
CS 610: OpenMP

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-I

What is OpenMP?

� OpenMP (Open Multi-Processing) is a popular directive-based parallel programming
model for shared-memory systems
▶ An OpenMP program is a sequential program augmented with compiler directives to

specify parallelism
▶ Eases conversion of existing sequential programs

� Standardizes established SMP practices, vectorization, and heterogeneous device
programming

� OpenMP supports C/C++ and Fortran on a wide variety of architectures
▶ Supported by popular C/C++ compilers (e.g., LLVM/Clang, GNU GCC, and Intel ICC)

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 3 / 78

Goals of OpenMP

Standardization � Provide a standard among a variety of shared memory
architectures/platforms

� Jointly defined and endorsed by a group of major computer
hardware and software vendors

Ease of use � Provide capability to incrementally parallelize a serial program,
unlike message-passing libraries which typically require an
all-or-nothing approach

� Provide the capability to implement both coarse-grain and
fine-grain parallelism

Portability � Most major platforms and compilers support OpenMP

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 4 / 78

Key Concepts in OpenMP

� Parallel regions with multiple concurrently-executing threads
� Shared and private data: shared variables are used to communicate data among

threads
� Synchronization to coordinate execution of concurrent threads
� Mechanism for automated work distribution across threads
� Supports task-based programming and offloading computation to GPUs

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 5 / 78

OpenMP API

� Compiler directives: #pragma omp directive [clause [clause]...]
newline
▶ Most common constructs in OpenMP are compiler directives
▶ For example, #pragma omp parallel num_threads(4)
▶ Directives are treated as comments if OpenMP is not supported

� Runtime library routines: int omp_get_num_threads(void);
� Environment variables: export OMP_NUM_THREADS=8
� Function prototypes and types are defined in the header omp.h

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 6 / 78

OpenMP Code Structure and Compilation
#include <omp.h>
int main() {
// serial code, master thread
...
// begin parallel section,
// fork a team of threads

#pragma omp parallel ...
{

// parallel region executed by
// all threads
...
// all parallel threads join
// the master thread

}
// resume serial code
...

}

� Linux and GNU GCC
▶ g++ –fopenmp hello-world.cpp

� Linux and Clang/LLVM
▶ clang++ -fopenmp

hello-world.cpp
� Can use the preprocessor macro _OPENMP

to check for compiler support

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 7 / 78

Fork-Join Model of Parallel Execution
int main() {

... // serial code, master thread
#pragma omp parallel ... // begin parallel section, fork a team of threads
{

// parallel region executed by all threads
...
// all parallel threads join the master thread

}
... // resume serial code

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 8 / 78

Structured Block

� Most OpenMP constructs apply to a
structured block

� A structured block consists of one or more
statements surrounded by “{ }”, with one
point of entry at the top and one point of
exit at the bottom
▶ It is okay to have an exit within the

structured block
▶ Disallows code that branches in to or out

of the middle of the structured block

#include <omp.h>
...
int main() {

// serial code, master thread
...
// begin parallel section,
// fork a team of threads

#pragma omp parallel ...
{

// parallel region executed by
// all threads
...
// all parallel threads join
// the master thread

}
... // resume serial code

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 9 / 78

Format of Compiler Directives
� #pragma omp

▶ Required for all OpenMP C/C++ directives
� directive-name

▶ Must appear after the pragma and before
any clauses

▶ Scope extends to the structured block
following a directive, does not span
multiple routines or code files

� [clause, ...]
▶ Optional. Clauses can be in any order, and

repeated as necessary unless otherwise
restricted.

� newline
▶ Required. Precedes the structured block

which is enclosed by this directive.

#include <omp.h>
...
int main() {

// serial code, master thread
...
// begin parallel section,
// fork a team of threads

#pragma omp parallel ...
{

// parallel region executed by
// all threads
...
// all parallel threads join
// the master thread

}
... // resume serial code

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 10 / 78

Hello World with OpenMP

#include <iostream>
#include <omp.h>
...
int main() {
cout << "This is serial code\n";

#pragma omp parallel
{

int num_threads = omp_get_num_threads();
int tid = omp_get_thread_num();
if (tid == 0) {
cout << num_threads << "\n";

}
cout << "Hello World: " << tid << "\n";

}
cout << "This is serial code\n";

#pragma omp parallel num_threads(2)
{

int tid = omp_get_thread_num();
cout << "Hello World: " << tid << "\n";

}
cout << "This is serial code\n";
omp_set_num_threads(3);

#pragma omp parallel
{

int tid = omp_get_thread_num();
cout << "Hello World: " << tid << "\n";

}
}

hello-world.cpp
Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 11 / 78

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/hello-world.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/Makefile

The Essence of OpenMP

� Create threads that execute in a shared address space
▶ The only way to create threads is with the parallel construct
▶ Once created, all threads execute the code inside the construct

� Split up the work between threads by one of two means
▶ SPMD (Single Program Multiple Data) — all threads execute the same code, use the

thread ID to assign work to a thread
▶ Worksharing constructs split up loops and tasks between threads

� Manage data environment to avoid data access conflicts
▶ Synchronization so correct results are produced regardless of how threads are

scheduled
▶ Carefully manage which data can be private (local to each thread) and shared

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 12 / 78

Types of Parallelism with OpenMP

Task Parallelism

Task 1 Task 2 Task 3

Loop Parallelism

I=8I=7I=6I=5I=4I=3I=2I=1

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 13 / 78

Constructs and Regions

Constructs
Construct consists of an executable
directive and the associated loop,
statement, or structured block
� Implies lexical or static extent

Regions
Region consists of all code encountered
during execution of a specific instance of a
given construct (includes implicit code
introduced by the OpenMP implementation)
� Implies run-time or dynamic extent

#pragma omp parallel
{
// inside parallel construct
subroutine();

}
void subroutine () {
// outside parallel construct

}

#pragma omp parallel
{

// inside parallel region
subroutine();

}
void subroutine () {
// inside parallel region

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 14 / 78

Parallel Construct

� When a thread reaches a parallel
directive, it creates a team of threads
and becomes the master of the team
▶ By default, # of threads is # cores
▶ The master is a member of the team

and has thread number 0
� The code is duplicated, and all threads

will execute the code
� There is an implied barrier at the end

of a parallel section
� Only the master thread continues

execution past this point

#pragma omp parallel [clause...]
structured_block

Example of clauses
� private (list)
� shared (list)
� default (shared | none)
� firstprivate (list)
� reduction (operator: list)
� num_threads (int_expr)
� . . .

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 15 / 78

Threading in OpenMP

� Thread pool is a software design
pattern that maintains a pool of
threads waiting for work
▶ Advantageous when work is

short-lived
▶ Avoid the overhead of frequent

thread creation and destruction
� OpenMP implementations use a thread

pool so full cost of threads creation
and destruction is not incurred for
reach parallel region

#pragma omp parallel num_threads(4)
{

foobar ();
}

Only three threads are created excluding the
parent thread

pthread.cpp
Makefile
Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 16 / 78

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/pthread.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/Makefile

Specifying Number of Threads

Desired number of threads can be specified in many ways
(i) Setting environmental variable OMP_NUM_THREADS

(ii) Runtime OpenMP function omp_set_num_threads()
(iii) Clause in #pragma omp parallel region

� OMP_NUM_THREADS (if present) specifies the initial number of threads
� Calls to omp_set_num_threads() override the value of OMP_NUM_THREADS
� Presence of the num_threads clause overrides both other values

set-num-threads.cpp
Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 17 / 78

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/set-num-threads.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/Makefile

Distributing Work
Cyclic distribution double A[1000];

omp_set_num_threads(4);
#pragma omp parallel
{

int t_id = omp_get_thread_num();
for (int i = t_id; i < 1000; i += omp_get_num_threads())
A[i]= foo(i);

}

Block distribution double A[1000];
omp_set_num_threads(4);

#pragma omp parallel
{

int t_id = omp_get_thread_num();
int num_thrs = omp_get_num_threads();
int b_size = 1000 / num_thrs;
for (int i = t_id*b_size; i < (t_id+1)*b_size; i += num_thrs)
A[i]= foo(i);

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 18 / 78

Nested Parallelism
� If a thread in a team executing a parallel region encounters another parallel

directive, it creates a new team
� Nested parallelism creates parallel regions within a parallel region to handle large

parallel computations
▶ Can lead to oversubscription by creating lots of threads, hence turned off by default
▶ Set OMP_NESTED as TRUE or call omp_set_nested()

� If execution of a thread terminates while inside a parallel region, execution of all
threads in all teams terminates (order of termination is unspecified)

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 19 / 78

Recurring Example of Numerical Integration

Mathematically,
∫ 1

0
4

1+x2dx = 𝜋

We can approximate the integral as the sum
of the rectangles ΣNi=0F(xi)Δx ≈ 𝜋, where
each rectangle has width Δx and height
F(xi) at the middle of interval i

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 20 / 78

Serial Program to Compute Pi

static const uint64_t NUM_STEPS = 10000000;
double seq_pi() {
int i;
double x, pi, sum = 0.0;
double step = 1.0 / (double)NUM_STEPS;
for (i = 0; i < NUM_STEPS; i++) {
x = (i + 0.5) * step;
sum += 4.0 / (1.0 + x * x);

}
pi = step * sum;
return pi;

}

$ g++ -fopenmp compute-pi.cpp
$./a.out
3.14159

compute-pi.cpp
Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 21 / 78

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/compute-pi.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/Makefile

Computing Pi with OpenMP

double omp_pi_with_fs() {
omp_set_num_threads(NUM_THRS);
double sum[NUM_THRS] = {0.0}, pi = 0.0, step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{ // Parallel region with worker threads

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();
if (tid == 0)

num_thrs = nthrds;
double x;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
sum[tid] += 4.0 / (1.0 + x * x);

}
} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++)
pi += (sum[i] * step);

return pi;
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 22 / 78

Computing Pi with OpenMP

double omp_pi_with_fs() {
omp_set_num_threads(NUM_THRS);
double sum[NUM_THRS] = {0.0}, pi = 0.0, step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{ // Parallel region with worker threads

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();
if (tid == 0)

num_thrs = nthrds;
double x;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
sum[tid] += 4.0 / (1.0 + x * x);

}
} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++)
pi += (sum[i] * step);

return pi;
}

This is a correct implementation,
but . . .
Is there a problem with the code?

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 22 / 78

Avoid False Sharing

� Array sum[] is shared, with each thread accessing exactly one element
� Cache line holding multiple elements of sum will be locally cached by each

processor in its private L1 cache
� When a thread writes into an index in sum, the entire cache line becomes “dirty” and

causes invalidation of that line in all other processor’s caches
� Cache line thrashing due to “false sharing” hurts performance

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 23 / 78

Computing Pi: Avoid False Sharing

double omp_pi_without_fs1() {
omp_set_num_threads(NUM_THRS);
double sum[NUM_THRS][8], pi = 0.0, step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();
if (tid == 0)

num_thrs = nthrds;
double x;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
sum[tid][0] += 4.0 / (1.0 + x * x);

}
} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++)
pi += (sum[i][0] * step);

return pi;
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 24 / 78

Computing Pi: Avoid False Sharing

double omp_pi_without_fs1() {
omp_set_num_threads(NUM_THRS);
double sum[NUM_THRS][8], pi = 0.0, step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();
if (tid == 0)

num_thrs = nthrds;
double x;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
sum[tid][0] += 4.0 / (1.0 + x * x);

}
} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++)
pi += (sum[i][0] * step);

return pi;
}

The amount of padding depends on the cache line size
and the data type. Hard coding the padding amount is
not portable, because it may not work across different
cache configurations, architectures, and data types.

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 24 / 78

Optimize the Pi Program: Use Thread-Local Sum

double omp_pi_without_fs2() {
omp_set_num_threads(NUM_THRS);
double pi = 0.0;
double step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();
if (tid == 0)

num_thrs = nthrds;
double x, sum;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
// Scalar variable sum is thread-private
sum += 4.0 / (1.0 + x * x);

}
pi += (sum * step);

} // end #pragma omp parallel
return pi;

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 25 / 78

Optimize the Pi Program: Use Thread-Local Sum

double omp_pi_without_fs2() {
omp_set_num_threads(NUM_THRS);
double pi = 0.0;
double step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();
if (tid == 0)

num_thrs = nthrds;
double x, sum;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
// Scalar variable sum is thread-private
sum += 4.0 / (1.0 + x * x);

}
pi += (sum * step);

} // end #pragma omp parallel
return pi;

}

This program is now wrong.
Why?

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 26 / 78

Synchronization Constructs

critical Construct

� Only one thread can enter the critical
section at a time; others are held at
entry to critical section

� If the code has multiple unnamed
critical sections, they are all mutually
exclusive
▶ Can avoid this by naming critical

sections
▶ #pragma omp critical
(optional_name)

float res;
#pragma omp parallel
{

float B;
int id = omp_get_thread_num();
int nthrds = omp_get_num_threads();
for (int i=id; i<MAX; i+=nthrds) {
B = big_job(i);

#pragma omp critical
consume (B, res);

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 27 / 78

Correct Pi Program: Fix the Data Race

double omp_pi_without_fs2() {
omp_set_num_threads(NUM_THRS);
double pi = 0.0, step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();
if (tid == 0)

num_thrs = nthrds;
double x, sum;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
// Scalar variable sum is thread-private
sum += 4.0 / (1.0 + x * x);

}
#pragma omp critical

pi += (sum * step);
} // end #pragma omp parallel

return pi;
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 28 / 78

atomic Construct

� Atomically updates a memory location
� Uses hardware atomic instructions for

implementation; much lower overhead
than using critical sections

� Expression operation can be of type
▶ x binop= expr, x++, ++x, x–, –x
▶ x is a scalar type, binop can be +, *, -,

/, &, ˆ, |, «, or »

float res;
#pragma omp parallel
{

float B;
int id = omp_get_thread_num();
int nthrds = omp_get_num_threads();
for (int i=id; i<MAX; i+=nthrds) {
B = big_job(i);

#pragma omp atomic
res += B;

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 29 / 78

critical vs atomic

critical

� More general
� Locks code segments
� Serializes all unnamed critical sections
� Less efficient than atomic

atomic

� Less general
� Locks data variables
� Serializes operations on the same

shared data
� Makes use of hardware instructions to

provide atomicity

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 30 / 78

Barrier Synchronization
#pragma omp parallel private(id)
{

int id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for
for (i=0;i<N;i++) {
B[i]=big_calc2(i,A);

}

#pragma omp for nowait
for (i=0;i<N;i++) {
C[i]=big_calc2(B, i);

}

A[id] = big_calc4(id);
}

explicit barrier

implicit barrier

no implicit barrier, nowait cancels barrier creation

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 31 / 78

Use of nowait Clause

Can be useful if the two loops are independent

pragma omp for nowait
for (/* ... */) {
// .. first loop ..

}

pragma omp for
for (/* ... */) {
// .. second loop ..

}

pragma omp for nowait
for (int i=0; i<N; i++) {
a[i] = b[i] + c[i];

}

pragma omp for
for (int i=0; i<N; i++) {
d[i] = a[i] + b[i];

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 32 / 78

Clause ordered

� Specifies that iterations of the enclosed loop will be executed in the same order as if
they were executed on a serial processor

� It must appear within the extent of #pragma omp for or #pragma omp
parallel for

omp_set_num_threads(4);
#pragma omp parallel
{
#pragma omp for ordered

for (int i=0; i<N; i++) {
tmp = func1(i);

#pragma omp ordered
cout << tmp << "\n";

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 33 / 78

Clauses master and single

master

#pragma omp parallel
{

do_many_things();
#pragma omp master
{

reset_boundaries();
}

do_many_other_things();
}

single

#pragma omp parallel
{

do_many_things();
#pragma omp single
{

reset_boundaries();
}

do_many_other_things();
}

multiple threads of control

only master thread executes this
region, other threads skip it

no barrier is implied

a single thread executes this region,
may not be the master thread

implicit barrier, all other threads wait;
can remove with nowait clause

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 34 / 78

Computing Pi: Simplify Control Flow

double omp_pi_without_fs2() {
omp_set_num_threads(NUM_THRS);
double pi = 0.0, step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();

#pragma omp single
num_thrs = nthrds;
double x, sum;
for (int i = tid; i < NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
sum += 4.0 / (1.0 + x * x);

}
#pragma omp critical // Mutual exclusion

pi += (sum * step);
}

return pi;
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 35 / 78

Reductions in OpenMP

� reduction clause specifies an operator
and a list of reduction variables (must be
shared variables)
▶ OpenMP compiler creates local variables

for each thread, divides work to form
partial reductions, and generates code to
combine the partial reductions

▶ Local copy for each reduction variable is
initialized to operator’s identity (e.g., 0 for
+; 1 for *)

▶ Final result is placed in the shared variable

double sum = 0.0;
omp_set_num_threads(N);

#pragma omp parallel
{
double my_sum = 0.0;
my_sum = func(omp_get_thread_num());

#pragma omp critical
sum += my_sum;

}

double sum = 0.0;
omp_set_num_threads(N);

#pragma omp parallel reduction(+ : sum)
sum += func(omp_get_thread_num());

� Predefined set of associative operators can be used with reduction clause
▶ E.g., +, *, -, min, max

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 36 / 78

Computing Pi with OpenMP: Another version

double omp_pi_with_fs() {
omp_set_num_threads(NUM_THRS);
double sum[NUM_THRS] = {0.0}, pi = 0.0, step = 1.0 / (double)NUM_STEPS;
uint16_t num_thrs;

#pragma omp parallel
{

uint16_t tid = omp_get_thread_num();
uint16_t nthrds = omp_get_num_threads();

#pragma omp single
num_thrs = nthrds;
double x;
for (int i=tid; i<NUM_STEPS; i+=nthrds) {

x = (i + 0.5) * step;
sum[tid] += 4.0 / (1.0 + x * x);

}
} // end #pragma omp parallel
#pragma omp parallel for reduction(+ : pi)

for (int i = 0; i < num_thrs; i++)
pi += (sum[i] * step);

return pi;
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 37 / 78

Synchronization with Locks

� More flexible than critical sections (can
use multiple locks)

� critical locks a code segment, while
locks lock data

� More error-prone, can deadlock if a
thread does not unset a lock after
acquiring it

� Nested locks can be acquired if it is
available or owned by the same thread
▶ E.g., omp_init_nest_lock()

omp_lock_t lck;
omp_init_lock(&lck);

#pragma omp parallel
{

do_many_things();
omp_set_lock(&lck);
// critical section
omp_unset_lock(&lck);
do_many_other_things ();

}
omp_destroy_lock(&lck);

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 38 / 78

Data Sharing

Understanding Scope of Shared Data

� As with any shared-memory programming model, it is important to identify shared
data
▶ Multiple child threads may read and update the shared data
▶ Need to coordinate communication among the team by proper initialization and

assignment to variables
� Scope of a variable refers to the set of threads that can access the thread in a

parallel block
� Variables (declared outside the scope of a parallel region) are shared among threads

unless explicitly made private
▶ A variable in a parallel region can be either shared or private
▶ Variables declared within parallel region scope are private
▶ Stack variables declared in functions called from within a parallel region are private

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 39 / 78

Data Sharing: shared and private Clause

� #pragma omp parallel shared(x)
▶ shared (varlist) — Shared by all threads, all threads access the same storage area

for shared variables
▶ Responsibility for synchronizing accesses is on the programmer

� #pragma omp parallel private(x)
▶ private (varlist)

▶ A new object is declared for each thread in the team
▶ Variables declared private should be assumed to be uninitialized for each thread
▶ Each thread receives its own uninitialized variable x
▶ Variable x falls out-of-scope after the parallel region

▶ A global variable with the same name is unaffected (from v3+)

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 40 / 78

Clause firstprivate

� firstprivate (list)
▶ Variables in list are private, and are

initialized according to the value of
their original objects prior to entry
into the parallel construct

� #pragma omp parallel
firstprivate(x)
▶ x must be a global-scope variable
▶ Each thread receives a by-value copy

of x
▶ The local xs fall out-of-scope after

the parallel region
▶ The base global variable with the

same name is unaffected

incr = 0;
#pragma omp parallel firstprivate(incr)
{

...
for (i = 0; i <= MAX; i++) {
if ((i%2)==0) incr++;

}
...

}

Each thread gets its own copy of incr with
an initial value of 0

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 42 / 78

Clause lastprivate

� lastprivate (list)
▶ Variables in list are private
▶ The values from the last (sequential)

iteration or section are copied back to
the original objects

void sq2(int n, double *lastterm) {
double x; int i;

#pragma omp parallel for lastprivate(x)
for (i = 0; i < n; i++) {

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
*lastterm = x;

}

x has the value it held for the “last
sequential” iteration, i.e., for i=(n-1)

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 43 / 78

Clause default

� default (shared | none)
▶ Specify a default scope for all variables in the lexical extent of any parallel region

int a, b, c, n;
#pragma omp parallel for default(shared), private(a, b)

for (int i = 0; i < n; i++) {
// a and b are private variables
// c and n are shared variables

}

int n = 10;
std::vector<int> vector(n);
int a = 10;

#pragma omp parallel for default(none) shared(n, vector)
for (int i = 0; i < n; i++) {
vector[i] = i*a;

}
Is this snippet correct?

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 44 / 78

Data Sharing Example

int A = 1, B = 1, C = 1;
#pragma omp parallel private(B) firstprivate(C)

� What can we say about the scope of A, B, and C, and their values?
▶ Inside the parallel region

▶ A is shared by all threads; equals 1
▶ B and C are local to each thread
▶ B’s initial value is undefined, C’s initial value equals 1

▶ Following the parallel region
▶ B and C revert to their original values of 1
▶ A is either 1 or the value it was set to inside the parallel region

data-sharing.cpp
Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 45 / 78

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/data-sharing.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/Makefile

Threadprivate Variables

� A threadprivate variable provides one instance of a variable for each thread
� The variable refers to a unique storage block in each thread
� Enables persistent private variables, not limited in lifetime to one parallel region

int a, b;
pragma omp threadprivate(a, b)
// a and b are thread-private

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 47 / 78

private vs threadprivate

private

� Local to a parallel region
� Mostly allocated on the stack
� Value is assumed to be undefined on

entry and exit from a parallel region

threadprivate

� Persists across parallel regions
� Mostly allocated on the heap on

thread-local storage
� Value is undefined on entry to the first

parallel region

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 48 / 78

Clause copyin

� Used to initialize threadprivate data upon entry to a parallel region
� Specifies that the master thread’s value of a threadprivate variable should be copied

to the corresponding variables in the other threads

int a, b;
...

pragma omp threadprivate (a, b)
// .. code ..

pragma omp parallel copyin (a, b)
{

// a and b copied from master thread
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 49 / 78

Summary of Data Sharing Rules

� Variables are shared by default
� Variables declared within parallel blocks and subroutines called from within a

parallel region are private (reside on a stack private to each thread), unless scoped
otherwise

� Default scoping rule can be changed with default clause

� Recommendation
▶ Always use the default(none) clause
▶ Declare private variables in the parallel region

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 50 / 78

Worksharing Construct

Coarse-grained parallelism

Worksharing Construct
Sequential version
for(i=0;i< N;i++) {
a[i] = a[i] + b[i];

}

Manual worksharing
#pragma omp parallel
{
int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
if (id == Nthrds-1) iend = N;
for (i=istart; i<iend; i++)
a[i] = a[i] + b[i];

}

OpenMP worksharing construct
#pragma omp parallel
#pragma omp for

for(i=0;i<N;i++) {
a[i] = a[i] + b[i];

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 51 / 78

Worksharing Construct

� Loop structure in parallel region is same as sequential code
� No explicit thread-ID-based work division; OpenMP automatically divides loop

iterations among threads
� User can control work division: block, cyclic, block-cyclic, etc., via schedule clause

float res;
#pragma omp parallel for

for (int i = 0; i < MAX; i++) {
B = big_job(i);

}

If the team consists of only one thread then the worksharing region is not executed in
parallel

Variable i is made private to each thread (can be
specified explicitly with private(i) clause)

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 52 / 78

Limitations on the Loop Structure

� Loops need to be in the canonical form
▶ Cannot use while or do-while

for (init-expr; test-expr; incr-expr)
structured-block

� Loop variable must have integer or pointer type
� Cannot use a loop where the trip count cannot be determined

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 53 / 78

Dependences and Worksharing

OpenMP compiler will NOT check for dependences

#pragma omp parallel for
{
for (i=0; i<n; i++) {
tmp = 2.0*a[i];
a[i] = tmp;
b[i] = c[i]/tmp;

}
}

#pragma omp parallel for private(tmp)
{

for (i=0; i<n; i++) {
tmp = 2.0*a[i];
a[i] = tmp;
b[i] = c[i]/tmp;

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 54 / 78

Yet Another Refined Pi Implementation

double omp_pi() {
double x, pi, sum = 0.0;
double step = 1.0 / (double)NUM_STEPS;

#pragma omp parallel for private(x) reduction(+ : sum) num_threads(NUM_THRS)
for (int i = 0; i < NUM_STEPS; i++) {
x = (i + 0.5) * step;
sum += 4.0 / (1.0 + x * x);

}
pi = step * sum;
return pi;

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 55 / 78

Finer Control on Work Distribution

� #pragma omp parallel for schedule [..., <chunksize>]
▶ The schedule clause determines how loop iterators are mapped onto threads

▶ Most implementations use block partitioning
▶ Good assignment of iterations to threads can have a significant impact on performance

� #pragma omp parallel for schedule(static[,chunk])
▶ Fixed-sized chunks (or as equal as possible) assigned (alternating) to num_threads
▶ Typical default is: chunk = iterations/num_threads
▶ Set chunk = 1 for cyclic distribution

� #pragma omp parallel for schedule(dynamic[,chunk])
▶ Run-time scheduling (has overhead)
▶ Each thread grabs chunk iterations off queue until all iterations have been scheduled,

default is 1
▶ Good load-balancing for uneven workloads

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 56 / 78

Advantages with schedule Clause

� schedule(static)
▶ OpenMP guarantees that if you have two separate loops with the same number of

iterations and execute them with the same number of threads using static scheduling,
then each thread will receive exactly the same iteration range(s) in both parallel regions

▶ Beneficial for NUMA systems: if you touch some memory in the first loop, it will reside
on the NUMA node where the executing thread was. Then in the second loop the same
thread could access the same memory location faster since it will reside on the same
NUMA node.

What’s the difference between "static" and "dynamic" schedule in OpenMP?

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 57 / 78

https://stackoverflow.com/questions/10850155/whats-the-difference-between-static-and-dynamic-schedule-in-openmp

Finer Control on Work Distribution

� #pragma omp parallel for schedule(guided[,chunk])
▶ Threads dynamically grab blocks of iterations
▶ Chunk size starts relatively large, to get all threads busy with good amortization of

overhead
▶ Subsequently, chunk size is reduced to chunk to produce good workload balance
▶ By default, initial size is iterations/num_threads

� #pragma omp parallel for schedule(runtime)
▶ Decision deferred till run time
▶ Schedule and chunk size taken from OMP_SCHEDULE environment variable or from

runtime library routines
▶ $ export OMP_SCHEDULE="static,1"

� #pragma omp parallel for schedule(auto)
▶ Schedule is left to the compiler runtime to choose (need not be any of the above)
▶ Any possible mapping of iterations to threads in the team can be chosen

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 58 / 78

Example of guided Schedule with Two Threads
Thread Chunk Chunk Size Remaining Iterations

0 1–5000 5000 5000
1 5001–7500 2500 2500
1 7501–8750 1250 1250
1 8751–9375 625 625
0 9376–9688 313 312
1 9689–9844 156 156
0 9845–9922 78 78
1 9923–9961 39 39
0 9962–9981 20 19
1 9982–9991 10 9
0 9992–9996 5 4
0 9997–9998 2 2
0 9999 1 1
1 1000 1 0

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 59 / 78

Understanding the schedule Clause

schedule clause When to use?

static Predetermined and predictable by the programmer; low overhead
at run time, scheduling is done at compile-time

dynamic Unpredictable, highly variable work per iteration; greater over-
head at run-time, more complex scheduling logic

guided Special case of dynamic to reduce scheduling overhead
auto When the runtime can learn from previous executions of the

same loop

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 60 / 78

Nested Loops

� We can parallelize multiple loops in a
perfectly nested rectangular loop nest
with the collapse clause

� OpenMP will form a single loop of
length N × M and then parallelize the
loop, useful when there are more than
N threads

#pragma omp parallel for collapse(2)
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
}

}

#pragma omp parallel for num_threads(2) collapse(2)
for (int i = 0; i < 4; i++)

for (int j = 0; j <= i; j++)
cout << i << j << omp_get_thread_num()) << "\n";

j is implicitly private with
the collapse clause

Does not compile with GCC
7.4 but compiles with GCC 13

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 61 / 78

Sections

� Non-iterative worksharing construct
� Worksharing for function-level

parallelism; complementary to omp
for loops

� The sections construct gives a different
structured block to each thread

#pragma omp parallel
{
...
#pragma omp sections
{

#pragma omp section
x_calculation();
#pragma omp section
y_calculation();
#pragma omp section
z_calculation();

} // implicit barrier
...

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 62 / 78

Explicit Tasks

Dealing with Non-canonical Loops

� OpenMP can only parallelize loops in
canonical form with loop counts known
at runtime

� Not all programs have canonical loops
� Consider a program to traverse a

linked list

p = head;
while (p) {

dowork(p);
p = p-> next;

}

How can we modify the program to parallelize
with OpenMP?

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 63 / 78

Possible Idea
1

2

3

while (p != NULL) {
p = p->next;
count++;

}

p = head;
for (int i=0; i<count; i++) {

parr[i] = p;
}

#pragma omp parallel for schedule (static,1)
for (int i=0; i<count; i++)

dowork(parr[i]);

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 64 / 78

Possible Idea
1

2

3

while (p != NULL) {
p = p->next;
count++;

}

p = head;
for (int i=0; i<count; i++) {

parr[i] = p;
}

#pragma omp parallel for schedule (static,1)
for (int i=0; i<count; i++)

dowork(parr[i]);

This works, but is inelegant (had to use a vector or array as
an intermediate) and is inefficient (requires multiple passes
over the data)

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 64 / 78

Tasks in OpenMP

� Explicit tasks were introduced in
OpenMP 3.0

� Tasks are independent units of work
and are composed of (i) code to
execute, (ii) data to compute with, and
(iii) control variables

� Threads are assigned to perform the
work of each task

� The runtime system decides when
tasks are executed

� Tasks may be deferred or may be
executed immediately

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 65 / 78

Tasking Concept in OpenMP

Thread

Thread

Thread

Thread

Generate
tasks

Ex
ec

ut
e

ta
sk

s

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 66 / 78

Tasks in OpenMP

� The task construct includes a
structured block of code

� Inside a parallel region, a thread
encountering a task construct will
package up the code block and its data
for execution

� Tasks can be nested, i.e., a task may
itself generate tasks

� #pragma omp taskwait waits for
child tasks to complete

#pragma omp parallel
{

#pragma omp master
{
#pragma omp task
tapti();
#pragma omp task
tista();
#pragma omp task
damodar();

}

}

Thread 0 packages data

Tasks executed by
threads in some
order

All tasks complete before
the barrier ends

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 67 / 78

Example of Tasks

#pragma omp parallel
{
#pragma omp single
{
cout << "A ";
#pragma omp task
cout << "race ";
#pragma omp task
cout << "car ";
cout << "is fun to watch!";

}
}

#pragma omp parallel
{

#pragma omp single
{
cout << "A ";
#pragma omp task
cout << "race ";
#pragma omp task
cout << "car ";
#pragma omp taskwait
cout << "is fun to watch!";

}
}

Tasks are executed in
any order

array-sum.cpp
fibonacci.cpp
Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 68 / 78

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/array-sum.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/fibonacci.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/Makefile

taskwait and taskgroup

void generate () {
#pragma omp parallel
#pragma omp single
{
#pragma omp task
{
printf("task 1\n");
#pragma omp task
printf("task 2\n");
// Task 2 is a child of Task 1

}
#pragma omp taskwait

#pragma omp task
printf("task 3\n");

}
}

� taskwait suspends a thread till all
the child tasks generated before the
taskwait are completed

� With taskgroup, the thread waits till
all the child tasks and their
descendant tasks complete execution

Waits only for task 1 to complete
before task 3 is scheduled

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 69 / 78

taskwait and taskgroup

#pragma omp parallel
#pragma omp single
{
#pragma omp taskgroup
{
#pragma omp task
{
printf("task 1\n");
#pragma omp task
printf("task 2\n");

}
} // end of taskgroup
#pragma omp task
printf("task 3\n");

}

� taskwait suspends a thread till all
the child tasks generated before the
taskwait are completed

� With taskgroup, the thread waits till
all the child tasks and their
descendant tasks complete execution

Waits for both tasks 1 and 2

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 70 / 78

Generating Large Number of Tasks

void generate () {
const int num_elem=1e7;
int arr[num_elem];

#pragma omp parallel
{

#pragma omp single
{
for (int i=0; i<num_elem; i++) {
#pragma omp task
check(arr[i]);

}
}

}
}

The untied clause will allow any thread to
resume the task generating loop

� If the number of tasks reaches a limit,
the task generator thread can stop
creating further tasks and starts
executing unassigned tasks

� If the generator thread takes a long
time to finish executing unassigned
tasks, the other threads will idle till the
generator thread is done

� The tasks are “tied” to the generator
thread

� The generator thread can start
generating new tasks once the number
of unassigned tasks becomes low

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 71 / 78

SIMD Programming

Fine-grained parallelism

SIMD Programming with OpenMP

Single Program Multiple Data
� Each thread runs the same program
� Selection of data, or branching conditions, is based on thread ID
� In OpenMP implementations

(i) Perform work division in parallel loops
(ii) Query thread ID and num_threads

(iii) Partition work among threads

Single Instruction Multiple Data
� Support in older versions of OpenMP required vendor-specific extensions

▶ Programming models (e.g., Intel Cilk Plus)
▶ Compiler pragmas (e.g., #pragma vector)
▶ Low-level constructs or intrinsics (e.g., _mm_add_pd())

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 72 / 78

SIMD Programming with OpenMP

Single Program Multiple Data
� Each thread runs the same program
� Selection of data, or branching conditions, is based on thread ID
� In OpenMP implementations

(i) Perform work division in parallel loops
(ii) Query thread ID and num_threads

(iii) Partition work among threads

Single Instruction Multiple Data
� Support in older versions of OpenMP required vendor-specific extensions

▶ Programming models (e.g., Intel Cilk Plus)
▶ Compiler pragmas (e.g., #pragma vector)
▶ Low-level constructs or intrinsics (e.g., _mm_add_pd())

With SIMD, threads execute the same instruction.
With SPMD, threads may be executing different
instructions.

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 73 / 78

simd Construct

� #pragma omp simd
▶ Introduced in version 4.0
▶ Can be applied to a loop to indicate

that the loop can be transformed to a
SIMD loop

▶ Partition loop into chunks that fit a
SIMD vector register

▶ Does not parallelize the loop body
with threads

#pragma omp simd simdlen(16)
for (int i=0; i<n; i++)
a[i] = b[i] + c[i]

#pragma omp simd safelen(8)
for (int i=m; i<n; i++)
a[i] = a[i-m] + b[i]

#pragma omp simd collapse(2)
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)

a[i,j] = b[i,j] + c[i,j]

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 74 / 78

simd Worksharing Construct

� #pragma omp for simd
▶ Parallelize and vectorize a loop nest
▶ Distribute a loop’s iteration space across a thread team
▶ Subdivide loop chunks to fit a SIMD vector register

#pragma omp simd for collapse(2)
for (int i=0; i<n; i++)

for (int j=0; j<n; j++)
a[i,j] = b[i,j] + c[i,j]

omp simd features

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 75 / 78

https://chryswoods.com/vector_c++/features.html

SIMD Function Vectorization

#pragma omp declare simd
function-definition-or-declaration

� Declare one or more functions to be compiled for calls from a SIMD-parallel loop
� Enables creation of one or more versions to allow for SIMD processing

#pragma omp declare simd
float min(float a, float b) {
return a < b ? a : b;

}

// Vector version
vec8 min_v(vec8 a, vec8 b) {
return a < b ? a : b;

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 76 / 78

declare simd Construct

#pragma omp simd private(temp) reduction(+:sum)
for (i=0; i<n; i++) {
sum += add_values(a[i], b[i]);

}
#pragma omp declare simd
int add_values(int a, int b) {
return a+b;

}

� #pragma omp simd alone may not be sufficient to vectorize the call to
add_values()

� Compiler can inline function add_values() and vectorize it across the loop over n

simd-function.cpp

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Sem 2024-25-I 77 / 78

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/openmp/hello-world.cpp

References

P. Pacheco and M. Malensek. An Introduction to Parallel Programming. Chapter 5, 2nd edition,
Morgan Kaufmann.

OpenMP Application Programming Interface v5.2.

OpenMP Application Programming Interface Examples v5.2.

T. Mattson. A “Hands-on” Introduction to OpenMP.

T. Mattson et al. The OpenMP Common Core: A hands on exploration.

Blaise Barney. OpenMP.

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5.2.2-final.pdf
https://www.openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/omp-common-core.pdf
https://hpc-tutorials.llnl.gov/openmp/

	Synchronization Constructs
	Data Sharing
	Worksharing Construct
	Explicit Tasks
	SIMD Programming

