CS 610: Loop Transformations

Swarnendu Biswas

Department of Computer Science and Engineering, Indian Institute of Technology Kanpur

Sem 2024-25-I

Enhancing Program Performance

Possible ideas

- Adequate fine-grained parallelism
 - ► Multiple pipelined functional units in each core
 - ► Exploit vector instruction sets (SSE, AVX, AVX-512)
- Adequate parallelism for SMP-type systems
 - ► Keep multiple asynchronous processors busy with work
- Minimize cost of memory accesses

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

- Code restructuring optimizations
- Prefetching optimizations
- Data layout optimizations
- Code layout optimizations

Loop Optimizations

- Loops are one of most commonly used constructs in HPC program
- Compiler performs many loop optimization techniques automatically
 - ► In some cases, source code modifications can enhance optimizer's ability to transform code

Reordering Transformations

A reordering transformation does **not** add or remove statements from a loop nest

• Only reorders the execution of the statements that are already in the loop

A reordering transformation is **valid** if it preserves all existing dependences in the loop

Iteration Reordering and Parallelization

- A transformation that reorders the iterations of a level-k loop, without making any other changes, is valid if the loop carries no dependence
- Each iteration of a loop may be executed in parallel if it carries no dependences

Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops

Data Dependence Graph and Parallelization

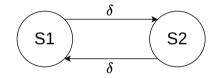
- If the Data Dependence Graph (DDG) is acyclic, then vectorization of the program is possible and is straightforward
- Otherwise, try to transform the DDG to an acyclic graph

```
FOR I=1,N

FOR J=1,M

S1 A(I,J) = B(I-1,J+1) + C

S2 B(I,J) = A(I-1,J-1) + K
```



Loop Interchange (Loop Permutation)

- Switch the nesting order of loops in a perfect loop nest
- Can increase parallelism, can improve spatial locality

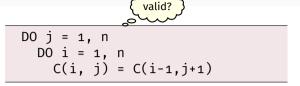
 Dependence is now carried by the outer loop, inner loop can be vectorized

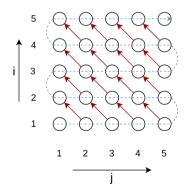
```
DO J = 1, M

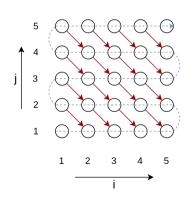
DO I = 1, N

S A(I,J+1) = A(I,J) + B
```

Example of Loop Interchange







Validity of Loop Interchange

- (i) Construct direction vectors for all possible dependences in the loop to form a direction matrix
 - ► Identical direction vectors are represented by a single row in the matrix
- (ii) Compute direction vectors after permutation
- (iii) Permutation of the loops in a perfect nest is legal iff there are no "-" direction as the leftmost non-"o" direction in any direction vector

- Loop interchange is valid for a 2D loop nest if none of the dependence vectors has any negative components
- Interchange is legal: (1,1), (2,1), (0,1), (3,0)
- Interchange is not legal: (1,-1), (3,-2)

```
DO J = 1, M

DO I = 1, N

A(I,J+1) = A(I+1,J) + B
```

Validity of Loop Permutation

- Generalization to higher-dimensional loops: Permute all dependence vectors exactly the same way as the intended loop permutation
- If any permuted vector is lexicographically negative, permutation is illegal
- Example: $d_1 = (1, -1, 1)$ and $d_2 = (0, 2, -1)$
 - ▶ $ijk \rightarrow jik$? $(1,-1,1) \rightarrow (-1,1,1)$: illegal
 - ▶ ijk \rightarrow kij? (0,2,-1) \rightarrow (-1,0,2): illegal
 - ▶ $ijk \rightarrow ikj? (0,2,-1) \rightarrow (0,-1,2)$: illegal
 - No valid permutation: j cannot be outermost loop (-1 component in d_1), and k cannot be outermost loop (-1 component in d_2)
- A loop nest is **fully** permutable if any permutation transformation to the loop nest is legal

Benefits from Loop Permutation

```
for (i=0; i<n; i++)
  for (j=0; j<n; j++)
  for (k=0; k<n; k++)
        C[i][j] += A[i][k]*B[k][j];</pre>
```

Stride	ikj	kij	jik	ijk	jki	kji
C[i][j]	1	1	0	0	n	n
A[i][k]	0	0	1	1	n	n
B[k][j]	1	1	n	n	0	0

Does Loop Interchange/Permutation Always Help?

```
D0 i = 1, 10000

D0 j = 1, 1000

a(i) = a(i) + b(j,i) * c(i)
```

```
DO i = 1, N

DO j = 1, M

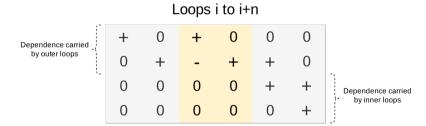
DO k = 1, L

a(i+1,j+1,k) = a(i,j,k) + b
```

- Benefits from loop interchange depends on the target machine, the data structures accessed, memory layout and stride patterns
- Optimization choices for the snippet on the right
 - ► Vectorize J and K
 - ► Move K outermost and parallelize K with threads
 - ▶ Move I innermost and vectorize assuming column-major layout

Loop Shifting

- In a perfect loop nest, if loops at level i, i+1, ... i+n carry no dependence, i.e., all dependences are carried by loops at level less than i or greater than i+n, then it is always legal to shift these loops inside of loop i+n+1
- These loops will not carry any dependences in their new position



Loop Shift for Matrix Multiply

```
DO I = 1, N

DO J = 1, N

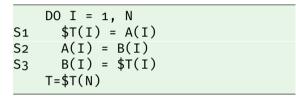
DO K = 1, N

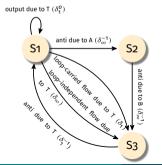
A(I,J) = A(I,J) + B(I,K)*C(K,J)
```

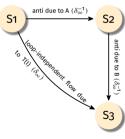
Is the loop nest vectorizable as is?

Scalar Expansion

Eliminates dependences that arise from reuse of memory locations at the cost of extra memory







Scalar Expansion

```
$T(0) = T

DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)

A(I) = $T(I)

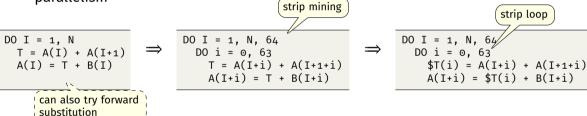
T = $T(N)
```

Can we parallelize the I loop?

Understanding Scalar Expansion

Pros Cons

- + Eliminates dependences due to reuse of memory locations, helps with parallelism
- Increases memory and addressing overhead



Strip mining (also known as sectioning) is a special case of 1-D loop tiling

Limits of Scalar Expansion

```
DO I = 1, 100

S1 $T(I) = A(I) + B(I)

S2 C(I) = $T(I) + $T(I)

S3 $T(I) = D(I) - B(I)

S4 A(I+1) = $T(I) * $T(I)
```

Can we vectorize the loop nest?

Scalar Renaming

Can we vectorize the loop nest?

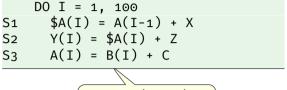
Allow Vectorization with Statement Interchange

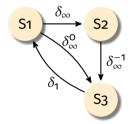
```
\Rightarrow \begin{array}{l} \text{S3} \quad \text{T2}(1:100) = \text{D}(1:100) - \text{B}(1:100) \\ \text{S4} \quad \text{A}(2:101) = \text{T2}(1:100) * \text{T2}(1:100) \\ \text{S1} \quad \text{T1}(1:100) = \text{A}(1:100) + \text{B}(1:100) \\ \text{S2} \quad \text{C}(1:100) = \text{T1}(1:100) + \text{T1}(1:100) \\ \quad \text{T} = \text{T2}(100) \end{array}
```

Array Renaming

D0 I = 1, 100
S1
$$A(I) = A(I-1) + X$$

S2 $Y(I) = A(I) + Z$
S3 $A(I) = B(I) + C$





Array renaming requires sophisticated analysis

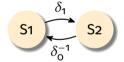
Node Splitting

DO I = 1, 100
S1
$$A(I) = X(I+1) + X(I)$$

S2 $X(I+1) = B(I) + 10$

DO I = 1, 100
So
$$\$X(I) = X(I+1)$$

S1 $A(I) = \$X(I) + X(I)$
S2 $X(I+1) = B(I) + 10$



Index-Set Splitting

strip mining

0. 20

An index-set splitting transformation subdivides the loop into different iteration ranges

Loop Peeling

- Splits any problematic iterations (could be first, middle, or last few) from the loop body
- Change from a loop-carried dependence to loop-independent dependence
- Transformed loop carries no dependence, can be parallelized
- Peeled iterations execute in the original order, transformation is always legal to perform

```
A(1) = A(1) + A(1)
DO I = 2, N
A(I) = A(I) + A(1)
```

Loop Splitting

assume N is divisible by 2

$$M = N/2$$

DO I = 1, M-1
 $A(I) = A(N/2) + B(I)$
 $A(M) = A(N/2) + B(I)$
DO I = M+1, N
 $A(I) = A(N/2) + B(I)$

Section-Based Splitting

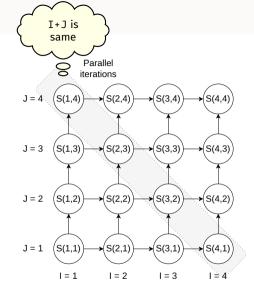
```
DO I = 1.N
                                                      DO I = 1.N
      DO J = 1, N/2
                                                        DO J = 1, N/2
     B(J,I) = A(J,I) + C
                                                       B(J.I) = A(J.I) + C
S1
                                                  S1
                                                        DO J = 1.N/2
      DO J = 1.N
                                      S<sub>3</sub> is
      A(J,I+1) = B(J,I) + D
                                                       A(J.I+1) = B(J.I) + D
S2
                                                  S2
                                      independent
                                                        DO J = N/2+1, N
                                                          A(J.I+1) = B(J.I) + D
    DO I = 1.N
                                                      M = N/2
      DO J = N/2+1, N
                                                  S<sub>3</sub> A(M+1:N.2:N+1) = B(M+1:N.1:N) + D
     A(J,I+1) = B(J,I) + D
S<sub>3</sub>
                                                      DO I = 1. N
    DO I = 1, N
                                                        B(1:M,I) = A(1:M,I) + C
      DO J = 1.N/2
                                                        A(1:M.I+1) = B(1:M.I) + D
                                      cannot
     B(J,I) = A(J,I) + C
S1
                                      vectorize I
      DO J = 1. N/2
```

S2

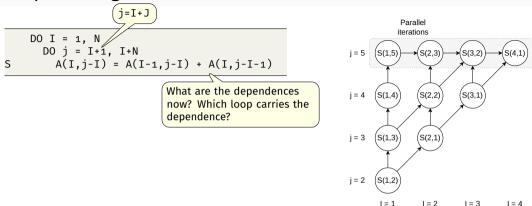
A(J.I+1) = B(J.I) + D

Loop Skewing

Which loops carry dependences?



Loop Skewing



Loop skewing skews the inner loop relative to the outer loop by adding the index of the outer loop times a skewing factor f to the bounds of the inner loop and subtracting the same value from all the uses of the inner loop index

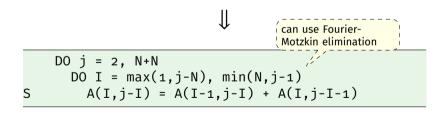
Perform Loop Interchange

Given a dependency vector (a, b), skewing transforms it to (a, fa + b)

```
DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)
```



Understanding Loop Skewing

Pros

- Reshapes the iteration space to find possible parallelism
- + Preserves lexicographic order of the dependences, is always legal
- + Allows for loop interchange in future

Cons

- Resulting iteration space can be trapezoidal
- Irregular loops are not very amenable for vectorization
- Need to be careful about load imbalance

Loop Unrolling (Loop Unwinding)

- Reduce number of iterations of loops
- Add statement(s) to do work of missing iterations
- JIT compilers try to perform unrolling at run-time

4-way inner loop unrolling

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    y[i] = y[i] + a[i][j]*x[j];
  }
}</pre>
```

Outer Loop Unrolling + Inner Loop Jamming

```
for (i=0; i<2*n; i++) {
  for (j=0; j<m; j++) {
    loop-body(i,j);
  }
}</pre>
```

```
for (i=0; i<2*n; i+=2) {
   for (j=0; j<m; j++) {
     loop-body(i,j);
   }
   for (j=0; j<m; j++) {
     loop-body(i+1,j);
   }
}</pre>
```

```
for (i=0; i<2*n; i+=2) {
  for (j=0; j<m; j++) {
    loop-body(i,j);
    loop-body(i+1,j);
  }
}</pre>
```

2-way outer unroll does not increase operation-level parallelism in the inner loop

Is Loop Unroll and Jam Legal?

```
DO I = 1, N
DO J = 1, M
A(I,J) = A(I-1,J+1)+C
```

```
DO I = 1, N, 2

DO J = 1, M

A(I,J) = A(I-1,J+1)+C

A(I+1,J) = A(I,J+1)+C
```

Validity Condition for Loop Unroll and Jam

- Complete unroll and jam of a loop is equivalent to a loop permutation that moves that loop innermost, without changing order of other loops
- If such a loop permutation is valid, unroll and jam of the loop is valid
- Example: 4D loop ijkl; $d_1 = (1, -1, 0, 2)$, $d_2 = (1, 1, -2, -1)$ i $d_1 \to (-1, 0, 2, 1)$, \Longrightarrow invalid to unroll and jam j $d_1 \to (1, 0, 2, -1)$; $d_2 \to (1, -2, -1, 1)$, \Longrightarrow valid to unroll and jam k $d_1 \to (1, -1, 2, 0)$; $d_2 \to (1, 1, -1, -2)$, \Longrightarrow valid to unroll and jam l d_1 and d_2 are unchanged; innermost loop can always be unrolled

Understanding Loop Unrolling

Pros

- + Small loop bodies are problematic, reduces control overhead of loops
- + Increases operation-level parallelism in loop body
- + Allows other optimizations like reuse of temporaries across iterations

Cons

- Increases the executable size
- Increases register usage
- May prevent function inlining

Loop Tiling (Loop Blocking)

- Improve data reuse by chunking the data in to smaller tiles (blocks)
 - ▶ All the required blocks are supposed to fit in the cache
- Performs strip mining in multiple array dimensions
- Tries to exploit spatial and temporal locality of data
- Determining the tile size
 - ▶ Requires accurate estimate of array accesses and the cache size of the target machine
 - ► Loop nest order also influences performance
 - ▶ Difficult theoretical problem, usually heuristics are applied
 - ► Cache-oblivious algorithms make efficient use of cache without explicit blocking

```
for (i = 0; i < N; i++) {
    ...
}</pre>
```

```
for (ii = 0; ii < N; ii+=B) {
  for (i = ii; i < min(N,ii+B), i++) {
    ...
  }
}</pre>
```

Validity Condition for Loop Tiling

- A band of loops is fully permutable if all permutations of the loops in that band are legal
- A contiguous band of loops can be tiled if they are fully permutable
- Example: d = (1, 2, -3)
 - Tiling all three loops ijk is not valid, since the permutation kij is invalid
 - ▶ 2D tiling of band ij is valid
 - ▶ 2D tiling of band jk is valid

```
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    for (k = 0; k < n; k++)
       loop_body(i,j,k)</pre>
```

```
for (it = 0; it < n; it+=T)
  for (jt = 0; jt < n; jt+=T)
  for (i = it; i < it+T; i++)
    for (j = jt; j < jt+T; j++)
    for (k = 0; k < n; k++)
        loop_body(i,j,k)</pre>
```

Enhancing Coarse-Grained Parallelism

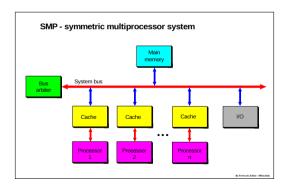
Focus is on parallelization of outer loops

Find Work for Threads

Setup

- Symmetric multiprocessors with shared memory
- Threads are running on each core and are coordinating execution with occasional synchronization

Challenge Balance the granularity of parallelism with communication overheads



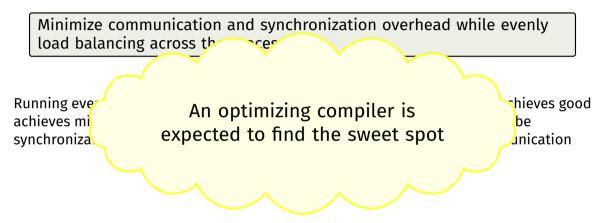
Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly load balancing across the processors

Running everything on one processor achieves minimal communication and synchronization overhead

Very fine-grained parallelism achieves good load balance, but benefits may be outweighed by frequent communication and synchronization

Challenges in Coarse-Grained Parallelism



Privatization

- Privatization is similar to scalar expansion
- Temporaries can be made local to each iteration

```
PARALLEL DO I = 1,N
PRIVATE t
S1 t = A(I)
S2 A(I) = B(I)
S3 B(I) = t
```

Privatization

A scalar variable x in a loop L is privatizable if every path from the entry of L to a use of x in the loop passes through a definition of x

- No use of the variable is upward exposed, i.e., the use never reads a value that was assigned outside the loop
- No use of the variable is from an assignment in an earlier iteration

Computing upward-exposed variables from a block BB

$$up(BB) = use(BB) \cup \left(\neg def(BB) \cap \bigcup_{y \in succ(BB)} up(y)\right)$$

Computing privatizable variables for a loop body B where BB_0 is the entry block

$$private(B) = \neg up(BB_0) \cap \left(\bigcup_{y \in B} def(y)\right)$$

Privatization

- If all dependences carried by a loop involve a privatizable variable, then loop can be parallelized by making the variables private
- Preferred compared to scalar expansion
 - ► Less memory requirement
 - ► Scalar expansion may suffer from false sharing
- However, there can be situations where scalar expansion works but privatization does not

Comparing Privatization and Scalar Expansion

DO I = 1, N

$$T = A(I) + B(I)$$

 $A(I-1) = T$

||Privatization

Loop Distribution (Loop Fission)

```
DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

S2 D(I,J) = A(I,J-1) * 2.0
```

```
DO I = 1, 100

DO J = 1, 100

S1   A(I,J) = B(I,J) + C(I,J)

DO J = 1, 100

S2   D(I,J) = A(I,J-1) * 2.0
```

Eliminates loop-carried dependences

Validity Condition for Loop Distribution

A loop with two statements can be distributed if there are no dependences from any instance of the **later** statement to any instance of the **earlier** one

- Sufficient (but not necessary) condition
- Generalizes to more statements

```
DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I+1) * D(I)
```

```
DO I = 1, N

S1 A(I) = B(I) + C(I)

S2 E(I) = A(I-1) * D(I)
```

Performing Loop Distribution

Steps

- (i) Build the DDG
- (ii) Identify strongly-connected components (SCCs) in the DDG
- (iii) Make each SCC a separate loop
- (iv) Arrange the new loops in a topological order of the DDG

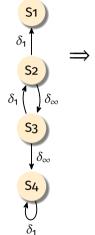
```
DO I = 1, N

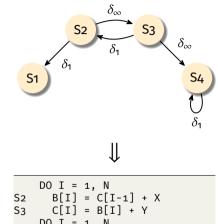
S1   A[I] = A[I] + B[I-1]

S2   B[I] = C[I-1] + X

S3   C[I] = B[I] + Y

S4   D[I] = C[I] + D[I-1]
```





Understanding Loop Distribution

Pros

- + Execute source of a dependence before the sink
- + Reduces the memory footprint of the original loop for both data and code
- + Improves opportunities for vectorization

Cons

 Can increase the synchronization required between dependence points

Loop Alignment

Unlike loop distribution, realign the loop to compute and use the values in the same iteration

```
DO I = 2, N

S1 A(I) = B(I) + C(I)

S2 D(I) = A(I-1) * 2.0
```

```
DO i = 1, N+1

if i > 1 && i < N+1

S1   A(i) = B(i) + C(i)

if i < N

S2   D(i+1) = A(i) * 2.0
```

carried dependence becomes loop independent

Can Loop Alignment Eliminate All Carried Dependences?

```
DO I = 1, N

S1  A(I) = B(I) + C

S2  B(I+1) = A(I) + D

A is aligned, B is misaligned
A = \begin{bmatrix} D0 & i = 1, & N+1 \\ & if & i > 1 \\ & & B(i) = A(i-1) + D \\ & & if & i < N+1 \\ & & & A(i) = B(i) + C \end{bmatrix}
```

```
DO I = 1, N
S1 A(I+1) = B(I) + C
S2 X(I) = A(I+1) + A(I)
```



```
DO i = 0, N

if i > 0

S1   A(i+1) = B(i) + C

if i < N

S2   X(i+1) = A(i+2) + A(i+1)
```

Loop Fusion (Loop Jamming)

L13 DO I = 1, N

$$A(I) = B(I) + 1$$

 $D(I) = A(I) + X$
L2 DO I = 1, N
 $C(I) = A(I) + C(I-1)$

Validity Condition for Loop Fusion

- Consider a loop-independent dependence between statements in two different loops (i.e., from S1 to S2)
- A dependence is fusion-preventing if fusing the two loops causes the dependence to be carried by the combined loop in the reverse direction (from S2 to S1)

```
DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I+1) + E
```

backward loop-carried anti dependence

Understanding Loop Fusion

Pros

- + Reduce overhead of loops
- + May improve temporal locality

DO I = 1, N
S1
$$A(I) = B(I) + C$$

DO I = 1, N
S2 $D(I) = A(I-1) + E$

Cons

May decrease data locality in the fused loop

```
DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I-1) + E
```

Loop Interchange

DO I = 1, N
DO J = 1, M

$$A(I+1,J) = A(I,J) + B(I,J)$$

Parallelizing J is good for vectorization, but not for coarse-grained parallelism

$$DO J = 1, M DO I = 1, N A(I+1,J) = A(I,J) + B(I,J)$$

Dependence-free loops should move to the outermost level

Condition for Loop Interchange

In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only "o" entries

```
DO I = 1, N

DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)
```

Code Generation Strategy

- (i) Continue till there are no more columns to move
 - ► Choose a loop from the direction matrix that has all "o" entries in the column
 - ► Move it to the outermost position
 - ► Eliminate the column from the direction matrix
- (ii) Pick loop with most "+" entries, move to the next outermost position
 - ► Generate a sequential loop
 - ► Eliminate the column
 - ► Eliminate any rows that represent dependences carried by this loop
- (iii) Repeat from Step (i)

Code Generation Example

```
DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3
```

```
DO I = 1, N

PARALLEL DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3
```

How did we pick loop J for parallelization?

How can we parallelize this loop?

```
DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L
A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```

No single loop carries all the dependences, so we can only parallelize loop K

Loop Reversal

```
DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```



```
DO I = 2, N+1

DO J = 2, M+1

DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```

- When the iteration space of a loop is reversed, the direction of dependences within that reversed iteration space are also reversed
 - ► A "+" dependence becomes a "-" dependence, and vice versa
- We cannot perform loop reversal if the loop carries a dependence

Perform Interchange after Loop Reversal

```
DO I = 2, N+1

DO J = 2, M+1

DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```



```
DO K = L, 1, -1

DO I = 2, N+1

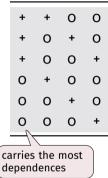
DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```

increases options for performing other optimizations

Which Transformations are Most Important?

- Selecting the best loops for parallelization is a NP-complete problem
- Flow dependences are difficult to remove
 - ► Try to reorder statements as in loop peeling, loop distribution
- Techniques like scalar expansion, privatization can be useful
 - ► Loops often use scalars for temporary values



Unimodular Transformations

Challenges in Applying Transformations

- We have discussed transformations (legality and benefits) in isolation
- Compilers need to apply compound transformations (e.g., loop interchange followed by reversal)
- It is challenging to decide on the desired transformations and their order of application
 - ► Choice and order is sensitive to the program input, a priori order does not work

Unimodular Transformations

- A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g., $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$)
- Few loop transformations can be modeled as matrix transformations involving unimodular matrices
 - ▶ Loop interchange maps iteration (i, j) to iteration (j, i)

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} j \\ i \end{bmatrix}$$

► Given transformation *T* is linear, the transformed dependence is given by *Td* where *d* is the dependence vector in the original iteration space

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} d_2 \\ d_1 \end{bmatrix}$$

- ▶ The transformation matrix for loop reversal of the outer loop *i* in a 2D loop nest is $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- ► The transformation matrix for loop skewing of a 2D loop nest (i,j) is the identity matrix T with $T_{j,i}$ equal to f, where we skew loop j with respect to loop i by a factor f

Example of Loop Skewing

Original

```
FOR I=1,5

FOR J=1,5

A(I,J) = A(I-1,J) + A(I,J-1)
```

Skewed

Dependences
$$D = \{(1, 0), (0, 1)\}$$

Transformation matrix = $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ Dependences $D' = TD = \{(1, 1), (0, 1)\}$

Representing Compound Transformations

Loop interchange is illegal because

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Let us try loop interchange followed by loop reversal. The transformation matrix T is

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Applying T to the loop nest is legal because

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Challenges for Real-World Compilers

- Conditional execution
- Symbolic loop bounds
- Indirect memory accesses
- ...

References

R. Allen and K. Kennedy. Optimizing Compilers for Multicore Architectures. Chapters 5–6, Morgan Kaufmann.

S. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler Techniques. Springer Cham.