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Enhancing Program Performance

Possible ideas
� Adequate fine-grained parallelism

▶ Multiple pipelined functional units in each core
▶ Exploit vector instruction sets (SSE, AVX, AVX-512)

� Adequate parallelism for SMP-type systems
▶ Keep multiple asynchronous processors busy with work

� Minimize cost of memory accesses
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Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency
� Code restructuring optimizations
� Prefetching optimizations
� Data layout optimizations
� Code layout optimizations

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 4 / 70



Loop Optimizations

� Loops are one of most commonly used constructs in HPC program
� Compiler performs many loop optimization techniques automatically

▶ In some cases, source code modifications can enhance optimizer’s ability to transform
code
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Reordering Transformations

A reordering transformation does not add or remove statements from a loop nest
� Only reorders the execution of the statements that are already in the loop

Do not add or remove
statements

Do not add or remove
any new dependences

A reordering transformation is valid if it preserves all existing dependences in the loop
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Iteration Reordering and Parallelization

� A transformation that reorders the iterations of a level-k loop, without making any
other changes, is valid if the loop carries no dependence

� Each iteration of a loop may be executed in parallel if it carries no dependences
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Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops



Data Dependence Graph and Parallelization

� If the Data Dependence Graph (DDG) is acyclic, then vectorization of the program is
possible and is straightforward

� Otherwise, try to transform the DDG to an acyclic graph

FOR I=1,N
FOR J=1,M

S1 A(I,J) = B(I-1,J+1) + C
S2 B(I,J) = A(I-1,J-1) + K

S1 S2
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Loop Interchange (Loop Permutation)

� Switch the nesting order of loops in a
perfect loop nest

� Can increase parallelism, can improve
spatial locality

� Dependence is now carried by the
outer loop, inner loop can be
vectorized

DO I = 1, N
DO J = 1, M

S A(I,J+1) = A(I,J) + B

DO J = 1, M
DO I = 1, N

S A(I,J+1) = A(I,J) + B
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Example of Loop Interchange

DO i = 1, n
DO j = 1, n
C(i, j) = C(i-1,j+1)

DO j = 1, n
DO i = 1, n

C(i, j) = C(i-1,j+1)
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valid?
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Validity of Loop Interchange

(i) Construct direction vectors for all possible dependences in the loop to form a
direction matrix
▶ Identical direction vectors are represented by a single row in the matrix

(ii) Compute direction vectors after permutation
(iii) Permutation of the loops in a perfect nest is legal iff there are no “-” direction as the

leftmost non–“0” direction in any direction vector

� Loop interchange is valid for a 2D loop
nest if none of the dependence vectors
has any negative components

� Interchange is legal: (1,1), (2,1), (0,1),
(3,0)

� Interchange is not legal: (1,-1), (3,-2)

DO J = 1, M
DO I = 1, N

A(I,J+1) = A(I+1,J) + B
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Validity of Loop Permutation

� Generalization to higher-dimensional loops: Permute all dependence vectors exactly
the same way as the intended loop permutation

� If any permuted vector is lexicographically negative, permutation is illegal

� Example: d1 = (1,−1, 1) and d2 = (0, 2,−1)
▶ ijk→ jik? (1,−1, 1) → (−1, 1, 1): illegal
▶ ijk→ kij? (0, 2,−1) → (−1,0, 2): illegal
▶ ijk→ ikj? (0, 2,−1) → (0,−1, 2): illegal
▶ No valid permutation: j cannot be outermost loop (-1 component in d1), and k cannot

be outermost loop (-1 component in d2)

� A loop nest is fully permutable if any permutation transformation to the loop nest is
legal
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Benefits from Loop Permutation

for (i=0; i<n; i++)
for (j=0; j<n; j++)

for (k=0; k<n; k++)
C[i][j] += A[i][k]*B[k][j];

Stride ikj kij jik ijk jki kji

C[i][j] 1 1 0 0 n n
A[i][k] 0 0 1 1 n n
B[k][j] 1 1 n n 0 0
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Does Loop Interchange/Permutation Always Help?

DO i = 1, 10000
DO j = 1, 1000

a(i) = a(i) + b(j,i) * c(i)

DO i = 1, N
DO j = 1, M

DO k = 1, L
a(i+1,j+1,k) = a(i,j,k) + b

� Benefits from loop interchange depends on the target machine, the data structures
accessed, memory layout and stride patterns

� Optimization choices for the snippet on the right
▶ Vectorize J and K
▶ Move K outermost and parallelize K with threads
▶ Move I innermost and vectorize assuming column-major layout

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 14 / 70



Loop Shifting

� In a perfect loop nest, if loops at level i, i + 1, . . . i + n carry no dependence, i.e., all
dependences are carried by loops at level less than i or greater than i + n, then it is
always legal to shift these loops inside of loop i + n + 1

� These loops will not carry any dependences in their new position

+ 0 + 0 0 0
0 + - + + 0
0 0 0 0 + +
0 0 0 0 0 +

Loops i to i+n

Dependence carried
by outer loops

Dependence carried
by inner loops
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Loop Shift for Matrix Multiply

DO I = 1, N
DO J = 1, N

DO K = 1, N
S A(I,J) = A(I,J) + B(I,K)*C(K,J)

Is the loop nest
vectorizable as is?
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Scalar Expansion
Eliminates dependences that arise from reuse of memory locations at the cost of extra
memory

DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

S1 S2

S3

anti due to A (𝛿−1
∞ )

loop-independent flow
due

to
T
(𝛿∞ )

loop-carried
flow

due
to

T
(𝛿1 )

antidue
to

B
(𝛿

−1
∞

)

anti due
to

T
(𝛿 −11 )

output due to T (𝛿o1 )

DO I = 1, N
S1 $T(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = $T(I)

T=$T(N)

S1 S2

S3

loop-independent flow
due

to
T(I) (𝛿∞ )

anti due to A (𝛿−1
∞ )

antidue
to

B
(𝛿
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∞

)
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Scalar Expansion

DO I = 1, N
T = T + A(I) + A(I-1)
A(I) = T

$T(0) = T
DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)
A(I) = $T(I)

T = $T(N)

Can we parallelize
the I loop?
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Understanding Scalar Expansion

Pros

+ Eliminates dependences due to reuse
of memory locations, helps with
parallelism

Cons

− Increases memory and addressing
overhead

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

=⇒ DO I = 1, N, 64
DO i = 0, 63
T = A(I+i) + A(I+1+i)
A(I+i) = T + B(I+i)

=⇒ DO I = 1, N, 64
DO i = 0, 63

$T(i) = A(I+i) + A(I+1+i)
A(I+i) = $T(i) + B(I+i)

can also try forward
substitution

strip mining
strip loop

Strip mining (also known as sectioning) is a special case of 1-D loop tiling
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Limits of Scalar Expansion

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 $T(I) = A(I) + B(I)
S2 C(I) = $T(I) + $T(I)
S3 $T(I) = D(I) - B(I)
S4 A(I+1) = $T(I) * $T(I)

Can we vectorize the
loop nest?
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Scalar Renaming

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

Can we vectorize the
loop nest?
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Allow Vectorization with Statement Interchange

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

=⇒
DO I = 1, 100

S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1

T = T2

=⇒
S3 T2(1:100) = D(1:100) - B(1:100)
S4 A(2:101) = T2(1:100) * T2(1:100)
S1 T1(1:100) = A(1:100) + B(1:100)
S2 C(1:100) = T1(1:100) + T1(1:100)

T = T2(100)
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Array Renaming

DO I = 1, 100
S1 A(I) = A(I-1) + X
S2 Y(I) = A(I) + Z
S3 A(I) = B(I) + C

DO I = 1, 100
S1 $A(I) = A(I-1) + X
S2 Y(I) = $A(I) + Z
S3 A(I) = B(I) + C

S1 S2

S3

𝛿∞

𝛿−1
∞

𝛿0
∞

𝛿1

Array renaming requires
sophisticated analysis
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Node Splitting

DO I = 1, 100
S1 A(I) = X(I+1) + X(I)
S2 X(I+1) = B(I) + 10

DO I = 1, 100
S0 $X(I) = X(I+1)
S1 A(I) = $X(I) + X(I)
S2 X(I+1) = B(I) + 10

S1 S2
𝛿1

𝛿−1
0

Can we vectorize the
loop nest?
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Index-Set Splitting

DO I = 1, 100
A(I+20) = A(I) + B

DO I = 1, 100, 20
DO i = I, I+19

A(i+20) = A(i) + B

An index-set splitting transformation subdivides the loop into different iteration ranges

strip mining
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Loop Peeling

� Splits any problematic iterations (could be first, middle, or last few) from the loop
body

� Change from a loop-carried dependence to loop-independent dependence
� Transformed loop carries no dependence, can be parallelized
� Peeled iterations execute in the original order, transformation is always legal to

perform

DO I = 1, N
A(I) = A(I) + A(1)

A(1) = A(1) + A(1)
DO I = 2, N

A(I) = A(I) + A(1)

Loop splitting
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Loop Splitting

DO I = 1, N
A(I) = A(N/2) + B(I)

S1

𝛿−1
∞

M = N/2
DO I = 1, M-1

A(I) = A(N/2) + B(I)
A(M) = A(N/2) + B(I)
DO I = M+1, N

A(I) = A(N/2) + B(I)

assume N is
divisible by 2
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Section-Based Splitting

DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N

S2 A(J,I+1) = B(J,I) + D

=⇒ DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N/2

S2 A(J,I+1) = B(J,I) + D
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D

=⇒

DO I = 1,N
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D
DO I = 1,N
DO J = 1,N/2

S1 B(J,I) = A(J,I) + C
DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D

=⇒ M = N/2
S3 A(M+1:N,2:N+1) = B(M+1:N,1:N) + D

DO I = 1, N
S1 B(1:M,I) = A(1:M,I) + C
S2 A(1:M,I+1) = B(1:M,I) + D

S3 is
independent

cannot
vectorize I

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 29 / 70



Loop Skewing

DO I = 1, N
DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

S(1,1) S(2,1) S(3,1) S(4,1)

S(1,2) S(2,2) S(3,2) S(4,2)

S(1,3) S(2,3) S(3,3) S(4,3)

S(1,4) S(2,4) S(3,4) S(4,4)

I = 1 I = 2 I = 3 I = 4

J = 1

J = 2

J = 3

J = 4

Parallel
iterations

Which loops carry
dependences?

I+J is
same
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Loop Skewing

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

S(1,2)

S(1,3) S(2,1)

S(1,4) S(2,2) S(3,1)

S(1,5) S(2,3) S(3,2) S(4,1)

I = 1 I = 2 I = 3 I = 4

j = 2

j = 3

j = 4

j = 5

Parallel
iterations

Loop skewing skews the inner loop relative to the outer loop by adding the index of the
outer loop times a skewing factor f to the bounds of the inner loop and subtracting the
same value from all the uses of the inner loop index

j=I+J

What are the dependences
now? Which loop carries the
dependence?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 31 / 70



Perform Loop Interchange

Given a dependency vector (a, b), skewing transforms it to (a, fa + b)

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

⇓

DO j = 2, N+N
DO I = max(1,j-N), min(N,j-1)

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

can use Fourier-
Motzkin elimination
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Understanding Loop Skewing

Pros

+ Reshapes the iteration space to find
possible parallelism

+ Preserves lexicographic order of the
dependences, is always legal

+ Allows for loop interchange in future

Cons

− Resulting iteration space can be
trapezoidal

− Irregular loops are not very amenable
for vectorization

− Need to be careful about load
imbalance
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Loop Unrolling (Loop Unwinding)

� Reduce number of iterations of loops
� Add statement(s) to do work of missing iterations
� JIT compilers try to perform unrolling at run-time

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
y[i] = y[i] + a[i][j]*x[j];

}
}

for (i=0; i<n; i++) {
for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j]
+ a[i][j+1]*x[j+1]
+ a[i][j+2]*x[j+2]
+ a[i][j+3]*x[j+3];

}
}

4-way inner
loop unrolling
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Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++) {
for (j=0; j<m; j++) {
loop-body(i,j);

}
}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {

loop-body(i,j);
}
for (j=0; j<m; j++) {

loop-body(i+1,j);
}

}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {
loop-body(i,j);
loop-body(i+1,j);

}
}

2-way outer unroll does not increase
operation-level parallelism in the in-
ner loop
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Is Loop Unroll and Jam Legal?

DO I = 1, N
DO J = 1, M

A(I,J) = A(I-1,J+1)+C

DO I = 1, N, 2
DO J = 1, M

A(I,J) = A(I-1,J+1)+C
A(I+1,J) = A(I,J+1)+C
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Validity Condition for Loop Unroll and Jam

� Complete unroll and jam of a loop is equivalent to a loop permutation that moves
that loop innermost, without changing order of other loops

� If such a loop permutation is valid, unroll and jam of the loop is valid

� Example: 4D loop ijkl; d1 = (1,−1,0, 2), d2 = (1, 1,−2,−1)
i d1 → (−1,0, 2, 1), =⇒ invalid to unroll and jam
j d1 → (1,0, 2,−1);d2 → (1,−2,−1, 1), =⇒ valid to unroll and jam
k d1 → (1,−1, 2,0);d2 → (1, 1,−1,−2), =⇒ valid to unroll and jam
l d1 and d2 are unchanged; innermost loop can always be unrolled
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Understanding Loop Unrolling

Pros

+ Small loop bodies are problematic,
reduces control overhead of loops

+ Increases operation-level parallelism
in loop body

+ Allows other optimizations like reuse
of temporaries across iterations

Cons

− Increases the executable size
− Increases register usage
− May prevent function inlining
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Loop Tiling (Loop Blocking)
� Improve data reuse by chunking the data in to smaller tiles (blocks)

▶ All the required blocks are supposed to fit in the cache
� Performs strip mining in multiple array dimensions
� Tries to exploit spatial and temporal locality of data
� Determining the tile size

▶ Requires accurate estimate of array accesses and the cache size of the target machine
▶ Loop nest order also influences performance
▶ Difficult theoretical problem, usually heuristics are applied
▶ Cache-oblivious algorithms make efficient use of cache without explicit blocking

for (i = 0; i < N; i++) {
...

}

for (ii = 0; ii < N; ii+=B) {
for (i = ii; i < min(N,ii+B), i++) {

...
}

}
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Validity Condition for Loop Tiling

� A band of loops is fully permutable if
all permutations of the loops in that
band are legal

� A contiguous band of loops can be
tiled if they are fully permutable

� Example: d = (1, 2,−3)
▶ Tiling all three loops ijk is not valid,

since the permutation kij is invalid
▶ 2D tiling of band ij is valid
▶ 2D tiling of band jk is valid

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)

for (it = 0; it < n; it+=T)
for (jt = 0; jt < n; jt+=T)

for (i = it; i < it+T; i++)
for (j = jt; j < jt+T; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)
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Enhancing Coarse-Grained Parallelism

Focus is on parallelization of outer loops



Find Work for Threads

Setup � Symmetric multiprocessors with shared memory
� Threads are running on each core and are coordinating execution with

occasional synchronization
Challenge Balance the granularity of parallelism with communication overheads

SMP - symmetric multiprocessor system

System bus

Cache Cache Cache

Processor
1

Processor
2

Processor
n

Main
memory

By Ferruccio Zulian - Milan.Italy

Bus
arbiter

I/O
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Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Running everything on one processor
achieves minimal communication and
synchronization overhead

Very fine-grained parallelism achieves good
load balance, but benefits may be
outweighed by frequent communication
and synchronization

An optimizing compiler is
expected to find the sweet spot
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Privatization

� Privatization is similar to scalar expansion
� Temporaries can be made local to each iteration

DO I = 1,N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

PARALLEL DO I = 1,N
PRIVATE t

S1 t = A(I)
S2 A(I) = B(I)
S3 B(I) = t
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Privatization
A scalar variable x in a loop L is privatizable if every path from the entry of L to a use of x
in the loop passes through a definition of x
� No use of the variable is upward exposed, i.e., the use never reads a value that was

assigned outside the loop
� No use of the variable is from an assignment in an earlier iteration

Computing upward-exposed variables from a block BB

up(BB) = use(BB) ∪
(
¬def (BB) ∩⋃

y∈succ(BB) up(y)
)

Computing privatizable variables for a loop body B where BB0 is
the entry block

private(B) = ¬up(BB0) ∩
(⋃

y∈B def (y)
)
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Privatization

� If all dependences carried by a loop involve a privatizable variable, then loop can be
parallelized by making the variables private

� Preferred compared to scalar expansion
▶ Less memory requirement
▶ Scalar expansion may suffer from false sharing

� However, there can be situations where scalar expansion works but privatization
does not
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Comparing Privatization and Scalar Expansion

DO I = 1, N
T = A(I) + B(I)
A(I-1) = T

⇓Privatization

DO I = 1, N
PRIVATE T
T = A(I) + B(I)
A(I-1) = T

Scalar
=========⇒
expansion

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)
A(I-1) = T$(I)

⇓

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)

PARALLEL DO I = 1, N
A(I-1) = T$(I)
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Loop Distribution (Loop Fission)

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)
S2 D(I,J) = A(I,J-1) * 2.0

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

DO J = 1, 100
S2 D(I,J) = A(I,J-1) * 2.0

Eliminates loop-carried
dependences
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Validity Condition for Loop Distribution

A loop with two statements can be distributed if there are no dependences from any
instance of the later statement to any instance of the earlier one
� Sufficient (but not necessary) condition
� Generalizes to more statements

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I+1) * D(I)

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I-1) * D(I)
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Performing Loop Distribution

Steps
(i) Build the DDG

(ii) Identify strongly-connected
components (SCCs) in the DDG

(iii) Make each SCC a separate loop
(iv) Arrange the new loops in a

topological order of the DDG

DO I = 1, N
S1 A[I] = A[I] + B[I-1]
S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y
S4 D[I] = C[I] + D[I-1]

=⇒

S1

S2

S3

S4

𝛿1

𝛿∞𝛿1

𝛿∞

𝛿1

=⇒ S1

S2 S3

S4
𝛿1

𝛿∞

𝛿1
𝛿∞

𝛿1

⇓
DO I = 1, N

S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y

DO I = 1, N
S1 A[I] = A[I] + B[I-1]

DO I = 1, N
S4 D[I] = C[I] + D[I-1]
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Understanding Loop Distribution

Pros

+ Execute source of a dependence before
the sink

+ Reduces the memory footprint of the
original loop for both data and code

+ Improves opportunities for
vectorization

Cons

− Can increase the synchronization
required between dependence points
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Loop Alignment

Unlike loop distribution, realign the loop to compute and use the values in the same
iteration

DO I = 2, N
S1 A(I) = B(I) + C(I)
S2 D(I) = A(I-1) * 2.0

DO i = 1, N+1
if i > 1 && i < N+1

S1 A(i) = B(i) + C(i)
if i < N

S2 D(i+1) = A(i) * 2.0

cannot be parallelized
carried dependence becomes
loop independent
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Can Loop Alignment Eliminate All Carried Dependences?

DO I = 1, N
S1 A(I) = B(I) + C
S2 B(I+1) = A(I) + D

DO I = 1, N
S1 A(I+1) = B(I) + C
S2 X(I) = A(I+1) + A(I)

=⇒

=⇒

DO i = 1, N+1
if i > 1

S2 B(i) = A(i-1) + D
if i < N+1

S1 A(i) = B(i) + C

DO i = 0, N
if i > 0

S1 A(i+1) = B(i) + C
if i < N

S2 X(i+1) = A(i+2) + A(i+1)

A is aligned, B
is misaligned
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Loop Fusion (Loop Jamming)

DO I = 1, N
S1 A(I) = B(I) + 1
S2 C(I) = A(I) + C(I-1)
S3 D(I) = A(I) + X

=⇒
L1 DO I = 1, N

A(I) = B(I) + 1
L2 DO I = 1, N

C(I) = A(I) + C(I-1)
L3 DO I = 1, N

D(I) = A(I) + X

=⇒
L13 DO I = 1, N

A(I) = B(I) + 1
D(I) = A(I) + X

L2 DO I = 1, N
C(I) = A(I) + C(I-1)
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Validity Condition for Loop Fusion

� Consider a loop-independent dependence between statements in two different
loops (i.e., from S1 to S2)

� A dependence is fusion-preventing if fusing the two loops causes the dependence to
be carried by the combined loop in the reverse direction (from S2 to S1)

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I+1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I+1) + E

loop-independent
flow dependence

backward loop-carried
anti dependence
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Understanding Loop Fusion

Pros

+ Reduce overhead of loops
+ May improve temporal locality

Cons

− May decrease data locality in the fused
loop

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I-1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I-1) + E
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Loop Interchange

DO I = 1, N
DO J = 1, M
A(I+1,J) = A(I,J) + B(I,J)

=⇒
DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

⇓

PARALLEL DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

Parallelizing J is good for vector-
ization, but not for coarse-grained
parallelism

Dependence-free loops should
move to the outermost level
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Condition for Loop Interchange

In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the
column of the direction matrix for that nest contains only “0” entries

DO I = 1, N
DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)
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Code Generation Strategy

(i) Continue till there are no more columns to move
▶ Choose a loop from the direction matrix that has all “0” entries in the column
▶ Move it to the outermost position
▶ Eliminate the column from the direction matrix

(ii) Pick loop with most “+” entries, move to the next outermost position
▶ Generate a sequential loop
▶ Eliminate the column
▶ Eliminate any rows that represent dependences carried by this loop

(iii) Repeat from Step (i)
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Code Generation Example

DO I = 1, N
DO J = 1, M
DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

DO I = 1, N
PARALLEL DO J = 1, M

DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

How did we pick loop
J for parallelization?
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How can we parallelize this loop?

DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

No single loop carries all the dependences,
so we can only parallelize loop K
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Loop Reversal
DO I = 2, N+1

DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO I = 2, N+1

DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

� When the iteration space of a loop is reversed, the direction of dependences within
that reversed iteration space are also reversed
▶ A “+” dependence becomes a “-” dependence, and vice versa

� We cannot perform loop reversal if the loop carries a dependence
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Perform Interchange after Loop Reversal

DO I = 2, N+1
DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO K = L, 1, -1

DO I = 2, N+1
DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

increases options for performing
other optimizations
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Which Transformations are Most Important?

� Selecting the best loops for parallelization is a
NP-complete problem

� Flow dependences are difficult to remove
▶ Try to reorder statements as in loop peeling, loop

distribution
� Techniques like scalar expansion, privatization can be

useful
▶ Loops often use scalars for temporary values

+ + 0 0
+ 0 + 0
+ 0 0 +
0 + 0 0
0 0 + 0
0 0 0 +

carries the most
dependences
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Unimodular Transformations



Challenges in Applying Transformations

� We have discussed transformations (legality and benefits) in isolation
� Compilers need to apply compound transformations (e.g., loop interchange followed

by reversal)
� It is challenging to decide on the desired transformations and their order of

application
▶ Choice and order is sensitive to the program input, a priori order does not work
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Unimodular Transformations
� A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g.,

[ 1 1
1 0

]
)

� Few loop transformations can be modeled as matrix transformations involving
unimodular matrices
▶ Loop interchange maps iteration (i, j) to iteration (j, i)[

0 1
1 0

] [
i
j

]
=

[
j
i

]
▶ Given transformation T is linear, the transformed dependence is given by Td where d is

the dependence vector in the original iteration space[
0 1
1 0

] [
d1
d2

]
=

[
d2
d1

]
▶ The transformation matrix for loop reversal of the outer loop i in a 2D loop nest is

[ −1 0
0 1

]
▶ The transformation matrix for loop skewing of a 2D loop nest (i, j) is the identity matrix
T with Tj,i equal to f , where we skew loop j with respect to loop i by a factor f

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS’91.
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Example of Loop Skewing

Original

FOR I=1,5
FOR J=1,5
A(I,J) = A(I-1,J) + A(I,J-1)

Dependences D = {(1,0), (0, 1)}

Skewed

FOR I=1,5
FOR j=I+1,I+5

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

Transformation matrix = [ 1 0
1 1 ]

Dependences D′
= TD = {(1, 1), (0, 1)}
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Representing Compound Transformations
DO I = 1, N

DO J = 1, N
A(I,J) = A(I-1,J+1) + C

Loop interchange is illegal because[
0 1
1 0

] [
1
−1

]
=

[
−1
1

]
Let us try loop interchange followed by loop reversal. The transformation matrix T is[

−1 0
0 1

] [
0 1
1 0

]
=

[
0 −1
1 0

]
Applying T to the loop nest is legal because[

0 −1
1 0

] [
1
−1

]
=

[
1
1

]
DO J = N, 1, -1

DO I = 1, N
A[I,J] = A[I-1,J+1] + C
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Challenges for Real-World Compilers

� Conditional execution
� Symbolic loop bounds
� Indirect memory accesses
� . . .
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