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Enhancing Program Performance

Possible ideas

® Adequate fine-grained parallelism

» Multiple pipelined functional units in each core
» Exploit vector instruction sets (SSE, AVX, AVX-512)

® Adequate parallelism for SMP-type systems
» Keep multiple asynchronous processors busy with work

® Minimize cost of memory accesses
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Role of a Good Compiler

Try and extract performance automatically J

Optimize memory access latency

@ Code restructuring optimizations
@ Prefetching optimizations
@ Data layout optimizations
@ Code layout optimizations
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Loop Optimizations

@ Loops are one of most commonly used constructs in HPC program
@ Compiler performs many loop optimization techniques automatically

» In some cases, source code modifications can enhance optimizer’s ability to transform
code
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Reordering Transformations

A reordering transformation does not add or remove statements from a loop nest
@ Only reorders the execution of the statements that are already in the loop

Do not add or remove Do not add or remove
statements any new dependences

A reordering transformation is valid if it preserves all existing dependences in the loop
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Iteration Reordering and Parallelization

@ Atransformation that reorders the iterations of a level-k loop, without making any
other changes, is valid if the loop carries no dependence

@ Each iteration of a loop may be executed in parallel if it carries no dependences
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Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops



Data Dependence Graph and Parallelization

e If the Data Dependence Graph (DDG) is acyclic, then vectorization of the program is
possible and is straightforward

® Otherwise, try to transform the DDG to an acyclic graph

d

FOR I=1,N
S1 A(I,]) = B(I-1,J+1) + C
S2 B(I,J) = A(I-1,3-1) + K F}
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Loop Interchange (Loop Permutation)

® Switch the nesting order of loops in a bDOI =1, N
perfect loop nest DO J =1, M
A(I,J+1) = ACI,]) + B

@ Can increase parallelism, can improve
spatial locality

® Dependence is now carried by the DOD('; ; i'lM N
outer loop, inner loop can be S ACT J,,;) = AC(I,]) + B
. ’ ’
vectorized
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Example of Loop Interchange
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Validity of Loop Interchange

(i) Construct direction vectors for all possible dependences in the loop to form a
direction matrix

» Identical direction vectors are represented by a single row in the matrix
(ii) Compute direction vectors after permutation

(iii) Permutation of the loops in a perfect nest is legal iff there are no “-” direction as the
leftmost non-“0" direction in any direction vector

® Loop interchange is valid for a 2D loop DO J =1, M

nest if none of the dependence vectors DOI =1, N

has any negative components A(I,J+1) = A(I+a2,]) + B
® Interchange is legal: (1,1), (2,1), (0,),

(3,0)

® Interchange is not legal: (1,-1), (3,-2)
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Validity of Loop Permutation

@ Generalization to higher-dimensional loops: Permute all dependence vectors exactly
the same way as the intended loop permutation

@ If any permuted vector is lexicographically negative, permutation is illegal

® Example: d, = (1,-1,1) and d, = (0,2, -1)
» ijk — jik? (1,-1,1) — (=1,1,1): illegal
» ijk = kij? (0,2,-1) — (-1,0,2): illegal
» ijk — ikj? (0,2,-1) — (0,-1,2): illegal
» No valid permutation: j cannot be outermost loop (-1 component in d,), and k cannot
be outermost loop (-1 component in ds)

® A loop nest is fully permutable if any permutation transformation to the loop nest is
legal
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Benefits from Loop Permutation

for (i=0; i<n; i++)
for (j=0; j<n; j++)
for (k=0; k<n; k++)
C[il[j]1 += A[il[kI*B[kI[3];

Stride  ikj kij jik ijk ki kji

Clil[j]l 1 1 o] o} n n
A[il[k] o o) 1 1 n n
B[kI[j] 1 1 n n o) o)
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Does Loop Interchange/Permutation Always Help?

DO 1 = 1, 10000 DO i =1, N
DO j = 1, 1000 DO j =1, M
a(i) = a(i) + b(j,i) * c(i) DO k = 1, L

a(i+1,j+1,k) = a(i,j,k) + b

@ Benefits from loop interchange depends on the target machine, the data structures
accessed, memory layout and stride patterns
@ Optimization choices for the snippet on the right

» Vectorize J and K
» Move K outermost and parallelize K with threads
» Move I innermost and vectorize assuming column-major layout
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Loop Shifting

@ In a perfect loop nest, if loops at leveli,i+1,...i+n carry no dependence, i.e., all
dependences are carried by loops at level less than i or greater than i + n, then it is
always legal to shift these loops inside of loopi+n+1

® These loops will not carry any dependences in their new position

Loops i to i+n
Dependence carried ,‘E + O + O O O
by outer loops
yoderioe 0O + - + + 0
0 O 0 + + E Dependence carried
by inner loops
0 0 0 0 +
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Loop Shift for Matrix Multiply

DO I =1, N
DO J = 1, N
DO K = 1, N
S ACI,]3) = A(I,]) + B(I,K)*C(K,J)

Is the loop nest
vectorizable as is?
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Scalar Expansion

Eliminates dependences that arise from reuse of memory locations at the cost of extra
memory

DO I =1, N DO I = 1, N
S1 T = A(I) S1 $T(I) = A(I)
S2 A(I) = B(I) S2 A(I) = B(I)
S3 B(I) = S3 B(I) = $T(I)
tput due to T (89) T=$T(N)

anti dueto A (51)

O anti due to A (53")
S

'¢) @ 03 anp nue

'9) g 01 8np nue

m
(.

(G
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Scalar Expansion

DOI =1, N $T(0) = T
T =T+ A(I) + A(I-1) DOI =1, N
ACI) = T $T(I) = $T(I-1) + A(I) + A(I-1)
A(I) = $T(I)
T = $T(N)

Can we parallelize
the I loop?
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Understanding Scalar Expansion

Pros Cons
+ Eliminates dependences due to reuse — Increases memory and addressing
of memory locations, helps with overhead
parallelism —
strip mining N
[ ) strip loop
DOT=1,N DO I =1, N, 64 DOI=1,N,6
T = AC(I) + A(I+1) = DO i = o, 63 = DO i = e, 63
A(I) = T + B(I) T = A(I+1) + A(I+1+1i) $T(1) = A(I+1i) + A(I+1+1i)
- A(I+i) = T + B(I+1i) A(I+1i) = $T(i) + B(I+i)

! can also try forward b

. substitution |

Strip mining (also known as sectioning) is a special case of 1-D loop tiling
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Limits of Scalar Expansion

DO I = 1, 100 DO I = 1, 100
S1 T = A(I) + B(I) S1 $T(I) = A(I) + B(I)
S2 C(I) =T+ T S2 C(I) = $7(1) + $7(1)
S3 T =D(I) - B(I) S3 $7(I) = D(I) - B(I)
A A(T+1) =T = T Sy A(I+1) = $T(I) * $7(I)

A

Can we vectorize the
loop nest?
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Scalar Renaming

DO I = 1, 100 DO I = 1, 100
S1 T = ACI) + B(I) S1 T1 = A(I) + B(I)
S2 C(I) =T+ T S2 C(I) =T1 + T2
S3 T = D(I) - B(I) S3 T2 = D(I) - B(I)
YA A(I+1) =T * T Sy A(I+1) = T2 * T2
T =T2
i
[Can we vectorize the }
loop nest?
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Allow Vectorization with Statement Interchange

DO I = 1, 100 DO I = 1, 100
S1 T1 = A(I) + B(I) — S3 T2 = D(I) - B(I)
S2 C(I) =T1 + T2 Sy A(I+1) = T2 * T2
S3 T2 = D(I) - B(I) S1 T1 = A(I) + B(I)
YA A(I+1) = T2 * T2 S2 C(I) =T1 + T2
T =T2 T =T2
S3 T2(12:1200) = D(1:100) - B(1:100)
- St A(2:101) = T2(1:100) * T2(1:100)
S1 Ta(a:1200) = A(1:100) + B(1:100)
S2 C(1:1200) = T1(1:100) + T1(1:100)
T = T2(100)
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Array Renaming

DO I = 1, 100 DO I = 1, 100

S A(I) = A(I-1) + X S1 $A(I) = A(I-1) + X

S2 Y(I) = A(T) + Z S2 Y(I) = $A(I) + Z

S3 A(I) = B(I) + C S3 A(I) = B(I) + C
Array renaming requires

51 Ooo S5 sophisticated analysis
50
5—1
1
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Node Splitting

DO I = 1, 100 DO I = 1, 100
S1 A(I) = X(I+2) + X(I) Se $X(I) = X(I+1)
S2 X(I+1) = B(I) + 10 Sa A(I) = $X(I) + X(I)
S2 X(I+1) = B(I) + 10
N
S [Can we vectorize the ]
1 loop nest?
55"
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Index-Set Spllttlng @
strip mining

DOI =1, 100 DO T =1, 100, 20
A(I+20) = A(I) + B DO i = I, I+19
A(i+20) = A(i) + B

An index-set splitting transformation subdivides the loop into different iteration ranges
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Loop Peeling

@ Splits any problematic iterations (could be first, middle, or last few) from the loop
body

@ Change from a loop-carried dependence to loop-independent dependence
@ Transformed loop carries no dependence, can be parallelized

@ Peeled iterations execute in the original order, transformation is always legal to
perform

N A(1) = A(1) + A(2)
ACI) + A(2) DOI =2, N
A(I) = A(I) + A(2)

Loop splitting
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Loop Splitting [assume N is J
divisible by 2

DOI =1, N M = N/2
(1) = A(N/2) + B(I) DO I =1, M-1
A(I) = A(N/2) + B(I)
A(M) = A(N/2) + B(I)
DO I = M+1, N
A(I) = A(N/2) + B(I)
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Section-Based Splitting

S1

S3is

independent | S2

DO

III—‘

N
1,

1)

I
DO

J

B(J

DO J

A(J,I+1
DO J
A(J,I+1

= 1,N/2

) =

\

A(J I) + C

B(J,I) + D

= N/2+1, N
) =

B(J,I) + D

DO I = 1,N
DO J = 1, N/2
S1 B(J,I) = A(J,I) + C
DO J = 1,N
S2 A(J,I+1) = B(J,I) +
DO I = 1,N
DO J = N/2+1, N
S3 A(3,I+1) = B(J,I) +
DO I = 1,N
DO J = 1,N/2
S1 B(J,I) = A(J,I) + C
DO J = 1, N/2
S2 AT, I+1) B(J,I) +

S1
S2

cannot
vectorize I

M = N/2

A(M+1:N,2:N+1) = B(M+1:N,12:N) + D

DOI=1,N
B(1:M,I)
A(1:M,I+1

)

A(1:M,I) + C
= B(1:M,I) + D
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Loop Skewing ‘

DOI =1, N Parallel
DO J =1, N iterations
S A(I,J) = A(I-1,3) + A(I,J-1)
ANN
Which loops carry
dependences?
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Loop Skewing

j:I+J
Parallel

iterations

DO

I=1,N
o - @
s ACT,3-1) = A(I-1,3-I) + AT, j-I-1) ' '
What are the dependences j=a @ @ @
now? Which loop carries the

dependence?

Loop skewing skews the inner loop relative to the outer loop by adding the index of the
outer loop times a skewing factor f to the bounds of the inner loop and subtracting the
same value from all the uses of the inner loop index
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Perform Loop Interchange

Given a dependency vector (a, b), skewing transforms it to (a, fa + b)

DOI =1, N
DO j = I+a, I+N
S A(Irj_I) = A(I_lyj_I) > A(ij_I_l)
U e
 Motzkin elimination
DO j = 2, N+N A
DO I = max(1,j-N), min(N,j-1)
S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)
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Understanding Loop Skewing

Pros Cons
+ Reshapes the iteration space to find — Resulting iteration space can be
possible parallelism trapezoidal
+ Preserves lexicographic order of the — Irregular loops are not very amenable
dependences, is always legal for vectorization
+ Allows for loop interchange in future — Need to be careful about load
imbalance
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Loop Unrolling (Loop Unwinding)

@ Reduce number of iterations of loops
@ Add statement(s) to do work of missing iterations

@ JIT compilers try to perform unrolling at run-time 4way inner
loop unrolling

for (i=0; i<n; i++) { for (i=0; i<n; i++) {
for (j=o; j<n; j++) { for (j=o0; j<n; j+=4) {
y[il = y[i] + alil[j1*x[j]; y[i] = y[i] + al[i][j1*x[j]
+ alil[j+alxx[j+1]
} + alillj+21*x[j+2]
+ ali][j+3]*x[j+31];
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Outer Loop Unrolling + Inner Loop Jamming

for (i=o0; i<2*n; i++) { for (i=o; i<2#*n; i+=2) { for (i=0; i<2#*n; i+=2) {

for (j=o; j<m; j++) { for (j=o; j<m; j++) { for (j=o; j<m; j++) {

loop-body(i,j); loop-body(i,j); loop-body(i,j);

} } loop-body(i+1,3);

} for (j=o; j<m; j++) { }
loop-body(i+1,3); }
}
} N

operation-level parallelism in the in-

2-way outer unroll does not increase
ner loop
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Is Loop Unroll and Jam Legal?

DO 1, N
= , M

T
DO J = 1
A(I,J) = A(I-1,3+1)+C

I =
DO J
A(I,] A(I-1,3+1)+C

1, M
) =
A(I+1,]) = A(I,J+1)+C
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Validity Condition for Loop Unroll and Jam

@ Complete unroll and jam of a loop is equivalent to a loop permutation that moves
that loop innermost, without changing order of other loops

@ If such a loop permutation is valid, unroll and jam of the loop is valid

@ Example: 4D loop 1jk1;d; = (1,-1,0,2),d> = (1,1,-2,-1)
i di — (-1,0,2,1), = invalid to unroll and jam
j dy — (1,0,2,-1);d> — (1,-2,-1,1), = valid to unroll and jam
k di — (1,-1,2,0);d> — (1,1,—1,-2), = valid to unroll and jam
| d; and d, are unchanged; innermost loop can always be unrolled
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Understanding Loop Unrolling

Pros Cons
+ Small loop bodies are problematic, — Increases the executable size
reduces control overhead of loops — Increases register usage
+ Increases operation-level parallelism — May prevent function inlining
in loop body

+ Allows other optimizations like reuse
of temporaries across iterations
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Loop Tiling (Loop Blocking)

@ Improve data reuse by chunking the data in to smaller tiles (blocks)
» All the required blocks are supposed to fit in the cache

@ Performs strip mining in multiple array dimensions

@ Tries to exploit spatial and temporal locality of data

@ Determining the tile size
» Requires accurate estimate of array accesses and the cache size of the target machine
» Loop nest order also influences performance

» Difficult theoretical problem, usually heuristics are applied
» Cache-oblivious algorithms make efficient use of cache without explicit blocking

for (1 = 0; 1 < N; i++) { for (ii = o; ii < N; ii+=B) {
for (i = ii; 1 < min(N,ii+B), i++) {
}
}
}
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Validity Condition for Loop Tiling

® A band of loops is fully permutable if
all permutations of the loops in that
band are legal

® A contiguous band of loops can be
tiled if they are fully permutable

® Example: d = (1,2,-3)
» Tiling all three loops ijk is not valid,
since the permutation kij is invalid
» 2D tiling of band ij is valid
» 2D tiling of band jk is valid

Swarnendu Biswas (IIT Kanpur)

for (1 = 0; 1 < n; i++)
for (j = 0; j < n; j++)

k = 0; k < n; k++)
loop_body(i,j,k)

for (it = o; it < n; it+=T)
for (jt = ©; jt < n; jt+=T)
for (i = it; 1 < it+T; i++)
for (j = jt; j < jt«T; j++)
for (k = 0; k < n; k++)
loop_body(i,j,k)
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Enhancing Coarse-Grained Parallelism

Focus is on parallelization of outer loops



Find Work for Threads

Setup

® Symmetric multiprocessors with shared memory

@ Threads are running on each core and are coordinating execution with
occasional synchronization

Challenge Balance the granularity of parallelism with communication overheads

Swarnendu Biswas (IIT Kanpur)
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Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Running everything on one processor Very fine-grained parallelism achieves good
achieves minimal communication and load balance, but benefits may be
synchronization overhead outweighed by frequent communication

and synchronization
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Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across tr ~cer

Running eve- An optimizing compiler is “hieves good
achieves mi be
synchroniza expected to find the sweet spot Inication
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Privatization

@ Privatization is similar to scalar expansion

® Temporaries can be made local to each iteration

DO I = 1,N
S1 T = A(I)
S2 A(I) = B(I) S1
S3 B(I) =T S2

S3

PARALLEL DO I
PRIVATE t
t = A(I)
A(I) = B(I)
B(I) = t

Swarnendu Biswas (IIT Kanpur)
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Privatization

A scalar variable x in a loop L is privatizable if every path from the entry of L to a use of x
in the loop passes through a definition of x

® No use of the variable is upward exposed, i.e., the use never reads a value that was
assigned outside the loop

® No use of the variable is from an assignment in an earlier iteration

Computing upward-exposed variables from a block BB

up(BB) = use(BB) U (~def (BB) N Uyesucc(es) UP(Y)

Computing privatizable variables for a loop body B where BB, is
the entry block

private(B) = ~up(BBo) 0 (Uyes def (v))
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Privatization

e If all dependences carried by a loop involve a privatizable variable, then loop can be
parallelized by making the variables private
@ Preferred compared to scalar expansion

» Less memory requirement
» Scalar expansion may suffer from false sharing

® However, there can be situations where scalar expansion works but privatization
does not
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Comparing Privatization and Scalar Expansion

DOI =1, N scalar PARALLEL DO I = 1, N
T = AC(T) + B(I) = T$(I) = A(I) + B(I)
A(I-1) = T expansion A(I-1) = T$(I)

{Privatization U

DOI =1, N PARALLEL DO I = 1, N
PRIVATE T T$(I) = A(I) + B(I)
T = AC(T) + B(I) PARALLEL DO I = 1, N
A(I-1) = T A(I-1) = T$(I)
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Loop Distribution (Loop Fission)

DO I = 1, 100 DO I = 1, 100
DO J = 1, 100 DO J = 1, 100
Sa A(I,J) = B(I,J) + C(I,3) Si1 A(I,J) = B(I,J) + C(I,3)
S2 D(I,J) = A(I,J-1) * 2.0
DO J = 1, 100
S2 D(I,]) = A(I,J-1) * 2.0
[EUnﬁnatesloop—carﬁedj
dependences
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Validity Condition for Loop Distribution

A loop with two statements can be distributed if there are no dependences from any
instance of the later statement to any instance of the earlier one

e Sufficient (but not necessary) condition
® Generalizes to more statements

DOI =1, N DO I =1, N
S1 A(I) = B(I) + c(I) S1 A(I) = B(I) + C(I)
S2 E(I) = A(I+1) * D(I) S2 E(I) = A(I-1) * D(I)
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Performing Loop Distribution

Steps
(i) Build the DDG

(ii) Identify strongly-connected
components (SCCs) in the DDG

(ili) Make each SCC a separate loop

(iv) Arrange the new loops in a
topological order of the DDG

DOI=1,N
S1 A[I] = A[I] + B[I-1]
s2 B[I] = C[I-1] + X =
S3 C[1] = B[I] + Y
S4 D[I] = Cc[I] + D[I-1]

Swarnendu Biswas (IIT Kanpur)
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doo
2L S3
/ 5 Oeo
61 ;
S1 Sy )
1
DOI =1, N
S2 B[I] = C[I-1] + X
S3 clI] = B[I] + Y
DOI =1, N
S1 A[I] = A[I] + B[I-1]
DOI =1, N
Sy D[I] = Cc[I] + D[I-1]
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Understanding Loop Distribution

Pros Cons
+ Execute source of a dependence before — Can increase the synchronization
the sink required between dependence points

+ Reduces the memory footprint of the
original loop for both data and code

+ Improves opportunities for
vectorization
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Loop Alignment

Unlike loop distribution, realign the loop to compute and use the values in the same
iteration

DO I =2, N DO i = 1, N+1
S1 A(I) = B(I) + c(I) if 1 > 1 88 1 < N+1
S2 D(I) = A(I-1) * 2.0 S1 A(1) = B(i) + c(1)
if 1 < N
N S2 D(i+1) = A({) * 2.0

[cannot be parallelized ] [

carried dependence becomes
loop independent

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-1 51/70



Can Loop Alignment Eliminate All Carried Dependences?

DO I =1, N DO 1 = 1, N+1
S1 A(I) = B(I) + if 1 > 12
s2  B(I+1) = A(I ) D = 52 B(i) = A(i-1) + D
<D if 1 < N+21
= +
Ais aligned, B = AH) = BE) © 6
is misaligned
DOI =1, N DO i =0, N
S1 A(I+1) = B(I) + C if 1 >0
S2 X(I) = A(I+1) + A(I) = S1 A(i+1) = B(i) + C
if i < N
S2 X(i+1) = A(i+2) + A(i+1)
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Loop Fusion (Loop Jamming)

DOT-=1, N l1 DOT =1, N
s1 A(I) = B(I) + 1 ACT) = B(I) + 1
s2 (1) = AC(T) + C(I-1) = 12 DOTI=1,N
s3 D(I) = A(T) + X c(1) = ACT) + C(I-1)
L3 DOI =1, N
D(I) = A(T) + X
13 DO I = 1, N
A(I) = B(I) + 2
= D(I) = A(I) + X
l2 DOTI=1,N
C(I) = A(I) + Cc(I-2)
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Validity Condition for Loop Fusion

@ Consider a loop-independent dependence between statements in two different
loops (i.e., from S1to S2)

@ A dependence is fusion-preventing if fusing the two loops causes the dependence to
be carried by the combined loop in the reverse direction (from S2 to $1)

DOI =1, N DOI =1, N

S1 A(I) = B(I) + C Si1 A(I) = B(I) + C
DO I = 1, N S2 D(I) = A(I+1) + E

S2 D(I) = A(I+1) + E N

loop-independent backward loop-carried
flow dependence anti dependence
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Understanding Loop Fusion

Pros

+ Reduce overhead of loops

Cons

— May decrease data locality in the fused

+ May improve temporal locality loop
DOT =1, N DOT =1, N
S1 A(I) = B(I) + C Si1 A(I) = B(I) + C
DO I = 1, N S2 D(I) = A(I-1) + E
S2 D(I) = A(I-1) + E
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Loop Interchange

DOI =1, N DO J =1, M
DO J =1, M = DO I =1, N
A(I+1,3) = A(I,J) + B(I,J) A(I+1,]1) = A(I,J) + B(I,J)

- ™ X Dependence-free loops should
[Parallellzmg J is good for vector- ] move to the outermost level U

ization, but not for coarse-grained
parallelism

PARALLEL DO J = 1, M
DOI =1, N
A(I+1,]1) = A(I,3) + B(I,J)
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Condition for Loop Interchange

In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the
column of the direction matrix for that nest contains only “0” entries

DO I =
DO J =1, M
A(I+1,J+1) = A(I,3) + B(I,J)
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Code Generation Strategy

(i) Continue till there are no more columns to move

» Choose a loop from the direction matrix that has all “0” entries in the column
» Move it to the outermost position
» Eliminate the column from the direction matrix

(ii) Pick loop with most “+” entries, move to the next outermost position

» Generate a sequential loop
» Eliminate the column
» Eliminate any rows that represent dependences carried by this loop

(iii) Repeat from Step (i)
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Code Generation Example

DOI =1, N DOI =1, N
DO J =1, M PARALLEL DO J = 21, M
DO K =121, L DO K = 1, L
A(I+1,3,K) = A(I,J,K) + X1 A(I+1,3,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2 B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3 C(I+1,J+1,K+1) = C(I,J,K) + X3

How did we pick loop
J for parallelization?
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How can we parallelize this loop?

DO , N+1
2, M+
=1, L

I=2
DO J =
K
ACI,3,K) = ACI,J-1,K+1) + A(I-1,3,K+1)

J
DO

No single loop carries all the dependences,
so we can only parallelize loop K
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Loop Reversal

DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L
A(CI,J,K) = A(I,J-1,K+1) + A(I-1,],K+1)
|
DO I = 2, N+1
DO J = 2, M+1
DO K =L, 12, -1
A(I,J,K) = A(I,J-1,K+1) + A(I-1,],K+1)

® When the iteration space of a loop is reversed, the direction of dependences within
that reversed iteration space are also reversed

» A“+" dependence becomes a “-" dependence, and vice versa
® We cannot perform loop reversal if the loop carries a dependence
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Perform Interchange after Loop Reversal

DO , N+1
2, M+
=L, 1, -1

2
K
ACI,J,K) = ACI,J-1,K+1) + A(I-1,],K+1)

U

I
DO
D

o u

2, M+1
I,3,K) = A(I,J-1,K+1) + A(I-1,3,K+1)

AN

increases options for performing
other optimizations

~CG nr

A
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Which Transformations are Most Important?

@ Selecting the best loops for parallelization is a
NP-complete problem
@ Flow dependences are difficult to remove

» Try to reorder statements as in loop peeling, loop
distribution

@ Techniques like scalar expansion, privatization can be
useful

» Loops often use scalars for temporary values

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations
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Unimodular Transformations



Challenges in Applying Transformations

® We have discussed transformations (legality and benefits) in isolation

@ Compilers need to apply compound transformations (e.g., loop interchange followed
by reversal)

@ Itis challenging to decide on the desired transformations and their order of
application

» Choice and order is sensitive to the program input, a priori order does not work
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Unimodular Transformations

e A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g,, [13])

@ Few loop transformations can be modeled as matrix transformations involving
unimodular matrices
» Loop interchange maps iteration (i,j) to iteration (j, i)
i

2 ol

J
i
» Given transformation T is linear, the transformed dependence is given by Td where d is
the dependence vector in the original iteration space

o 1||di| _|d>
1 ofl|dy|  |d4
» The transformation matrix for loop reversal of the outer loop iin a 2D loop nestis [ o' ¢ ]

» The transformation matrix for loop skewing of a 2D loop nest (i, j) is the identity matrix
T with T;; equal to f, where we skew loop j with respect to loop i by a factor f

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS'91.
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Example of Loop Skewing

Original Skewed
FOR I=1,5 FOR I=1,5
FOR J=1,5 FOR j=I+1,I+5

A(I,]) = A(I-1,3) + A(I,J-1)

A(I,j-I) = A(I-2,3-I) + A(I,j-I-1)

Dependences D = {(1,0), (0,1)}

Swarnendu Biswas (IIT Kanpur)
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Representing Compound Transformations

DOI =1, N Loop interchange is illegal because
DO J = 1, N
A(I,J) = A(I—l,J+1) + C o 1 1T [
10 —1] B [1 ]

Let us try loop interchange followed by loop reversal. The transformation matrix T is

o 3 o=l o

Applying T to the loop nest is legal because
1] |1
-1 |1
N

o -1
1 0
1,
,J] = A[I-12,3+1] + C

DO J =
DO I
AlI
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Challenges for Real-World Compilers

® Conditional execution

® Symbolic loop bounds

@ Indirect memory accesses
o ...
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