
CS 610: Loop Transformations

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-I

Enhancing Program Performance

Possible ideas
� Adequate fine-grained parallelism

▶ Multiple pipelined functional units in each core
▶ Exploit vector instruction sets (SSE, AVX, AVX-512)

� Adequate parallelism for SMP-type systems
▶ Keep multiple asynchronous processors busy with work

� Minimize cost of memory accesses

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 3 / 70

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency
� Code restructuring optimizations
� Prefetching optimizations
� Data layout optimizations
� Code layout optimizations

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 4 / 70

Loop Optimizations

� Loops are one of most commonly used constructs in HPC program
� Compiler performs many loop optimization techniques automatically

▶ In some cases, source code modifications can enhance optimizer’s ability to transform
code

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 5 / 70

Reordering Transformations

A reordering transformation does not add or remove statements from a loop nest
� Only reorders the execution of the statements that are already in the loop

Do not add or remove
statements

Do not add or remove
any new dependences

A reordering transformation is valid if it preserves all existing dependences in the loop

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 6 / 70

Iteration Reordering and Parallelization

� A transformation that reorders the iterations of a level-k loop, without making any
other changes, is valid if the loop carries no dependence

� Each iteration of a loop may be executed in parallel if it carries no dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 7 / 70

Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops

Data Dependence Graph and Parallelization

� If the Data Dependence Graph (DDG) is acyclic, then vectorization of the program is
possible and is straightforward

� Otherwise, try to transform the DDG to an acyclic graph

FOR I=1,N
FOR J=1,M

S1 A(I,J) = B(I-1,J+1) + C
S2 B(I,J) = A(I-1,J-1) + K

S1 S2

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 8 / 70

Loop Interchange (Loop Permutation)

� Switch the nesting order of loops in a
perfect loop nest

� Can increase parallelism, can improve
spatial locality

� Dependence is now carried by the
outer loop, inner loop can be
vectorized

DO I = 1, N
DO J = 1, M

S A(I,J+1) = A(I,J) + B

DO J = 1, M
DO I = 1, N

S A(I,J+1) = A(I,J) + B

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 9 / 70

Example of Loop Interchange

DO i = 1, n
DO j = 1, n
C(i, j) = C(i-1,j+1)

DO j = 1, n
DO i = 1, n

C(i, j) = C(i-1,j+1)

1 2 3 4 5

j

1

2

3

4

5

i

1 2 3 4 5

i

1

2

3

4

5

j

valid?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 10 / 70

Validity of Loop Interchange

(i) Construct direction vectors for all possible dependences in the loop to form a
direction matrix
▶ Identical direction vectors are represented by a single row in the matrix

(ii) Compute direction vectors after permutation
(iii) Permutation of the loops in a perfect nest is legal iff there are no “-” direction as the

leftmost non–“0” direction in any direction vector

� Loop interchange is valid for a 2D loop
nest if none of the dependence vectors
has any negative components

� Interchange is legal: (1,1), (2,1), (0,1),
(3,0)

� Interchange is not legal: (1,-1), (3,-2)

DO J = 1, M
DO I = 1, N

A(I,J+1) = A(I+1,J) + B

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 11 / 70

Validity of Loop Permutation

� Generalization to higher-dimensional loops: Permute all dependence vectors exactly
the same way as the intended loop permutation

� If any permuted vector is lexicographically negative, permutation is illegal

� Example: d1 = (1,−1, 1) and d2 = (0, 2,−1)
▶ ijk→ jik? (1,−1, 1) → (−1, 1, 1): illegal
▶ ijk→ kij? (0, 2,−1) → (−1,0, 2): illegal
▶ ijk→ ikj? (0, 2,−1) → (0,−1, 2): illegal
▶ No valid permutation: j cannot be outermost loop (-1 component in d1), and k cannot

be outermost loop (-1 component in d2)

� A loop nest is fully permutable if any permutation transformation to the loop nest is
legal

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 12 / 70

Benefits from Loop Permutation

for (i=0; i<n; i++)
for (j=0; j<n; j++)

for (k=0; k<n; k++)
C[i][j] += A[i][k]*B[k][j];

Stride ikj kij jik ijk jki kji

C[i][j] 1 1 0 0 n n
A[i][k] 0 0 1 1 n n
B[k][j] 1 1 n n 0 0

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 13 / 70

Does Loop Interchange/Permutation Always Help?

DO i = 1, 10000
DO j = 1, 1000

a(i) = a(i) + b(j,i) * c(i)

DO i = 1, N
DO j = 1, M

DO k = 1, L
a(i+1,j+1,k) = a(i,j,k) + b

� Benefits from loop interchange depends on the target machine, the data structures
accessed, memory layout and stride patterns

� Optimization choices for the snippet on the right
▶ Vectorize J and K
▶ Move K outermost and parallelize K with threads
▶ Move I innermost and vectorize assuming column-major layout

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 14 / 70

Loop Shifting

� In a perfect loop nest, if loops at level i, i + 1, . . . i + n carry no dependence, i.e., all
dependences are carried by loops at level less than i or greater than i + n, then it is
always legal to shift these loops inside of loop i + n + 1

� These loops will not carry any dependences in their new position

+ 0 + 0 0 0
0 + - + + 0
0 0 0 0 + +
0 0 0 0 0 +

Loops i to i+n

Dependence carried
by outer loops

Dependence carried
by inner loops

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 15 / 70

Loop Shift for Matrix Multiply

DO I = 1, N
DO J = 1, N

DO K = 1, N
S A(I,J) = A(I,J) + B(I,K)*C(K,J)

Is the loop nest
vectorizable as is?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 16 / 70

Scalar Expansion
Eliminates dependences that arise from reuse of memory locations at the cost of extra
memory

DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

S1 S2

S3

anti due to A (𝛿−1
∞)

loop-independent flow
due

to
T
(𝛿∞)

loop-carried
flow

due
to

T
(𝛿1)

antidue
to

B
(𝛿

−1
∞

)

anti due
to

T
(𝛿 −11)

output due to T (𝛿o1)

DO I = 1, N
S1 $T(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = $T(I)

T=$T(N)

S1 S2

S3

loop-independent flow
due

to
T(I) (𝛿∞)

anti due to A (𝛿−1
∞)

antidue
to

B
(𝛿

−1
∞

)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 18 / 70

Scalar Expansion

DO I = 1, N
T = T + A(I) + A(I-1)
A(I) = T

$T(0) = T
DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)
A(I) = $T(I)

T = $T(N)

Can we parallelize
the I loop?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 19 / 70

Understanding Scalar Expansion

Pros

+ Eliminates dependences due to reuse
of memory locations, helps with
parallelism

Cons

− Increases memory and addressing
overhead

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

=⇒ DO I = 1, N, 64
DO i = 0, 63
T = A(I+i) + A(I+1+i)
A(I+i) = T + B(I+i)

=⇒ DO I = 1, N, 64
DO i = 0, 63

$T(i) = A(I+i) + A(I+1+i)
A(I+i) = $T(i) + B(I+i)

can also try forward
substitution

strip mining
strip loop

Strip mining (also known as sectioning) is a special case of 1-D loop tiling

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 20 / 70

Limits of Scalar Expansion

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 $T(I) = A(I) + B(I)
S2 C(I) = $T(I) + $T(I)
S3 $T(I) = D(I) - B(I)
S4 A(I+1) = $T(I) * $T(I)

Can we vectorize the
loop nest?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 21 / 70

Scalar Renaming

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

Can we vectorize the
loop nest?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 22 / 70

Allow Vectorization with Statement Interchange

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

=⇒
DO I = 1, 100

S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1

T = T2

=⇒
S3 T2(1:100) = D(1:100) - B(1:100)
S4 A(2:101) = T2(1:100) * T2(1:100)
S1 T1(1:100) = A(1:100) + B(1:100)
S2 C(1:100) = T1(1:100) + T1(1:100)

T = T2(100)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 23 / 70

Array Renaming

DO I = 1, 100
S1 A(I) = A(I-1) + X
S2 Y(I) = A(I) + Z
S3 A(I) = B(I) + C

DO I = 1, 100
S1 $A(I) = A(I-1) + X
S2 Y(I) = $A(I) + Z
S3 A(I) = B(I) + C

S1 S2

S3

𝛿∞

𝛿−1
∞

𝛿0
∞

𝛿1

Array renaming requires
sophisticated analysis

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 24 / 70

Node Splitting

DO I = 1, 100
S1 A(I) = X(I+1) + X(I)
S2 X(I+1) = B(I) + 10

DO I = 1, 100
S0 $X(I) = X(I+1)
S1 A(I) = $X(I) + X(I)
S2 X(I+1) = B(I) + 10

S1 S2
𝛿1

𝛿−1
0

Can we vectorize the
loop nest?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 25 / 70

Index-Set Splitting

DO I = 1, 100
A(I+20) = A(I) + B

DO I = 1, 100, 20
DO i = I, I+19

A(i+20) = A(i) + B

An index-set splitting transformation subdivides the loop into different iteration ranges

strip mining

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 26 / 70

Loop Peeling

� Splits any problematic iterations (could be first, middle, or last few) from the loop
body

� Change from a loop-carried dependence to loop-independent dependence
� Transformed loop carries no dependence, can be parallelized
� Peeled iterations execute in the original order, transformation is always legal to

perform

DO I = 1, N
A(I) = A(I) + A(1)

A(1) = A(1) + A(1)
DO I = 2, N

A(I) = A(I) + A(1)

Loop splitting

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 27 / 70

https://en.wikipedia.org/wiki/Loop_splitting

Loop Splitting

DO I = 1, N
A(I) = A(N/2) + B(I)

S1

𝛿−1
∞

M = N/2
DO I = 1, M-1

A(I) = A(N/2) + B(I)
A(M) = A(N/2) + B(I)
DO I = M+1, N

A(I) = A(N/2) + B(I)

assume N is
divisible by 2

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 28 / 70

Section-Based Splitting

DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N

S2 A(J,I+1) = B(J,I) + D

=⇒ DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N/2

S2 A(J,I+1) = B(J,I) + D
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D

=⇒

DO I = 1,N
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D
DO I = 1,N
DO J = 1,N/2

S1 B(J,I) = A(J,I) + C
DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D

=⇒ M = N/2
S3 A(M+1:N,2:N+1) = B(M+1:N,1:N) + D

DO I = 1, N
S1 B(1:M,I) = A(1:M,I) + C
S2 A(1:M,I+1) = B(1:M,I) + D

S3 is
independent

cannot
vectorize I

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 29 / 70

Loop Skewing

DO I = 1, N
DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

S(1,1) S(2,1) S(3,1) S(4,1)

S(1,2) S(2,2) S(3,2) S(4,2)

S(1,3) S(2,3) S(3,3) S(4,3)

S(1,4) S(2,4) S(3,4) S(4,4)

I = 1 I = 2 I = 3 I = 4

J = 1

J = 2

J = 3

J = 4

Parallel
iterations

Which loops carry
dependences?

I+J is
same

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 30 / 70

Loop Skewing

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

S(1,2)

S(1,3) S(2,1)

S(1,4) S(2,2) S(3,1)

S(1,5) S(2,3) S(3,2) S(4,1)

I = 1 I = 2 I = 3 I = 4

j = 2

j = 3

j = 4

j = 5

Parallel
iterations

Loop skewing skews the inner loop relative to the outer loop by adding the index of the
outer loop times a skewing factor f to the bounds of the inner loop and subtracting the
same value from all the uses of the inner loop index

j=I+J

What are the dependences
now? Which loop carries the
dependence?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 31 / 70

Perform Loop Interchange

Given a dependency vector (a, b), skewing transforms it to (a, fa + b)

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

⇓

DO j = 2, N+N
DO I = max(1,j-N), min(N,j-1)

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

can use Fourier-
Motzkin elimination

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 32 / 70

Understanding Loop Skewing

Pros

+ Reshapes the iteration space to find
possible parallelism

+ Preserves lexicographic order of the
dependences, is always legal

+ Allows for loop interchange in future

Cons

− Resulting iteration space can be
trapezoidal

− Irregular loops are not very amenable
for vectorization

− Need to be careful about load
imbalance

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 33 / 70

Loop Unrolling (Loop Unwinding)

� Reduce number of iterations of loops
� Add statement(s) to do work of missing iterations
� JIT compilers try to perform unrolling at run-time

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
y[i] = y[i] + a[i][j]*x[j];

}
}

for (i=0; i<n; i++) {
for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j]
+ a[i][j+1]*x[j+1]
+ a[i][j+2]*x[j+2]
+ a[i][j+3]*x[j+3];

}
}

4-way inner
loop unrolling

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 34 / 70

Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++) {
for (j=0; j<m; j++) {
loop-body(i,j);

}
}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {

loop-body(i,j);
}
for (j=0; j<m; j++) {

loop-body(i+1,j);
}

}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {
loop-body(i,j);
loop-body(i+1,j);

}
}

2-way outer unroll does not increase
operation-level parallelism in the in-
ner loop

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 35 / 70

Is Loop Unroll and Jam Legal?

DO I = 1, N
DO J = 1, M

A(I,J) = A(I-1,J+1)+C

DO I = 1, N, 2
DO J = 1, M

A(I,J) = A(I-1,J+1)+C
A(I+1,J) = A(I,J+1)+C

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 36 / 70

Validity Condition for Loop Unroll and Jam

� Complete unroll and jam of a loop is equivalent to a loop permutation that moves
that loop innermost, without changing order of other loops

� If such a loop permutation is valid, unroll and jam of the loop is valid

� Example: 4D loop ijkl; d1 = (1,−1,0, 2), d2 = (1, 1,−2,−1)
i d1 → (−1,0, 2, 1), =⇒ invalid to unroll and jam
j d1 → (1,0, 2,−1);d2 → (1,−2,−1, 1), =⇒ valid to unroll and jam
k d1 → (1,−1, 2,0);d2 → (1, 1,−1,−2), =⇒ valid to unroll and jam
l d1 and d2 are unchanged; innermost loop can always be unrolled

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 37 / 70

Understanding Loop Unrolling

Pros

+ Small loop bodies are problematic,
reduces control overhead of loops

+ Increases operation-level parallelism
in loop body

+ Allows other optimizations like reuse
of temporaries across iterations

Cons

− Increases the executable size
− Increases register usage
− May prevent function inlining

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 38 / 70

Loop Tiling (Loop Blocking)
� Improve data reuse by chunking the data in to smaller tiles (blocks)

▶ All the required blocks are supposed to fit in the cache
� Performs strip mining in multiple array dimensions
� Tries to exploit spatial and temporal locality of data
� Determining the tile size

▶ Requires accurate estimate of array accesses and the cache size of the target machine
▶ Loop nest order also influences performance
▶ Difficult theoretical problem, usually heuristics are applied
▶ Cache-oblivious algorithms make efficient use of cache without explicit blocking

for (i = 0; i < N; i++) {
...

}

for (ii = 0; ii < N; ii+=B) {
for (i = ii; i < min(N,ii+B), i++) {

...
}

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 39 / 70

Validity Condition for Loop Tiling

� A band of loops is fully permutable if
all permutations of the loops in that
band are legal

� A contiguous band of loops can be
tiled if they are fully permutable

� Example: d = (1, 2,−3)
▶ Tiling all three loops ijk is not valid,

since the permutation kij is invalid
▶ 2D tiling of band ij is valid
▶ 2D tiling of band jk is valid

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)

for (it = 0; it < n; it+=T)
for (jt = 0; jt < n; jt+=T)

for (i = it; i < it+T; i++)
for (j = jt; j < jt+T; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 40 / 70

Enhancing Coarse-Grained Parallelism

Focus is on parallelization of outer loops

Find Work for Threads

Setup � Symmetric multiprocessors with shared memory
� Threads are running on each core and are coordinating execution with

occasional synchronization
Challenge Balance the granularity of parallelism with communication overheads

SMP - symmetric multiprocessor system

System bus

Cache Cache Cache

Processor
1

Processor
2

Processor
n

Main
memory

By Ferruccio Zulian - Milan.Italy

Bus
arbiter

I/O

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 41 / 70

Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Running everything on one processor
achieves minimal communication and
synchronization overhead

Very fine-grained parallelism achieves good
load balance, but benefits may be
outweighed by frequent communication
and synchronization

An optimizing compiler is
expected to find the sweet spot

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 42 / 70

Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Running everything on one processor
achieves minimal communication and
synchronization overhead

Very fine-grained parallelism achieves good
load balance, but benefits may be
outweighed by frequent communication
and synchronization

An optimizing compiler is
expected to find the sweet spot

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 42 / 70

Privatization

� Privatization is similar to scalar expansion
� Temporaries can be made local to each iteration

DO I = 1,N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

PARALLEL DO I = 1,N
PRIVATE t

S1 t = A(I)
S2 A(I) = B(I)
S3 B(I) = t

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 43 / 70

Privatization
A scalar variable x in a loop L is privatizable if every path from the entry of L to a use of x
in the loop passes through a definition of x
� No use of the variable is upward exposed, i.e., the use never reads a value that was

assigned outside the loop
� No use of the variable is from an assignment in an earlier iteration

Computing upward-exposed variables from a block BB

up(BB) = use(BB) ∪
(
¬def (BB) ∩⋃

y∈succ(BB) up(y)
)

Computing privatizable variables for a loop body B where BB0 is
the entry block

private(B) = ¬up(BB0) ∩
(⋃

y∈B def (y)
)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 44 / 70

Privatization

� If all dependences carried by a loop involve a privatizable variable, then loop can be
parallelized by making the variables private

� Preferred compared to scalar expansion
▶ Less memory requirement
▶ Scalar expansion may suffer from false sharing

� However, there can be situations where scalar expansion works but privatization
does not

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 45 / 70

Comparing Privatization and Scalar Expansion

DO I = 1, N
T = A(I) + B(I)
A(I-1) = T

⇓Privatization

DO I = 1, N
PRIVATE T
T = A(I) + B(I)
A(I-1) = T

Scalar
=========⇒
expansion

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)
A(I-1) = T$(I)

⇓

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)

PARALLEL DO I = 1, N
A(I-1) = T$(I)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 46 / 70

Loop Distribution (Loop Fission)

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)
S2 D(I,J) = A(I,J-1) * 2.0

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

DO J = 1, 100
S2 D(I,J) = A(I,J-1) * 2.0

Eliminates loop-carried
dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 47 / 70

Validity Condition for Loop Distribution

A loop with two statements can be distributed if there are no dependences from any
instance of the later statement to any instance of the earlier one
� Sufficient (but not necessary) condition
� Generalizes to more statements

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I+1) * D(I)

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I-1) * D(I)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 48 / 70

Performing Loop Distribution

Steps
(i) Build the DDG

(ii) Identify strongly-connected
components (SCCs) in the DDG

(iii) Make each SCC a separate loop
(iv) Arrange the new loops in a

topological order of the DDG

DO I = 1, N
S1 A[I] = A[I] + B[I-1]
S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y
S4 D[I] = C[I] + D[I-1]

=⇒

S1

S2

S3

S4

𝛿1

𝛿∞𝛿1

𝛿∞

𝛿1

=⇒ S1

S2 S3

S4
𝛿1

𝛿∞

𝛿1
𝛿∞

𝛿1

⇓
DO I = 1, N

S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y

DO I = 1, N
S1 A[I] = A[I] + B[I-1]

DO I = 1, N
S4 D[I] = C[I] + D[I-1]

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 49 / 70

Understanding Loop Distribution

Pros

+ Execute source of a dependence before
the sink

+ Reduces the memory footprint of the
original loop for both data and code

+ Improves opportunities for
vectorization

Cons

− Can increase the synchronization
required between dependence points

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 50 / 70

Loop Alignment

Unlike loop distribution, realign the loop to compute and use the values in the same
iteration

DO I = 2, N
S1 A(I) = B(I) + C(I)
S2 D(I) = A(I-1) * 2.0

DO i = 1, N+1
if i > 1 && i < N+1

S1 A(i) = B(i) + C(i)
if i < N

S2 D(i+1) = A(i) * 2.0

cannot be parallelized
carried dependence becomes
loop independent

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 51 / 70

Can Loop Alignment Eliminate All Carried Dependences?

DO I = 1, N
S1 A(I) = B(I) + C
S2 B(I+1) = A(I) + D

DO I = 1, N
S1 A(I+1) = B(I) + C
S2 X(I) = A(I+1) + A(I)

=⇒

=⇒

DO i = 1, N+1
if i > 1

S2 B(i) = A(i-1) + D
if i < N+1

S1 A(i) = B(i) + C

DO i = 0, N
if i > 0

S1 A(i+1) = B(i) + C
if i < N

S2 X(i+1) = A(i+2) + A(i+1)

A is aligned, B
is misaligned

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 52 / 70

Loop Fusion (Loop Jamming)

DO I = 1, N
S1 A(I) = B(I) + 1
S2 C(I) = A(I) + C(I-1)
S3 D(I) = A(I) + X

=⇒
L1 DO I = 1, N

A(I) = B(I) + 1
L2 DO I = 1, N

C(I) = A(I) + C(I-1)
L3 DO I = 1, N

D(I) = A(I) + X

=⇒
L13 DO I = 1, N

A(I) = B(I) + 1
D(I) = A(I) + X

L2 DO I = 1, N
C(I) = A(I) + C(I-1)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 53 / 70

Validity Condition for Loop Fusion

� Consider a loop-independent dependence between statements in two different
loops (i.e., from S1 to S2)

� A dependence is fusion-preventing if fusing the two loops causes the dependence to
be carried by the combined loop in the reverse direction (from S2 to S1)

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I+1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I+1) + E

loop-independent
flow dependence

backward loop-carried
anti dependence

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 54 / 70

Understanding Loop Fusion

Pros

+ Reduce overhead of loops
+ May improve temporal locality

Cons

− May decrease data locality in the fused
loop

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I-1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I-1) + E

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 55 / 70

Loop Interchange

DO I = 1, N
DO J = 1, M
A(I+1,J) = A(I,J) + B(I,J)

=⇒
DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

⇓

PARALLEL DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

Parallelizing J is good for vector-
ization, but not for coarse-grained
parallelism

Dependence-free loops should
move to the outermost level

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 56 / 70

Condition for Loop Interchange

In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the
column of the direction matrix for that nest contains only “0” entries

DO I = 1, N
DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 57 / 70

Code Generation Strategy

(i) Continue till there are no more columns to move
▶ Choose a loop from the direction matrix that has all “0” entries in the column
▶ Move it to the outermost position
▶ Eliminate the column from the direction matrix

(ii) Pick loop with most “+” entries, move to the next outermost position
▶ Generate a sequential loop
▶ Eliminate the column
▶ Eliminate any rows that represent dependences carried by this loop

(iii) Repeat from Step (i)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 58 / 70

Code Generation Example

DO I = 1, N
DO J = 1, M
DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

DO I = 1, N
PARALLEL DO J = 1, M

DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

How did we pick loop
J for parallelization?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 60 / 70

How can we parallelize this loop?

DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

No single loop carries all the dependences,
so we can only parallelize loop K

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 61 / 70

Loop Reversal
DO I = 2, N+1

DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO I = 2, N+1

DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

� When the iteration space of a loop is reversed, the direction of dependences within
that reversed iteration space are also reversed
▶ A “+” dependence becomes a “-” dependence, and vice versa

� We cannot perform loop reversal if the loop carries a dependence
Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 62 / 70

Perform Interchange after Loop Reversal

DO I = 2, N+1
DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO K = L, 1, -1

DO I = 2, N+1
DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

increases options for performing
other optimizations

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 63 / 70

Which Transformations are Most Important?

� Selecting the best loops for parallelization is a
NP-complete problem

� Flow dependences are difficult to remove
▶ Try to reorder statements as in loop peeling, loop

distribution
� Techniques like scalar expansion, privatization can be

useful
▶ Loops often use scalars for temporary values

+ + 0 0
+ 0 + 0
+ 0 0 +
0 + 0 0
0 0 + 0
0 0 0 +

carries the most
dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 64 / 70

Unimodular Transformations

Challenges in Applying Transformations

� We have discussed transformations (legality and benefits) in isolation
� Compilers need to apply compound transformations (e.g., loop interchange followed

by reversal)
� It is challenging to decide on the desired transformations and their order of

application
▶ Choice and order is sensitive to the program input, a priori order does not work

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 65 / 70

Unimodular Transformations
� A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g.,

[1 1
1 0

]
)

� Few loop transformations can be modeled as matrix transformations involving
unimodular matrices
▶ Loop interchange maps iteration (i, j) to iteration (j, i)[

0 1
1 0

] [
i
j

]
=

[
j
i

]
▶ Given transformation T is linear, the transformed dependence is given by Td where d is

the dependence vector in the original iteration space[
0 1
1 0

] [
d1
d2

]
=

[
d2
d1

]
▶ The transformation matrix for loop reversal of the outer loop i in a 2D loop nest is

[−1 0
0 1

]
▶ The transformation matrix for loop skewing of a 2D loop nest (i, j) is the identity matrix
T with Tj,i equal to f , where we skew loop j with respect to loop i by a factor f

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS’91.

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 66 / 70

https://ieeexplore.ieee.org/document/97902

Example of Loop Skewing

Original

FOR I=1,5
FOR J=1,5
A(I,J) = A(I-1,J) + A(I,J-1)

Dependences D = {(1,0), (0, 1)}

Skewed

FOR I=1,5
FOR j=I+1,I+5

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

Transformation matrix = [1 0
1 1]

Dependences D′
= TD = {(1, 1), (0, 1)}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 67 / 70

Representing Compound Transformations
DO I = 1, N

DO J = 1, N
A(I,J) = A(I-1,J+1) + C

Loop interchange is illegal because[
0 1
1 0

] [
1
−1

]
=

[
−1
1

]
Let us try loop interchange followed by loop reversal. The transformation matrix T is[

−1 0
0 1

] [
0 1
1 0

]
=

[
0 −1
1 0

]
Applying T to the loop nest is legal because[

0 −1
1 0

] [
1
−1

]
=

[
1
1

]
DO J = N, 1, -1

DO I = 1, N
A[I,J] = A[I-1,J+1] + C

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 68 / 70

Challenges for Real-World Compilers

� Conditional execution
� Symbolic loop bounds
� Indirect memory accesses
� . . .

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations Sem 2024-25-I 69 / 70

References

R. Allen and K. Kennedy. Optimizing Compilers for Multicore Architectures. Chapters 5–6,
Morgan Kaufmann.

S. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler Techniques.
Springer Cham.

	Enhancing Fine-Grained Parallelism
	Enhancing Coarse-Grained Parallelism
	Unimodular Transformations

