then set Action[i,a]="reduce A — a*”
« If [S" = Se,$]isin I}, then set Action[i,$]="accept”

* If Goto([;, A)= I;, then Gotoli, A] =

* Initial state of the parser is constructed from the set of items

containing [S’ — oS, §]

Canonical LR(1) Parsing Table

0 s3 s4 1 2
1 acc

2 s6 s7 5
3 s3 s4 8
4 r3 73

5 rl

6 s6 s7 9
7 r3

8 T2 T2

9 T2

Canonical LR(1) Parsing

* If the parsing table has no multiply-defined cells, then the
corresponding grammar G is LR(1)

e Every SLR(1) grammar is an LR(1) grammar
* Canonical LR parser may have more states than SLR

LALR Parsing

Example Construction of LR(1) ltems

I, = Closure([S" —.5,$])={ I; = Goto(ly, c)={ I = Goto(l,, c)={
S' > oS §, C - ceC,c/d, C - coC, $,
S — ¢CC,$, C - ecC,c/d, C - ocC,$,
C — ecC,c/d, C - ed,c/d C > ed,$
C - ed,c/d } }
}
I, = Goto(l,,d) = { I, = Goto(l,,d) = {
I, = Goto(I,,S) = { C - de,c/d C > de$
S'"—> Se, $ } }
}
Is = Goto(I,,C) = { Ig = Goto(I3,C) = {
I, = Goto(ly, C)= { C > CCe$ C - cCe,c/d
S — CeC,$, } }
C - ocC,$,
C - .d,$ Ig = GOtO(I6, C): {

I5 and I, I, and I, and Ig and Iq C = cCo,$
only differ in the second components B

CS 335 Swarnendu Biswas

Lookahead LR (LALR) Parsing

* CLR(1) parser has a large number of states
* Lookahead LR (LALR) parser

* Merge sets of LR(1) items that have the same core, i.e., first component
* Acoreis aset of LR(0) items

e LALR parser is used in many parser generators (for e.g., Yacc and Bison)
 Fewer number of states, same as SLR

Construction of LALR Parsing Table

* Construct C = {ly, I, ..., I, }, the collection of sets of LR(1) items

* For each core present in LR(1) items, find all sets having the same
core and replace these sets by their union

e LletC' ={Jy, /1, .-,]} e the resulting sets of LR(1) items
e Also called LALR collection

* Construct Action table as was done earlier, parsing actions for state i
is constructed from J;

elet/ =1 UL, U---UlI,, where the cores of I;, I, ..., [, are same.
* Cores of Goto(I4, X), Goto(I,, X), ..., Goto(I;, X) will also be the same.
* Let K = Goto(I;, X) U Goto(l,, X) U ...U Goto(l, X), then Goto(/,X) =K

LALR Grammar

* If there are no parsing action conflicts, then the grammar is LALR(1)

Rule # | Production I = Goto(ly, ¢)= { I = Gotolls, €) = {
, C - ceC,c/d/$, C - cCe,c/d/$
0 55 C - ecC,c/d/$, }
1 S—->CC C —ed,c/d/$
2 C - cC J
3 C - d 147 - GOtO(Io, d) - {
C > de,c/d/$

}

LALR Parsing Table

0 s36 s47 1 2
1 acc
2 s36 s47 5
36 s36 s47 89
47 73 73 T3
5 rl

89 T2 T2 T2

Notes on LALR Parsing Table

* Modified parser behaves as original

* Merging items can never produce shift/reduce conflicts
* Suppose there is a conflict on lookahead a
* Shift due to item [B — feay, b] and reduce due to item [A — ae, a]
* But merged state was formed from states with same cores

* Merging items may produce reduce/reduce conflicts

Reduce-Reduce Conflicts due to Merging

LR(1) grammar

S'"—> S

S — aAd | bBd|aBe|bAe

A-ocC
B — ¢

acd, ace, bcd, bce

{l[A—=ced] [B—cee]} {lA—=ce el [B—ced]}

~

{lA—=ced/c], [B—ced/e]}

Dealing with Errors with LALR Parsing

* Consider an erroneous input ccd

O 00 N o 1 A W N B O

s3

s6

s3

r3

s6

r2

CLR Parsing Table

s4

s7

s4

r3

s7

r2

acc

rl

r3

r2

1

2

0
1
2
36
47
5
89

s36

s36

s36

r3

r2

o production
S'>S
S—->CC
C - cC
C—->d

w N =, O

LALR Parsing Table

Hcd$5€ MCCI$SC

s47

s47

s47

r3

r2

1 2
acc
5
89
r3
rl
T2

Dealing with Errors with LALR Parsing

* Consider an erroneous input ccd

CLR Parsing Table LALR Parsing Table

* CLR parser will not even reduce before reporting an error
* SLR and LALR parsers may reduce several times before reporting an

error
* Will never shift an erroneous input symbol onto the stack

_ J

OUJ L =] L= L =]

7 r3
8 r2 r2
9 T2

Using Ambiguous Grammars

Dealing with Ambiguous Grammars

E' - E

E->E+E|E+E|(E)|id

Iy, = Closure({E’ — *E})=

E' - oF,
E - oF + F,
E — oF x E,
E - o(E),
E — eid

}

11 - GOtO(Io,E) ={
E' > Eoe,
E —> Ee+ E,
E > EexE

I, = Goto(ly, ()= {

E - (°F),
E - oF + E,
E — oFE x E,
E — o(E),
E — <id

}

I; = Goto(ly,id)= {
E — ide

}

I, = Goto(ly, ‘+’) = {
E — E + oF,
E - oF + E,
E — oF *E,
E — o(E),
E — eid

}

Iy = Goto(lg,)’)= {
E— (E)e

}

Is = Goto(l,, ‘*") = {
E - E x oF,
E - oFE + E,
E — oF x FE,
E - o(E),
E — «id

}

I = Goto(l,, E) = {
E - (Ee),
E - Ee + F,
E - EexE,

}

I; = Goto(l,, E) = {
E - E+E-,
E - Ee + F,
E - EexE,

}

Ig = Goto(ls, E) = {
E - E*E-
E - Ee + F,
E —> EexFE

SLR(1) Parsing Table

0
1
2
3
4
5
6
7
8
9

id
s3

s3

s3
s3

s4

r4

s4
s4,rl
s4, 12

r3

s5

r4

S5
s5,rl
s5,1r2

r3

S2

s2

s2
s2

r4

s9
rl
r2
r3

acc

r4

rl
12
r3

Moves of an SLR Parser on id + id * id

S Smbos L nput L Action

id + id x id$ Shift 3

2 03 id +id * id$ Reduce by E — id
3 01 E +id * id$ Shift 4
4 014 E + id = id$ Shift 3
5 0143 E +id *id$ Reduce by E — id

6 0147 E+E * id$

SLR(1) Parsing Table

0
1
2
3
4
5
6
7
8
9

id
s3

s3

s3
s3

s4

r4

s4

ri1

r2
r3

s5

r4

s5

s5

r2
r3

s2

S2

s2
s2

r4

s9
rl
r2
r3

acc

r4

rl
T2
r3

summary

Comparisons across Techniques

e SLR(1) = LR(O) items + FOLLOW
* SLR(1) parsers can parse a larger number of grammars than LR(0)

* Any grammar that can be parsed by an LR(0) parser can be parsed by an
SLR(1) parser

* SLR(1) < LALR(1) < LR(1)

e SLR(k) < LALR(k) < LR(k)

* LL(k) < LR(k)

* Ambiguous grammars are not LR

summary

* Bottom-up parsing is a more powerful technique compared to top-
down parsing
* LR grammars can handle left recursion
» Detects errors as soon as possible, and allows for better error recovery

e Automated parser generators such as Yacc and Bison

References

* A. Aho et al. Compilers: Principles, Techniques, and Tools, 2"9 edition, Chapter 4.5-4.8.

» K. Cooper and L. Torczon. Engineering a Compiler, 2"¢ edition, Chapter 3.4.

