
CS 610: Tracking Performance Monitoring
Counters with PAPI

PMC and PAPI

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-I

Performance Monitoring Counters
� Modern CPUs have hardware counters for tracking many events

▶ For example, cycles, instructions, floating-point instructions, loads and stores, i-cache
misses, L1 data cache misses, L2 data cache misses, TLB misses, and pipeline stalls

� Performance counters are hardware registers attached to processors that measure
various events occurring in the processor

� Useful in analyzing performance bottlenecks
▶ Each counter can be programmed with an event type to be monitored (e.g., L1 cache miss

or a branch misprediction)

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 3 / 13

More on Hardware Counters

Why do you need PMCs when we can have software profilers?
� Hardware counters incur lower overhead and require minimal source code

modifications
� The information tracked in each run is limited

Challenges with using hardware counters
� Manipulating hardware counters directly is complex

▶ Different processors have different counters; the code is not portable
▶ Many processors have more events that can be tracked than hardware counters, so only a

subset of events can be measured in a given run

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 4 / 13

Performance Application Programming
Interface (PAPI)

PAPI
� The PAPI library provides an interface for

gathering performance counter information
from diverse platforms
▶ Supports major CPUs (e.g., Intel, AMD, ARM

PowerPC), GPUs, and accelerators
▶ Many third-party performance analysis tools

use PAPI (e.g., PerfSuite, HPCToolkit, and
TAU)

� Provides two interfaces to manipulate
hardware counters

PAPI framework layer

Platform
dependent

Platform
independent

Low-level
API

High-level
API

Performance counter
hardware

Operating System

Kernel patch

PAPI component layer

Client applications

https://github.com/icl-utk-edu/papi

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 5 / 13

https://github.com/icl-utk-edu/papi

Setting up PAPI v7.1

Uninstall older PAPI versions
sudo apt remove libpapi-dev papi-tools
wget https://github.com/icl-utk-edu/papi/archive/refs/tags/papi-7-1-0-t.tar.gz
tar xf papi-7-1-0-t.tar.gz
cd papi-papi-7-1-0-t/src
Include optional components like GPU support
./configure
make -j"$(nproc)"
sudo make install
papi_version # PAPI Version: 7.1.0.0

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 6 / 13

Preset Events
� Preset events are

platform-independent names for events
deemed useful for performance tuning

� Standard set of 108 events for
application performance tuning
▶ For example, accesses to the memory

hierarchy, cache coherence protocol
events, cycle and instruction counts,
functional unit and pipeline utilization

� Run papi_avail utility to determine
preset events available on the platform

PAPI_L1_DCH Level 1 data cache hits
PAPI_L1_DCM Level 1 data cache misses
PAPI_L1_DCR Level 1 data cache reads
PAPI_L1_DCW Level 1 data cache writes
PAPI_L1_DCA Level 1 data cache accesses

PAPI_L1_ICM Level 1 instruction cache misses
PAPI_L1_TCH Level 1 total cache hits
PAPI_L1_LDM Level 1 load misses
PAPI_L1_STM Level 1 store misses

PAPI_L2_DCM Level 2 data cache misses
PAPI_L3_DCM Level 3 data cache misses

PAPI_TOT_INS Total instructions executed
PAPI_TOT_CYC Total cycles
PAPI_IPS Instructions executed per second

Preset Events

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 7 / 13

https://github.com/icl-utk-edu/papi/wiki/PAPI-Events#preset-events

Native Events

� PAPI also provides access to platform-dependent native events through a low-level
interface
▶ Any event countable by the CPU (e.g., L3_CACHE_MISS)

� Use papi_native_avail utility to see all available native events
� Preset events can be derived from single or linear combinations of native events

▶ PAPI_L1_TCM may be L1 data misses + L1 instruction misses

Native Events

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 8 / 13

https://github.com/icl-utk-edu/papi/wiki/PAPI-Events#native-events

Useful APIs
PAPI_query_event()
Check whether the CPU can measure the relevant PAPI event
if (PAPI_query_event(PAPI_TOT_INS) != PAPI_OK) {
std::cerr << "PAPI total instruction error!\n";

}

PAPI_event_code_to_name()
Get the name of a preset or native event from the event code
int EventCode = 0 | PAPI_NATIVE_MASK;
retval = PAPI_event_code_to_name(EventCode , EventCodeStr);
/* Print the native event for this platform */
if (retval == PAPI_OK)
printf("Name: %s\nCode: %x\n", EventCodeStr , EventCode);

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 9 / 13

High-Level API
� Track performance events in named code regions

▶ Meant for application programmers wanting simple but accurate measurements
▶ Calls the lower-level API
▶ Interface redesigned from v6+

� Events to be recorded are provided via comma-separated environment variable
PAPI_EVENTS
▶ Only allows preset events

� Values of performance events are the difference between the end region and the
begin region calls
▶ Only the end values are stored for instantaneous events that track temperature or power

� Print stats to stdout by setting PAPI_REPORT to 1

HL Example
Compile with g++ -O3 -std=c++17 hl-ex1.cpp -lpapi

https://github.com/icl-utk-edu/papi/wiki/PAPI-HL

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 10 / 13

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/hl-ex1.cpp
https://github.com/icl-utk-edu/papi/wiki/PAPI-HL

Low-Level API

� Use when you want finer-grained measurements, can track both preset and native
events

� Can use both high-level and low-level APIs
▶ PAPI library should be initialized before the first low-level PAPI call

LL Example
Compile with g++ -O3 -std=c++17 ll-ex1.cpp -lpapi

https://github.com/icl-utk-edu/papi/wiki/PAPI-LL

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 11 / 13

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/ll-ex1.cpp
https://github.com/icl-utk-edu/papi/wiki/PAPI-LL

PAPI with CUDA

� PAPI is also available for CUDA GPUs
▶ Uses the CUPTI interface

� Gives useful information about the GPU usage
▶ IPC, memory load/stores/throughput, branch divergences, and SM(X) occupancy

Swarnendu Biswas (IIT Kanpur) PAPI Library Sem 2024-25-I 12 / 13

References

A. Kozhokanova et al. PAPI: Performance API Introduction & Overview, Virtual Institute — High
Productivity Supercomputing 2021.

A. Pereira. PAPI - Performance API.

A. Avila. PAPI: Performance API, Virtual Institute — High Productivity Supercomputing 2011.

Anthony Castaldo. Introduction Methodology GPU Tuning.

https://www.vi-hps.org/cms/upload/material/tw39/PAPI.pdf
https://www.vi-hps.org/cms/upload/material/tw39/PAPI.pdf
http://gec.di.uminho.pt/minf/cpd/AA/Papi.pdf
https://passlab.github.io/CSCE513/resources/vi-hps-alechile12-PAPI_Overview.pdf
https://www.exascaleproject.org/wp-content/uploads/2021/01/PAPI_BOF_Presentation-pdf.pdf

	PMC
	PAPI

