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Rise of GPU Computing
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Need for GPU Computing Support

® Many real-world applications are
compute-intensive and data-parallel

@ Need to process a lot of data, mostly
floating-point operations
® Examples are
» Real-time high-definition graphics
applications such as your favorite
video games
» Iterative kernels which update
elements according to some fixed
pattern called a stencil
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Rise of GPRGPU Computing

® Researchers tricked GPUs to perform non-rendering computations, often referred to
as general-purpose GPU (GPGPU) computations
® Programming initial GPU devices for other purposes was very convoluted
— Programming model was very restrictive
— Limited input colors and texture units, writes to arbitrary locations, floating-point
computations
@ This spurred the need for a generic highly-parallel computational device with high
computational power and memory bandwidth
» CPUs are more complex devices catering to a wider audience
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Rise of GPRGPU Computing

® NVIDIA released GeForce 8800 GTX in 2006 with CUDA architecture
+ General-purpose ALU and instruction set for general-purpose computation
+ Allowed arbitrary reads and writes to shared memory
+ IEEE compliance for single-precision floating-point arithmetic
@ Introduced CUDA C and the toolchain for ease of development with the CUDA
architecture

® GPUs are now used in different applications

» For example, game effects, computational science simulations, image processing,
machine learning, and linear algebra

» Modern GPUs serve both as a programmable graphics processor and a scalable parallel
computing platform

® There are several GPU vendors like NVIDIA, AMD, Intel, Qualcomm, and ARM
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GPU Architecture

Philosophy and Design Goals



Analytical Model to Compare CPU and GPU Performance

Simple cache model where threads do not share data and there is infinite off-chip memory
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Key Insights in GPU Architecture

@ GPUs are suited for compute-intensive data-parallel applications
» The same program is executed for each data element
® Many-core chip

» Multi-threaded execution on a single core (multiple threads executed concurrently by a
core)
» SIMD execution within a single core (many ALUs performing the same instruction)

@ The focus is on overall computing throughput rather than on the speed of an
individual core
» GPUs do not reduce latency, they aim to hide latency
» High arithmetic intensity and large number of schedulable units to hide latency of
memory accesses
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Key Insights in GPU Architecture

Much more transistors or real-estate is devoted to computation rather than data caching
and control flow
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Comparing FLOPS
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Memory Bandwidth for CPU and GPU
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Compare GPU to CPU Architecture

® CPUs aim to reduce memory latency with increasingly large and complex memory
hierarchy

@ Disadvantages

» The Intel I7-920 processor has some 8 MB of internal L3 cache, almost 30% of the size
of the chip
» Larger cache structures increases the physical size of the processor

» Implies more expensive manufacturing costs and increases likelihood of manufacturing
defects

@ Effect of larger, progressively more inefficient caches ultimately results in higher costs
to the end user
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Advantages of a GPU

Performance Energy
® Comparing Xeon 8180M and Titan V ® GPU’s higher performance and energy
(based on peak values) efficiency are due to different
» 3.4X operations executed per second allocation of chip area
compared to the CPU » High degree of SIMD parallelism,
» 5.5X bytes transferred from main simple in-order cores, less
memory per second compared to the control/sync. logic, less
CPU cache/scratchpad capacity
» Cost- and energy-efficiency » SIMD is more energy-efficient than
> 15X as much performance per dollar MIMD since a single instruction can
> 2.8X as much performance per watt launch many data operations

» Simpler pipeline with no support for
restartable instructions and precise
exceptions
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Limitations of GPUs
Should we not use GPUs ALL the time?

® GPUs can only execute some types of code fast

» SIMD parallelism is not well suited for all algorithms
» Need lots of data parallelism, data reuse, and regularity

® GPUs are harder to program and tune than CPUs because of their architecture
» Fewer tools and libraries exist

Role of CPUs
® CPU is responsible for initiating computation on the GPU and transferring data to and
from the GPU
@ Beginning and end of the computation typically require access to input/output (I/0)
devices

@ There are ongoing efforts to develop APIs providing I/O services directly on the GPU
» GPUs are not standalone yet, assumes the existence of a CPU
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CPUs vs GPUs

CPU GPU
@ Designed for running a few potentially @ Designed for running large number of
complex tasks simple tasks
» Tasks may be unconnected » Suitable for data parallelism
» Suitable to run system software like @ Has a single set of registers but with
the OS and applications multiple banks
® Small number of registers per core » A context switch involves setting a
private to a task bank selector to switch in and out the
» Context switch between tasks is current set of registers
expensive in terms of time » Orders of magnitude faster than
» Register set must be saved to memory having to save to RAM
and the next one restored from
memory
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GPU Architecture

@ GPUs consist of Streaming Multiprocessors (SMs)

» NVIDIA calls these streaming multiprocessors and AMD calls them compute units

@ SMs contain Streaming Processors (SPs) or Processing Elements (PEs)
» Each core contains one or more ALUs and FPUs
@ GPU can be thought of as a multi-multicore (manycore) system
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Ampere Architecture

PCI Express 4.0 Host Interface
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Ampere Architecture
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Ampere Architecture

® A GA102 GPU includes 28.3 billion transistors with a die size of 628.4 mm?
® Includes 7 Graphics Processing Clusters (GPCs), 42 (7*6) Texture Processing Clusters
(TPCs), and 84 (7*12) Streaming Multiprocessors (SMs)
® Each SMin GA10x GPUs contain
» 128 CUDA cores for a total of 84*128=10752 cores
» 256 (4*16384*32 bits) KB register file
» Combined 128 KB L1 data cache/shared memory subsystem
@ In addition, there are 84 RT Cores, 336 Tensor Cores, 168 FP64 units (two per SM)
@ The memory subsystem consists of twelve 32-bit memory controllers (384-bit total)
» 512 KB of L2 cache is paired with each 32-bit memory controller, for a total of 6144 KB

@ Includes PCIe Gen4 providing up to 16 Gigatransfers/second bit rate

NVIDIA Ampere GA102 GPU Architecture: Second-Generation RTX
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https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

Compute Capability (CC)

® When programming with CUDA, it is very important to be aware of the differences
among different versions of hardware

® In CUDA, CC refers to architecture features

» For example, number of registers and cores, cache and memory size, and supported
arithmetic instructions

@ For example, CC 1.x devices have 16 KB local memory per thread, and 2.x and 3.x
devices have 512 KB local memory per thread

CUDA: Version features and specifications
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Discrete vs Integrated GPUs

Discrete Integrated
CPU GPU GPU
Memory Memory Memory
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CPU GPU |
PCle bus | |
CPU GPU
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Discrete vs Integrated GPUs

Discrete Integrated
® More performant, consumes more @ Less performant because of energy
energy considerations
@ Cost of PCIe transfers influences the ® CPU and GPU share physical memory
granularity of offloading and the (DRAM or LLC) and can avoid the cost of
performance data transfers over a PCle bus
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CUDA Programming

Programming API for NVIDIA GPUs



CUDA Philosophy

Massively parallel

The computations can be broken down into hundreds or thousands of independent units
of work

Computationally intensive

The time spent on computation significantly exceeds the time spent on transferring data to
and from GPU memory

Single Instruction Multiple Thread (SIMT) J
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CUDA Programming Model

Allows fine-grained data parallelism and thread parallelism nested within coarse-grained
data parallelism and task parallelism

(i) Partition the problem into coarse sub-problems that can be solved independently
(i) Assign each sub-problem to a “block” of threads to be solved in parallel

(iii) Each sub-problem is also decomposed into finer work items that are solved in parallel
by all threads within the block
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Hello World with CUDA

##include <stdio.h> $ nvcc hello-world.cu
J#include <cuda.h> $ ./a.out
__global__ void hwkernel() { $
printf("Hello world!\n");
%

int main() {
hwkernel<<<1l, 1>>>();

3

B hello-world.cu
B Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1 25/159


https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/cuda/hello-world.cu
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Hello World with CUDA

##include <stdio.h> $ nvcc hello-world.cu
J#include <cuda.h> $ ./a.out
Hello world!
__global__ void hwkernel() {
printf("Hello world!\n"); $

ky

int main() $
hwkernel<<<1l, 1>>>();
cudaDeviceSynchronize();

3

@ CPU thread returns immediately after launching the kernel
@ Use cudaDeviceSynchronize () (or its variants) to block the caller CPU thread
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Function Declarations

Executed on Callable from

__device__ float deviceFunc() Device Device
__global__ void kernelFunc() Device Host$
__host__ float hostFunc() Host Host

® __global__ define a kernel function, must return void
® __device__ functions can have return values

® __host__ is default, and can be omitted

(]

Prepending __host__ __device__ causes the system to compile separate host and device
versions of the function

§A kernel function can also be called from the device if dynamic parallelism is enabled
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Classical Execution Model

(i) Prepare input datain CPU memory

(i) Copy data from CPU to GPU memory (e.g., cudaMemcpy ())
(iii) Launch GPU kernel and execute, caching data on chip for performance
(iv) Copy results from GPU memory to CPU memory (e.g., cudaMemcpy ())
(v) Use the results on the CPU
(vi) Repeat the above steps based on the application logic
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CUDA Extensions for C/C++

Kernellaunch e Calling functions on GPU

Memory management GPU memory allocation, copying data to/from GPU

Declaration qualifiers e __device__, __shared, __local, __global__,
__host__

Special instructions Barriers, fences, atomics
Keywords @ threadIdx, blockIdx, blockDim
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Kernels

® Kernels are special functions that a // Kernel definition
CPU can call to execute on the GPU __global__ void VecAdd(floatx A, floatx B,
. . floatx C) {
» Executed N times in parallel by N int i = threadIdx.x;

different CUDA threads
» Cannot return a value
» Each thread will execute VecAdd () o
® Each thread has a unique thread ID that // Kernel invocation with N threads
. . . VecAdd<<<1l, N>>>(A, B, C);
is accessible within the kernel through 3
the built-in threadIdx variable

int main() {
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Kernels

KernelName<<<m, n>>>(argl, arg2, ...)

GPU spawns m blocks with n threads that run a copy of the same function
@ CPU can continue processing while GPU runs the kernel
@ Kernel call returns when all threads have terminated

kernell<<<X,Y>>>(...);

// kernel starts execution, CPU continues to next statement
kernel2<<<X,Y>>>(...);

// kernel2 placed in queue, will start after kernell finishes,
// CPU continues

cudaMemcpy (...);
// CPU blocks until memory is copied, memory copy starts after all

// preceding CUDA calls finish
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Thread Hierarchy

® A kernel executes in parallel across a set of parallel threads

@ All threads that are generated by a kernel launch are collectively called a grid

@ Threads are organized in thread blocks

@ Athread block is a set of concurrently executing threads that can cooperate among
themselves through shared memory and barrier synchronization

® Agridis an array of thread blocks that execute the same kernel
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Dimension and Index Variables

Type is dim3

1%

Dimension Index
® gridDim specifies the number of ® blockIdx gives the index of the block
blocks in the grid in the grid
@ blockDim specifies the number of ® threadIdx gives the index of the
threads in each block thread within the block

@ Keywords are 3-component vectors

» For example, threadIdx. [x,y,z] gives the index of the thread in a block, in the
particular direction
» Thread index can be 1D, 2D, or 3D
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Thread Hierarchy

® Threads in a block reside on the same
core, max 1024 threads in a block

@ Thread blocks are organized into 1D,
2D, or 3D grids

» Also called cooperative thread array

(CTA)
» Grid dimension is given by gridDim
variable
@ Identify block within a grid with the
blockIdx variable
@ Block dimension is given by blockDim
variable

Grid

Block (0,0) || Block (1,0) | Block (2, 0)

Block (0, 17 Block (1,1) NBlock (2, 1)

/

N
/ \ N\

/
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Finding Thread IDs

How to find out the relation between thread IDs and threadIdx?
® 1D: tid = threadIdx.x
® 2D block of size (Dx, Dy): thread ID of a thread of index (x, y)is (x + yDx)

® 3D block of size (Dx, Dy, Dz):threadID of athread of index (x, y, z)is (x +
yDx + zDxDy)

tid is local to
each thread
Block 0 Block 1 Block 255

‘ 0 ‘ 1 ‘ ’254‘255‘ 0 1 ... 254 255 ‘ 0 ‘ 1 ‘ ‘254‘255‘
tid = blockldx.x*blockDim.x tid = blockldx.x*blockDim.x tid = blockldx.x*blockDim.x
+ threadldx.x + threadldx.x + threadldx.x

D000 W )

B thread-id.cu
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Device Management

Query device information B J

@ The application can query and select GPUs

» cudaGetDeviceCount(int xcount)

» cudaSetDevice(int device)

» cudaGetDevice(int xdevice)

» cudaGetDeviceProperties(cudaDeviceProp *prop, int device)
@ Multiple host threads can share a device
@ Asingle host thread can manage multiple devices

» cudaSetDevice (1) to select current device
» cudaMemcpy(...) for peer-to-peer copies
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Launching Kernels

// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[NJ[N]) %
int j blockIdx.x x blockDim.x + threadIdx.x;
int i = blockIdx.y % blockDim.y + threadIdx.y;
CLil[3]1 = A[il1[3]1 + BLil[3l;

¥

int main() %

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
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Execution Configuration Uses Integer Arithmetic

@ Assume data is of length N, and say the kernel execution configuration is <<<N/TPB,
TPB>>>

» Each block has TPB threads and there are N/TPB blocks
@ Dimension variables are vectors of integral type

Suppose N = 64 and TPB = 32 ] [ Suppose N = 65 and TPB = 32

Implies there are 2 blocks of 32 threads Implies there are 2 blocks of 32 threads
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Execution Configuration Uses Integer Arithmetic

@ Assume data is of length N, and say the kernel execution configuration is <<<N/TPB,
TPB>>>

» Each block has TPB threads and there are N/TPB blocks
@ Dimension variables are vectors of integral type

@ Ensure that the grid covers the array length by rounding up the number of blocks from
N/TPBto (N+TPB-1)/TPB

® Use a control statement in the kernel to ensure that the thread index is within the
maximum array index
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Choosing Optimal Execution Configuration

@ The number of thread blocks in a grid is usually dictated by the size of the data being
processed or the number of processors in the system

» Itis okay to have a greater number of threads
@ No fixed rule, needs exploration and experimentation
® Choose number of threads in a block to be a multiple of 32
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Timing a CUDA Kernel

float memsettime;
cudaEvent_t start, stop;
// initialize CUDA timers
cudaEventCreate(&start) ;
cudaEventCreate (&stop);
cudaEventRecord(start,0);
// CUDA Kernel

cudaEventRecord(stop,0);

cudaEventSynchronize(stop);

cudaEventElapsedTime (&memsettime, start,stop); // in milliseconds
cout << "Kernel execution time: " << memsettime << "\n";
cudaEventDestroy(start);

cudakEventDestroy(stop);

How to Implement Performance Metrics in CUDA C/C++
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https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/

Reporting Errors

@ All CUDA API calls return an error code of type cudaError_t
» Errorin the API callitself or error in an earlier asynchronous operation (e.g. kernel)

@ Get the error code for the last error with cudaGetLastErroxr ()

@ Get a string to describe the error with char
*cudaGetErrorString(cudaError_t)

What is the canonical way to check for errors using the CUDA runtime API?
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Dynamic Parallelism

@ Data intensive irregular applications can result in load imbalance across kernel
threads, potentially under-utilizing the GPU

@ Itis possible to launch kernels from other kernels

@ Calling __global__ functions from the device is referred to as dynamic parallelism
» Requires CUDA devices of CC 3.5 (Kepler microarchitecture) and CUDA 5.0 or higher
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Warp Scheduling



SIMT Architecture

@ GPUs employ SIMD hardware to exploit the data-level parallelism
» In SIMD, we program with the vector width in mind
» Invectorization, users program the SIMD hardware directly, or uses auto-vectorization or
intrinsics
@ SIMT can be thought of as SIMD with multithreading

» Software analog compared to the hardware perspective of SIMD
» For example, we rarely need to know the number of cores with CUDA
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SIMT Architecture

@ CUDA also features a MIMD-like programming model

» Launch large number of threads

» Each thread can have its own execution path and access arbitrary memory locations
@ This execution model is called single-instruction multiple-thread (SIMT)
@ Two levels of parallelism

» Independent grids (i.e., kernels) or concurrent thread blocks represent coarse-grained
data parallelism or task parallelism
» Concurrent threads/warps represent fine-grained data parallelism or thread parallelism

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1 44 /159



SIMD vs SPMD

SIMD SPMD
@ Processing units are executing the @ Parallel processing units execute the
same instruction at any instant same program on multiple parts of the
data

@ All the processing units may not
execute the same instruction at the
same time
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Core Microarchitecture
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Mapping Blocks and Threads

@ A GPU executes one or more kernel grids

@ A kernelis partitioned into thread blocks that execute independently of each other
® When a CUDA kernel is launched, the thread blocks are distributed to SMs in any order

» Multiple thread blocks, up to a limit, can execute concurrently on one SM

> Not all blocks may be resident at the same time

» For example, a CUDA device may allow up to eight blocks to be assigned to each SM

» CUDA cores in the SM execute threads of a block
@ A block begins execution only when it has secured all execution resources necessary

for all the threads

® As thread blocks terminate, new blocks are launched on the vacated SMs

CUDA runtime can execute blocks in any order

@ Blocks are mostly not supposed to synchronize with each other
» Allows for simple hardware support for data parallelism
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Block Scalability

@ A kernel with enough blocks scales
across GPUs

® A GPU with more SMs will
automatically execute the program in
less time than a GPU with fewer SMs

Multithreaded QDA Program
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Thread Warps

@ Conceptually, threads in a block can also execute in any order

@ However, sharing a control unit reduces hardware complexity, cost, and power
consumption
@ A set (currently 32) of consecutive threads that execute in SIMD fashion is called a
warp
» Called wavefront (with 64 threads) on AMD GPUs
® Warps are scheduling units in an SM
» Implementation detail, not part of the programming model
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Lockstep Execution

® All threads in a warp run in lockstep SIMT rofiihreaded

® Warps share an instruction stream, i.e., same instruction scheduler
instruction is fetched for all threads in a warp time
during the instruction fetch cycle N Y Y A

. . warp 8 instruction 11
» Prior to Volta, warps used a single shared I N EEEEEEEEEE]

program counter

@ In the execution phase, each thread will 35S EEEEEEEEEE

either execute the instruction or will execute | warp 3 instruction 95
nothing R EEEEEEE R

@ Individual threads in a warp have their own L bl
| warp 8 instruction 12 |

instruction address counter and register state L B O B O B B A A
. . I I 1 Y I |

® Warp threads are fully synchronized, i.e., | warp 3 instruction 96
R EEEEEEEEE

there is an implicit barrier after each by
step/instruction

y
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Thread Divergence

@ If some threads take the then branch and other threads take the else branch, they
cannot operate in lockstep
» Some threads must wait for the others to execute, serializes execution at that point

@ The programming model does not prevent thread divergence
@ Divergence occurs only within a warp

A B C D E F G A
—> — || —>
—> — — || >
—> — || —>
—> > ||| >
F/0001

C/1000
> Time
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SIMT Stack

How does GPU hardware enable threads within a warp to follow different code paths?

TOS Reconv Next Active TOS Reconv Next Active

TOS Reconv Next Active

PC PC Mask PC PC Mask PC PC Mask
- G 1111 - G 1111 - G 1111
G B 1110 G E 1110 — G E 1110
— G F 0001 E D 0110
N E © 1000 Is the order important?

Threads that diverge can be forced to continue executing in lockstep from a reconvergence

point

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming

Sem 2024-25-1

52/159



Stack-Based Reconvergence

TOS

Re

convergence Stack

A 1111
0101 1010
B c
D
OACB ........ 5
—
-

(a) If-else Example

PC | RPC |Active Mask|
> Al - 1111 | /N
11

o111 | B

C
Reconvergence Stack
. A B B B
PC [RPC|Active Mask
D | - 1111 [—r—=r—>
B|D 0101
D 1010

TOS

A. ElTantawy and T. M. Aamodt. MIMD Synchronization on SIMT Architectures, MICRO’16.
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PC

RPC

ctive Mask

A

1111

|Reconvergence Stack|

PC [RPC

Active Mask

C

1111

B

c

0111

(b) Loop Example
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SIMT Deadlock

Stack-based implementation of SIMT execution can lead to a deadlock

: *mutex=0;

: while(!atomicCAS(mutex, 0, 1)) {%
: // critical section

: atomicExch(mutex, 0);

OO W >

Stack-based SIMT execution constrains thread scheduling

@ Serialization—The threads in the taken branch block until
the threads in the not-taken branch reach the
reconvergence point (or vice versa)

@ Forced reconvergence—When the threads in the taken
branch reach the reconvergence point, they block waiting
for the threads in the not-taken branch to reach the D
reconvergence point (or vice versa)

O @ >
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Volta SIMT Model

@ Architectures older than Volta maintained a shared program counter (PC) and call
stack per warp

@ Volta onward, the execution state (i.e., PC and call stack) is maintained per thread

Pre-Volta

cartervor [N NN NN

and Stack (S)

32 thread warp

LLULLLOLLOLLLLLDLLLLLLLLLLLOLLLLLY

(SR ]
Convergence n.c..n.c..n.n.n.n. [ Y a Wy Y a Yy W WY Y W Y WY WY Y WY W Y W Y W WY Y WY WY WY o

R 5 56664444000000006066666666C0

32 thread warp with independent scheduling

Inside Volta: The World’s Most Advanced Data Center GPU
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Independent Thread Scheduling (ITS)

@ Volta architecture introduces ITS among threads in a warp

@ ITS allows intra-warp synchronization which was previously not possible

@ Threads can now diverge and reconverge at sub-warp granularity

@ ITS makes it easy to implement complex, fine-grained algorithms and data structures

@ The SIMT stack is replaced with per warp convergence barriers

» The metadata includes barrier participation mask, barrier convergence state, and
per-thread states like PC and active status
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SIMT Models across NVIDIA GPU Architectures

Till Pascal X; ¥;

if (threadIdx.x < 4) {
A; Sh
B; & o

} else { o g
X; s e
\ (5 =

4 A; B z;

» Time

Volta onward
if (threadidx.x < 4) {

X5

Y; Z;
A;
B;
} else {
X; wee
Y;
;_ B; Z;

» Time
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Intra-warp Synchronization

Use __syncwarp () to reconverge threads within a warp

if (threadIdx.x < 4) {

Aj
B;
} else {
X3
Y;
}
Z;
__syncwarp() » Time
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Scheduling Thread Warps

@ Each SM launches warps of threads, and executes warps on a time-sharing basis
» Time-sharing is implemented in hardware, not software
@ SM schedules and executes warps that are ready to run
» Warps run for fixed-length time slices like processes
» Warps whose next instruction has its operands ready for consumption are eligible for
execution
» Selection of ready warps for execution does not introduce any idle time into the
execution timeline, called zero-overhead scheduling

» If more than one warp is ready for execution, a priority mechanism is used to select one
for execution

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1 59/159



Scheduling Thread Warps

@ Suppose an instruction executed by a warp has to wait for the result of a previously
initiated long-latency operation

» The warp is not selected for execution, another warp that is not waiting for results is
selected for execution

@ Goal is to have enough threads and warps around to utilize hardware in spite of
long-latency operations

» GPU hardware will likely find a warp to execute at any point in time
» Hides latency of long operations with work from other threads, called latency tolerance
or latency hiding

® Thread blocks execute on an SM, thread instructions execute on a core
@ CUDA virtualizes the physical hardware

» Thread is a virtualized scalar processor (registers, PC, state)
» Block is a virtualized multiprocessor (threads, shared memory)

@ As warps and thread blocks complete, resources are freed
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Warp Scheduling

@ Foranideal memory system, increasing the number of warps can increase the
throughput
» If the number of warps in a core multiplied by the issue time of each warp exceeds the
memory latency, the execution units in the core will always remain busy
» Round-robin scheduling of warps would suffice
» However, locality property either favors or discourages round-robin scheduling
@ Increasing the number of warps is impractical because of the need to maintain
execution state in hardware (i.e., to achieve zero-overhead scheduling)
@ Number of threads that can be simultaneously tracked and scheduled in hardware is
bounded
» Requires resources for an SM to maintain execution status of threads
@ Up to 2048 threads can be assigned to each SM on recent CUDA devices
» For example, 8 blocks of 256 threads, or 4 blocks of 512 threads
@ Assume a CUDA device with 28 SMs
» Each SM can accommodate up to 2048 threads

» The device can have up to 57344 threads simultaneously residing in the device for
execution
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Memory Hierarchy



Memory Access Efficiency

Compute-to-global-memory access ratio is the number of floating-point operations
performed for each access to global memory

for (int i = 0; i < N; i++)
tmp += A[i*N+K]*B[k*N+j];

Assume a GPU device with 1 TB/s global memory bandwidth and peak single-precision
performance of 12 TFLOPS

@ What is the performance we expect with an access ratio of 1?
® We can do 1000/4 GFLOPS, which is only ~ 2% of the peak performance
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Memory Hierarchy in CUDA

Device code can: Grid

— R/W per-thread registers
— R/W per-thread local memory il Gl A
—  R/W per-block shared memory
— R/W per-grid global memory

— Read only per-grid constant
memory

Host code can

—  Transfer data to/from per grid Host

global and constant memories
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Variable Type Qualifiers in CUDA

Memory Scope Lifetime

int localVar Register Thread Kernel
__device__ __local__ int localVar Local Thread Kernel
__device__ __shared__ int sharedVar Shared Block Kernel
__device__ int globalVar Global Grid Application
__device__ _ _constant__ int constVar Constant Grid Application
® __device__ isoptional when used with __local__, __shared__,or __constant__

except arrays that reside in local memory

@ Pointers can only point to memory allocated or declared in global memory
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Memory Organization

@ Host and device maintain their
own separate memory spaces
» Avariable in CPU memory may
not be accessed directly in a GPU
kernel

@ Itisthe programmer’s
responsibility to keep them in sync

» A programmer needs to maintain
copies of variables

Thread

Per-thread local
memory

Thread Block

“ » Per-block shared
— 5 memory
—

Grid 0

Blodk (0, 0) || Block (1, 0) || Black (2, 0)

Blodk (0, 1) || Block (1, 1) || Black (2. 1)

Grid 1 Glabal memary
Block (0, 0) Block (1 0}

Block (0, 1) Block (1, 1)

Block (0, 7) Block (1, )
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Registers

® 64K 32-bit registers (or 256 KB register file) per SM
» A CPU in contrast has a few (1-2 KB) per core

@ Up to 255 registers per thread (compute capability 3.5+)

@ If a code uses the maximum number of registers per thread (255) and an SM has 64K
registers, then the SM can support a maximum of 256 threads

@ If we use the maximum allowable number of threads per SM (2048), then each thread
can use at most 32 registers per thread
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Registers

® 64K 32-bit registers (or 256 KB register file) per SM
» A CPU in contrast has a few (1-2 KB) per core

@ Up to 255 registers per thread (compute capability 3.5+)

@ If a code uses the maximum number of registers per thread (255) and an SM has 64K
registers, then the SM can support a maximum of 256 threads

@ If we use the maximum allowable number of threads per SM (2048), then each thread
can use at most 32 registers per thread

[What if each thread}

uses 33 registers?
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Registers

@ If we use the maximum allowable number of threads per SM (2048), then each thread
can use at most 32 registers per thread
@ What if each thread uses 33 registers?
» Fewer threads = fewer warps

@ There is a big difference between “fat” threads which use lots of registers, and “thin”
threads that require very few!
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Shared Memory

® Shared memory (also called scratchpad memory) is used for efficient communication
among threads in a block

» Usually 16—64 KB of storage that can be accessed efficiently by all threads in a block

@ Each SM contains a single shared memory structure that acts as a software-managed
cache

» Resides adjacent to an SM on chip
» The space is shared among all blocks running on that SM

@ Variable in shared memory is allocated Say an SM with 4 thread blocks has 16 KB of

using the __shared__ specifier shared memory
» Latency is comparable to accessing
registers __shared__ float min[256];
__shared__ float max[256];
® Amount of shared memory per block ~“shared__ float avg[256];
limits occupancy __shared__ float stdev[256];
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Global Variables

@ Variable 1ock can be accessed by both __device__ int lock=0;
kernels __global__ void kernell(...) {
// Kernel code

¥

__global__ void kernel2(...) {
// Kernel code

¥

» Resides in global memory space
» Can be both read and modified by all
threads
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Global Memory

® On-device memory accessed via 32, 64, or 128 B transactions

@ A warp executes an instruction that accesses global memory

» The addresses are coalesced into transactions
» Number of transactions depend on the access size and distribution of memory addresses
» More transactions mean less throughput
> For example, if 32 B transaction is needed for a thread’s 4 B access, throughput is essentially
1/8th
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Constant Memory

@ Used for data that will not change during kernel execution

» Accessible from all threads within a grid
» Constant memory is 64 KB

// Global scope

__constant__ float d_filter[FILTER_WIDTH];

// Initialize array in constant memory

cudaMemcpyToSymbol (d_filter, h_filter, FILTER_WIDTH * sizeof(
float));

@ Constant memory is aggressively cached

» Each SM has a read-only constant cache that is shared by all cores in the SM

» Used to speed up reads from the constant memory space which resides in device
memory

» Read from constant memory incurs a memory latency on a miss

» Otherwise, it is a read from constant cache, which is almost as fast as registers
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Local Memory

@ Local memory is off-chip per-thread memory

» More like thread-local global memory, so it requires memory transactions and consumes
bandwidth

@ Automatic variables are placed in local memory

(i) Arrays when it is not known whether indices are constant quantities
(ii) Large structures or arrays that consume too much register space
(iii) In case of register spilling

@ Inspect PTX assembly code (compile with —ptx)
» Checkforld.local and st.local mnemonic
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Device Memory Management

@ Global device memory can be allocated with cudaMalloc ()
® Freed by cudaFree()

@ Data transfer between host and device is with cudaMemcpy ()
@ Initialize memory with cudaMemset ()

@ There are asynchronous versions
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GPU Caches

@ GPUs have L1 and L2 data caches on devices with CC 2.x and higher
» Texture and constant cache are available on all devices
® L1 cache is write-through, and per SM

» Shared memory is partitioned out of unified data cache and its size can be configured,
remaining portion is the L1 cache

» Can be configured as 48 KB of shared memory and 16 KB of L1 cache, or 16 KB of shared
memory and 48 KB of L1 cache, or 32 KB each

» L1 cachesare 16-48 KB

® L2 cache is shared by all SMs
® L1 cache lines are 128 B wide in Fermi onward, while L2 lines are 32 B
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CPU Caches vs GPU Caches

CPU Cache GPU Cache
@ Data is automatically moved by @ Data movement must be orchestrated
hardware between caches by programmer
» Association between threads and » Association between threads and

cache does not have to be exposed to storage is exposed to programming
programming model model

@ Caches are generally coherent @ L1 cacheis not coherent, L2 cache is

coherent
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CUDA Compilation

Binary compatibility of GPU applications is not guaranteed across different generations



How NVCC works

® Nvcc is a driver pI’Ogl’am based on LLVM Integrated C programs with CUDA extensions

\

» Compiles and links all input files
» Requires a general-purpose C/C++ NVCC Compiler
host compiler
» Uses GCC and G++ by default on Linux Host Code ‘ ‘ Device Code (PTX)
platforms
Host C preprocessor, Device just-in-time
compiler/ linker compiler

NVIDIA CUDA Compiler Driver NVCC
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Selected NVCC Options and File Types

Options Description

-std §fc++11]...% Select a particular C++ dialect

-m {32|64}% Specify the architecture

-G Generate debug information for device code, turns off device opti-
mizations

-arch ARCH Specify the virtual GPU architecture (sm_52 is the default)

-code CODE Specify the real GPU architecture to assemble and optimize for

File Type Description

.cu CUDA source file

.C,.Cpp, .CXX,.ccC C/C++ source files

.ptx PTX intermediate assembly

.cubin CUDA device binary code for a single GPU architecture

.fatbin CUDA fat binary file that may contain multiple PTX and CUBIN files
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CUDA Compilation Trajectory

(i) Input program is preprocessed for device compilation
(ii) Itis compiled to a CUDA binary (.cubin) and/or PTX (Parallel Thread Execution)
intermediate code which are encoded in a fatbinary
(iii) Input program is processed for compilation of the host code
(iv) CUDA-specific C++ constructs are transformed to standard C++ code

(v) Synthesized host code and the embedded fatbinary are linked together to generate
the executable

@ A compiled CUDA device binary includes

» Program text (instructions)

» Information about the resources required
> N threads per block
> X bytes of local data per thread
> M bytes of shared space per block
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CUDA Compilation Trajectory

i cu

i A B

1 C++ Preprocessor C++ Preprocessor N B N

| Ais passed to B as an input file.

3 .cppd.ii .cppl.ii A-emee e <B

i As #include'd in B,

i cudafe++ _ .cudafel.stubc - s -

! r o -Repeat | | for each .cu input file.

i i i ve

: i . i ftocture.

1 cudafetopp o : pix Repeat D for each virtual architecture.

1 i + Repeat ptxas and nvlink for each virtual/real

1 i

| i architecture combination.

! | + Device linker consists of steps in

! | |

. i i

| | et ‘

i i i

H 1 |

| L |
i

a_dinkfatbing ==~ - linkstub

C++ Compiler

a_dlink.o / a_dlink.obj

Host Linker

executable



Binary Application Compatibility

@ NVIDIA does not guarantee binary compatibility of GPU applications across different
generations
» For example, a CUDA application compiled for a Fermi GPU will very likely not run on a
Kepler GPU (and vice versa)
» Instruction set and instruction encodings of a generation is different from those of other
generations
@ nvcc relies on a two stage compilation model for ensuring application compatibility
across GPU generations
» Code is compiled to a virtual assembly called PTX
» PTX code is assembled for a real GPU architecture
® Recommendation
» Specify a lower virtual architecture to improve portability and a higher real architecture
for improved performance
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Two-Staged Com

virtual compute architecture

real sm architecture

pilation with Virtual and Real Architectures

x.cu (device code)

|

‘ Stage 1 ’

(PTX Generation)

Stage 2
(Cubin Generation)

x.cubin Execute
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PTX Assembly and SASS

® GPU compilation is performed via an intermediate representation PTX

» PTXis an acronym for Parallel Thread eXecution
» Goalis to provide an architecture-indent ISA for compilers
» Can be considered as assembly for a virtual GPU architecture

@ SASS is the low-level assembly that compiles to binary microcode which executes
natively on NVIDIA GPUs

» SASSis an acronym for Source and ASSembly

Parallel Thread Execution ISA Version 8.5
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Improving Application Portability with JIT Compilation

® Two-stage compilation does not help
improve application portability
» Generated code is bound to one GPU
generation (e.g., sm_53)
@ There are two strategies to improve
portability
(i) nvcc will postpone assembly of PTX
code until application run time if only
avirtual GPU architecture is specified
(i) Generate multiple translations for
different architectures and embed the
CUDA binaries in a fat binary

X.ptx

virtual compute architecture
, ,
|

Stage 2
HE (Cubin Generation)

real sm architecture
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NVCC Examples

nvcc —arch=compute_30 -code=sm_52 hello-world.cu
Generate PTX assuming CC 3.0 and generate binary SASS code compliant with CC 5.2

nvcc —arch=compute_30 -code=sm_30,sm_52 hello-world.cu
Generate binary SASS for two GPU architectures and embed the cubin files in the executable

nvcc -arch=compute_50 hello-world.cu
Implies nvcc -arch=compute_50 -code=compute_50 hello-world.cu

nvcc -arch=sm_52 hello-world.cu
® Implies nvcc -arch=compute_52 -code=sm_52,compute_52 hello-world.cu

® Embed both the PTX and the SASS code in the final binary
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Synchronization in CUDA



Race Conditions and Data Races

@ A race condition occurs when program behavior depends upon relative timing of two
(or more) event sequences

(i) Read value at addressc
(ii) Add sum to value
(iii) Write result to address ¢
@ There can be intra-warp, inter-warp, and inter-block races

» Intrawarp races occur when threads from the same warp write to the same memory
location

__global__ void intrawarp ( unsigned * data ) %
data [0] = threadIdx .x;
%
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__syncthreads()

® __syncthreads () synchronizes threads within a block

@ All global and shared memory accesses made by the participating threads prior to
__syncthreads () are visible to all threads in the block

® A __syncthreads () statement must be executed by all threads in a block
@ If __syncthreads() isinan if statement, then either all threads in the block
execute the then path that includes the __syncthreads () or none of them does

@ If __syncthreads() statementisin each path of an if-then-else statement,
then either all threads in a block execute the __syncthreads () onthe then path or
all of them execute the else path

» Thetwo __syncthreads () are different barrier synchronization points
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Grid-level Synchronization

® cudaDeviceSynchronize()
synchronizes all threads in a grid

» There are other variants

® For threads from different grids, writes
from a kernel happen before reads
from subsequent grid launches

Host Device
— Kernel Launch
Computation
Return
<).-m
Kernel Launch
Computation
Return
m
Computation
Return
for() {

!

__kernel_func<<<grid, block>>>();
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Atomic Operations

@ Atomic operations allow performing atomic read-modify-write (RMW) operations on

data residing in global or shared memory
» Prevent data races associated with multiple threads concurrently accessing a global or

shared memory variable

» Will give predictable results when simultaneous access to memory is required

» For example, atomicAdd (), atomicSub(), atomicMin(), atomicMax(),
atomicInc(), atomicDec(), atomicExch(), atomicCAS()
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Scoped Synchronization

® CUDA provides scope qualifiers that limit the subset of the threads that are
guaranteed to observe the synchronization

@ CUDA exposes three scopes: block, device, and system

@ For example, an atomic RMW operation with block scope is only visible to threads
within the same thread block (e.g., atomicAdd_block())
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CUDA Memory Model

@ A memory consistency model is a set of rules that govern how systems process
memory operation requests from multiple processors

» Determines the order in which memory operations appear to execute

» Specifies the allowed behaviors of multithreaded programs executing with shared
memory

» Memory models are defined both for hardware and programming languages

@ CUDA implements a weakly-ordered memory model

@ The order in which a thread writes data is not necessarily the order in which the data
is observed being written by another CUDA or host thread

@ The behavior on concurrent and conflicting accesses is undefined
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Weakly-Ordered Memory Model in CUDA

__device__ int X =1, Y = 2;

Thread 1 Thread 2
__device__ void writeXY() % __device__ void readXY() %
X = 10; int B = Y;
Y = 20; int A = X
¥ ¥

@ Aracy program has undefined behavior, and has no defined semantics
® The resulting values for A and B can be anything
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Memory Fences

Semantics of __threadfence_block()

@ All writes made by the calling thread before the call are observed by all threads in the block as
occurring before all writes made by the calling thread after the call

@ All reads from all memory made by the calling thread before the call are ordered before all
reads from all memory made by the calling thread after the call

__device__ int X =1, Y = 2;
Thread 1 Thread 2
__device__ void writeXY() % __device__ void readXY() {
X = 10; int B = V;
__threadfence(); __threadfence();
Y = 20; int A = X;
3 3 What are possible
outcomes?
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__syncthreads() vs __threadfence()

__syncthreads() __threadfence()
@ Establishes visibility of memory ® Ensures ordering of memory
operations across threads operations by a thread
@ Includes a barrier plus memory fence ® __threadfence_block() does not
functionality (i.e., imply __syncthreads()

__threadfence_block())
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Warp-Level Primitives

® _ballot_sync(mask, predicate)
» Evaluate predicate for all non-exited
threads in mask and return an integer
whose Nth bit is set if predicate
evaluates to non-zero for the NP

thread
® __activemask()

» Returns a 32-bit integer mask of all
currently active threads in the calling

warp

® __syncwarp(mask)

0 1 2 3 4 5 6 7
[afafsfafafa]s]a
(2]z]2]2] [ [ [ ]
‘/‘/ v += __shfl_down_sync(m, v, 2);
Lefal [T TTT]
|

unsigned m = OxffEEEFEE;

v += __shfl_down_sync(m, v, 4);

P

v += __shfl_down_sync(m, v, 1);

[ [T T TT]

Copy a variable from a warp lane with
higher ID relative to caller

» Guarantees memory ordering among threads participating in the barrier
» Threads within a warp that wish to communicate via memory can store to memory,
execute __syncwazrp (), and then safely read values stored by other threads

Using CUDA Warp-Level Primitives
Swarnendu Biswas (IIT Kanpur)
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Concurrency and CUDA Streams

Overlap host and device computation with data transfers



Classic Copy-then-Execute Model

1 cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

2 kernel<<<1,N>>>(d_a);
3 cudaMemcpy (h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

@ Data transfer on line 1 is blocking or synchronous
» Host thread cannot launch the kernel until the copy is done

@ Kernel launch on line 2 is asynchronous
@ Data transfer on line 3 cannot begin until the kernel completes due to device-side

ordering

How to Overlap Data Transfers in CUDA C/C++

GPU Pro Tip: CUDA 7 Streams Simplify Concurrency
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Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);
kernel<<<l,N>>>(d_a);
cudaMemcpy (h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);
kernel<<<1,N>>>(d_a);

// Host gets work done

h_func(h_b);

cudaMemcpy (h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming
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Utilize GPU Hardware

@ Overlap kernel execution with memory copy between host and device

@ Overlap execution of multiple kernels if there are enough resources
® Recent GPUs support overlapped execution

» Check the fields asyncEngineCount, concurrentKernels, and deviceOverlap
from the cudaDeviceProp structure
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CUDA Streams

@ Astream is a sequence of operations that execute on the device in the order in which
they were issued by the host

» Operations across streams can interleave and run concurrently
@ All GPU device operations run in a stream

® The default “null” stream is used if no custom stream is specified, the default stream
is synchronizing

» No operation in the default stream will begin until all previously issued operations in any
stream have completed

» An operation in the default stream must complete before any other operation in any
stream will begin

// Both launches are on the default stream

kernell<<< blocks, threads, bytes >>>(); // default stream
kernel2<<< blocks, threads, bytes, 0 >>>(); // stream O

How to Overlap Data Transfers in CUDA C/C++
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Using a Non-default Stream

Manipulate non-default streams from the host

cudaStream_t streamil;

cudaError_t result;

result = cudaStreamCreate(&streaml);
result = cudaStreamDestroy(streaml);

Issue a data transfer to a non-default stream

result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice, streaml);

Specifying a stream during kernel launch is optional

kernell<<<blocks, threads, bytes>>>(); // default/NULL stream
kernel2<<<blocks, threads, bytes, streaml1>>>();

How to Overlap Data Transfers in CUDA C/C++
Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1
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Non-default Streams

@ Operations in a non-default stream are non-blocking with the host
® Use cudaDeviceSynchronize()

» Blocks host until all previously issued operations on the device have completed
@ Cheaper alternatives

» cudaStreamSynchronize(), cudaEventSynchronize(),...

cudaStream_t streamil;

cudaError_t res;

res = cudaStreamCreate (&streaml);

res = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice, streaml);
increment<<<1,N,0Q,stream1>>>(d_a);

// Blocks the host thread

cudaStreamSynchronize (streaml);

res = cudaStreamDestroy(&streaml);

0w N o W NP
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Overlapping Kernel Execution and Data Transfers

1 for (int i = 0; i < nStreams; ++i) {

2 int offset = i x streamSize;

3 cudaMemcpyAsync (&d_a[offset], &h_a[offset], streamBytes,
cudaMemcpyHostToDevice, stream[i]);

4 kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

5 cudaMemcpyAsync (&h_a[offset], &d_a[offset], streamBytes,
cudaMemcpyDeviceToHost, stream[i]);

How to Overlap Data Transfers in CUDA C/C++
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11

Overlapping Kernel Execution and Data Transfers

for (int i = 0; i < nStreams; ++i) §
int offset = i x streamSize;

cudaMemcpyAsync (&d_a[offset], &h_a[offset], streamBytes,

cudaMemcpyHostToDevice, stream[i]);

ky

for (int i = 0; i < nStreams; ++i) %
int offset = i x streamSize;

kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

$

for (int i = 0; i < nStreams; ++i) §
int offset = i x streamSize;

cudaMemcpyAsync (&h_a[offset], &d_a[offset], streamBytes,

cudaMemcpyDeviceToHost, stream[i]);

Swarnendu Biswas (IIT Kanpur)
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Streams and Concurrency in CUDA 7+

@ Prior to CUDA 7, all host threads shared the default stream
» The default stream implicitly synchronizes with all other streams on the device
» Two commands from different streams cannot run concurrently if the host thread issues
any CUDA command to the default stream between them

® CUDA 7+ provides an option to have a per-host-thread default stream
» Commands issued to the default stream by different host threads can run concurrently
» Commands in the default stream may run concurrently with commands in non-default

streams
» Passthe option —default-stream per-thread to nvccto enable per-thread default

streams in CUDA 7+

GPU Pro Tip: CUDA 7 Streams Simplify Concurrency
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Multi-Stream Example: Legacy Behavior

for (int i = 0; i < num_streams; i++) {
cudaStreamCreate (&streams[i]) ;
cudaMalloc (&data[i], N * sizeof(float));
// launch one worker kernel per stream
kernel<<<l1l, 64, 0, streams[i]>>>(data[i], N);
// launch a dummy kernel on the default stream
kernel<<<1l, 1>>>(0, 0);

[ e N N

=/ Streams
- Default | | |

- Stream 13

- Stream 14

. Stream 15

- Stream 16

. Stream 17

- Stream 18 | kernel... |

' Stream 19

L Stream 20
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Multi-Stream Example: Per-Thread Default Stream

for (int i = 0; i < num_streams; i++) {
cudaStreamCreate (&streams[i]);
cudaMalloc (&data[i], N * sizeof(float));
// launch one worker kernel per stream
kernel<<<l, 64, 0, streams[i]>>>(data[i], N);
// launch a dummy kernel on the default stream
kernel<<<l, 1>>>(0, 0);

0 N o g W NP

~| Streams

- Stream 13 ———— e e
- Stream 14 |

- Stroam 15
- Stream 16
- Stream 17 [ kemelffeatiny ]
* Stroam 18
- sweam 19
- Stream 20 | kemelffioat’in) ]
- stroam 21
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Achievable Concurrency

Is it possible to launch two kernels that do independent tasks concurrently?

// host and device initialization
// launch kernell

myMethodl <<<.... >>> (params);
// launch kernel2

myMethod2 <<<..... >>> (params);

® We can launch concurrent kernels in different streams

@ There must be resources available while one kernel is running to run concurrent
kernels

@ The maximum concurrency is 16 kernels on Fermi, 32 on Kepler, and 128 on Turing
and Ampere

Compute Capabilities: Features and Technical Specifications
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Achievable Concurrency
Can we run two CUDA kernels from two different applications concurrently?

@ A kernel from one CUDA context (analogue of host processes for the device) cannot
execute concurrently with a kernel from another CUDA context

@ The GPU may time slice to provide forward progress to each context

® Must enable Multi-Process Service (MPS) to run kernels from multiple process
simultaneously
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Performance Bottlenecks in CUDA



Differences between Host and Device

Host Device

@ Limited amount of concurrent threads @ Massive number of concurrently active

@ Context switches of threads are threads
heavyweight ® Context switches are lightweight

» Resources stay allocated to a thread
till it completes

@ Designed to maximize throughput

@ Designed to minimize latency
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Key Ideas for Extracting Performance

@ Desired application characteristics for device execution

(i) Large data-parallel computation
(i) Complex computation kernel to justify the data movement costs

> Keep data on the device to avoid repeated transfers

@ Try and reduce resource consumption
® Exploit SIMT, reduce thread divergence in a warp

@ Strive for good locality, use tiling to exploit shared memory

» Improve throughput by reducing global memory traffic
» Copy blocks of data from global memory to shared memory and operate on them (e.g.,
matrix multiplication kernel)

@ Optimize memory accesses
Global memory memory coalescing
Shared memory avoid bank conflicts
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What can we say about this code?

1 __global__ void dkernel(float xvector, int vectorsize) 1%
2 int id = blockIdx.x %= blockDim.x + threadIdx.x;
3 switch (id) $

4 case 0: vector[id] = 0O; break;

5 case 1: vector[id] = vector[id] * 10; break;
6 case 2: vector[id] = vector[id - 2]; break;

7 case 3: vector[id] = vector[id + 3]; break;

8 coo

9 case 31: vector[id] = vector[id] * 9; break;
10 t

11 ¥
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Dealing with Thread Divergence

® Thread divergence renders execution sequential because the SIMD hardware takes
multiple passes through the divergent paths

| if (threadIdx.x / WARP_SIZE >2) {} |

@ Condition evaluating to different truth values is not bad
» Branch granularity is a whole multiple of warp size; all threads in any given warp follow
the same path

if (threadIdx.x >2) §¢%

@ Conditions evaluating to different truth-values for threads in a warp is bad

» Creates two different control paths for threads in a block; branch granularity < warp size;
threads 0 and 1 follow different path than the rest of the threads in the first warp
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Parallel Memory Architecture

® In a parallel architecture, many threads access memory
® Memory is divided into banks to achieve high bandwidth

» Each bank can service one address per cycle
» A memory can service as many simultaneous accesses as it has banks

@ Multiple simultaneous accesses to a bank result in a bank conflict
— Conflicting accesses are serialized
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Example of Bank Addressing

Random access Linear access, stride=1
Thread 0 Bank 0 Thread 0 Bank 0
Thread 1 Bank 1 Thread 1 ——— > Bank 1
Thread 2 Bank 2 Thread 2 ——— > Bank 2
Thread 3 Bank 3 Thread 3 ——— > Bank 3
Thread 4 Bank 4 Thread4 ——— > Bank 4
Thread 5 Bank 5 Thread5 ——— Bank 5
Thread 6 Bank 6 Thread 6 ——— > Bank 6
Thread 7 Bank 7 Thread 7 ——— > Bank 7
Thread 8 Bank 8 Thread8 ——— > Bank 8
[ J [ J [ [ J
[ J [ J [ [ J

Thread 15 Bank 15 Thread 15 Bank 15
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Example of Bank Addressing

Linear access, stride=2 Linear access, stride=8
Thread 0 Bank 0 Thread 0 Bank 0
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
Thread 3 Bank 3 Thread 3 Bank 3
Thread 4 Bank 4 Thread 4 Bank 4
Thread 5 Bank 5 Thread 5 Bank 5
Thread 6 Bank 6 Thread 6 Bank 6
Thread 7 Bank 7 Thread 7 Bank 7
Thread 8 Bank 8 Thread 8 Bank 8
[ ] [ ] [ ] [ ]
[ ] o [ [ ]
Thread 15 Bank 15 Thread 15 Bank 15
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Bank Conflicts in Shared Memory
Shared memory is as fast as registers if there are no bank conflicts

Fastcase @ Ifallthreads of a warp access different banks, there is no bank conflict
@ If all threads of a warp access an identical address, there is no bank
conflict (broadcast)
Slow case @ Bank Conflict: multiple threads in the same half-warp access the same
bank
@ Must serialize the accesses
@ Cost = max # of simultaneous accesses to a single bank

Give low priority to fix low-degree bank conflicts since resolving it will increase
instructions

Using Shared Memory in CUDA C/C++
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Memory Coalescing

@ Issuing a memory instruction from a single warp can generate up to 32 data cache
accesses
@ Coalescing reduces the number of memory requests by merging accesses from
multiple lanes into cache-line-sized chunks when there is spatial locality across the
warp
» Coalesced memory accesses imply a warp accesses adjacent data in a cache line
» Inthe best case, this results in one memory transaction
@ Uncoalesced memory accesses imply a warp accesses scattered data in different
cache lines leading to memory divergence
» This may result in 32 different memory transactions

O
AN AR AN

Coalesced Uncoalesced Coalesced
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Copying a Matrix
j*32 32
0
Tile Tile S 8
&
% Tile 16
TPB=32x8 24
NB =jx k
__global__ void copy(float *odata, const float xidata) {
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y % TILE_DIM + threadIdx.y;
int width = gridDim.x = TILE_DIM;
for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
odata[(y+j)*width + x] = idatal[(y+j)*width + x];
&

Swarnendu Biswas (IIT Kanpur)
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Matrix Transpose

__global__ void transposeNaive(float xodata, const float xidata) {
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y = TILE_DIM + threadIdx.y;
int width = gridDim.x » TILE_DIM;
for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
odata[x*xwidth + (y+j)] = idata[(y+j)*width + x];

NN
reads from idata are coalesced,

but writes to odata have a stride
of %32

An Efficient Matrix Transpose in CUDA C/C++
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Optimizing Matrix Transpose

__global__ void transposeCoalesced(float xodata, const float xidata) {

__shared__ float tile[TILE_DIM][TILE_DIM];

int x = blockIdx.x = TILE_DIM + threadIdx.x;

int y = blockIdx.y % TILE_DIM + threadIdx.y;

int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];

__syncthreads () ;

x = blockIdx.y = TILE_DIM + threadIdx.x; // transpose block offset

y = blockIdx.x * TILE_DIM + threadIdx.y;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + jI;

Source file &

Swarnendu Biswas (IIT Kanpur)
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https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/cuda/transpose-nvidia.cu

Matrix Multiplication Example

1 __global__ void matmulKernel (floatx A, floatx B, floatx not coalesced
C) ¢

2 int row = blockIdx.y * blockDim.y + threadIdx.y;

3 int col = blockIdx.x * blockDim.x + threadIdx.x; Thread 1

4 float tmp = 0O; Thread 2

5 if (row < N && col < N) %

6 // Each thread computes one element of the matrix

7 for (int k = 0; k < N; k++) {

8 tmp += A[row * N + k] * B[k * N + col]; coalesced

9 k)

10 I3

11 Clrow * N + col] = tmp;

12 %
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Optimizing Global Memory Accesses

® Try to ensure that memory requests from a warp can be not coalesced
coalesced
» Using optimizations like tiling to make use of the faster Thread 1
shared memory Thread 2

» Stride-one access across threads in a warp is good
» Use structure of arrays rather than array of structures

coalesced

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1 121/159



Implementing a Reduction Kernel in CUDA

Thread 0 Thread2 Thread4 Thread6 Thread8 Thread 10

B,

iterations Array elements ——
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Reduction Kernel B

__shared__ float partialSum[];
partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];
__syncthreads () ;
unsigned int t = threadIdx.x;
for (unsigned int stride = 1; stride < blockDim.x; stride %= 2) {
if (t % (2%stride) == 0)
partialSum[t] += partialSum[t+stride];

__syncthreads () ;
Iy only even threads

are active

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1
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https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/examples/cuda/reduction.cu

Possible Optimizations on the Reduction Kernel

‘ (i) basic implementation with modulo operator
@ (i) strided access starting with each thread accessing two
adjacent locations
I'\VIDIA@ (iii) strided access with reversed loop index
Optimizing Parallel Reduction in CUDA (IV) halve the number Of threads

(v) unroll the last few loop iterations and avoid
synchronization

(vi) ...

Mark Harris
NVIDIA Developer Technology

M. Harris. Optimizing Parallel Reduction in CUDA.
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Reduction Kernel

__shared__ float partialSum[];

partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];

__syncthreads () ;

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x/2; stride >= 1; stride /= 2) {
if (t < stride)
partialSum[t] += partialSum[t+stride];

_syncthreads () ;

ky
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Execution of the Revised Reduction Kernel

Thread 0 Thread 1 Thread 2 Thread 254 Thread 255

253 254 2065 256 257 258

255+511

Last five iterations
still have divergence

iterations Array elements ——
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Avoid Divergence in the Last Few Iterations

© 0 N o g W NP

10

for (unsigned int stride = blockDim.x/2; stride > 32; stride /= 2) {

if (t < stride)
partialSum[t] +=

__syncthreads () ;

%

if (tid < 32) {
partialSum[tid] +=
partialSum[tid] +=
partialSum[tid] +=
partialSum[tid] +=
partialSum[tid] +=
partialSum[tid] +=

partialSum[t+stride];

partialSum[tid+32];
partialSum[tid+16];
partialSum[tid+8];
partialSum[tid+4];
partialSum[tid+2];
partialSum[tid+1];

Swarnendu Biswas (IIT Kanpur)
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Efficient Data Management



Data Transfer Between CPU and GPU

® DMA is a hardware unit specialized to
transfer bytes between physical
memory address spaces

» Uses system interconnect, typically
PCIe in today’s systems
® DMA (Direct Memory Access) hardware
is used by cudaMemcpy ()

CPU Main Memory (DRAM)

PCle ﬁ

Memory
GPU card
(or other I/0 cards)
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Challenges with Virtual Memory

@ Virtual memory support complicates data transfer

» Pages in virtual address space are mapped into and out of the physical memory
» The presence of a data (i.e., page) in the physical memory is checked during address
translation

@ cudaMemcpy () copies data as one or more DMA transfers
» Address is translated, and page presence is checked for the entire source and
destination regions at the beginning of each DMA transfer
@ The OS could accidentally page-out the data that is being accessed by a DMA and
page-in another virtual page into the same physical location
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Pinned Memory

® Pinned memory are virtual memory pages that are specially marked so that they
cannot be paged out
» Also called Page-Locked Memory or Locked Pages
® CPU memory that serves as the source or destination of a DMA transfer must be
allocated as pinned memory

@ If the source or destination of cudaMemcpy () in the host is not pinned, it needs to be
first copied to a pinned memory leading to extra overhead
» cudaMemcpy () is faster if the host memory is allocated in pinned memory because no
extra copy is needed
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Pinned Memory

@ Allocate and free pinned memory with cudaHostAlloc () and cudaFreeHost ()
with the option cudaHostAllocDefault

@ Pinned memory is a limited resource—over-subscription can have serious

consequences

Pageable Data Transfer

Pinned Data Transfer

Device

Device

A

A

Host

Pageable Pinned
Memory Memory

Host

Pinned
Memory

How to Optimize Data Transfers in CUDA C/C++

Swarnendu Biswas (IIT Kanpur)

CS 610: GPU Architecture and CUDA Programming

Sem 2024-25-1

131/159


https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

cudaMemCpy () with Pageable Memory

swarnendu@nilgiri:~/cuda-examples/src/vector$ nvprof ./vector-addition.out
==1941000== NVPROF is profiling process 1941000, command: ./vector-addition.
Time taken (ms): h2d: 237.56 Kernel: 8.40618 d2h: 220.426
==1941000== Profiling application: ./vector-addition.out
==1941000== Profiling result:
Type Time(%) Time Calls Avg Min Max Name

GPU activities: 67.51% 474.62ms 2 237.31ms 237.1é6ms 237.46ms [CUDA memcpy HtoD]

31.30% 220.01ms 1 220.01ms 220.01ms 220.01ms [CUDA memcpy DtoH]

1.19% 8.3743ms 1 8.3743ms 8.3743ms 8.3743ms vecAdd(float const *, float const *, float
%, unsigned int)

API calls: 82.20% 695.45ms

.13%  136.47ms
00% 8.4519ms
.64% 5.3911ms
02% 142.30us 10
.00% 39.372us

3 231.82ms 220.42ms 237.64ms cudaMemcpy
3 45.490ms 111.40us 136.24ms cudaMalloc
3 2.8173ms 2.8090us 8.3707ms cudaEventSynchronize
3 1.7970ms 758.27us 2.5189ms cudaFree
1 1.4080us 123ns 59.020us cuDeviceGetAttribute
6 6.5620us 1.7480us 18.458us cudaEventRecord
.00% 32.013us 1 32.013us 32.013us 32.013us cudalaunchKernel
.00% 22.907us 1 22.907us 22.907us 22.907us cuDeviceGetName
.00% 9.5630us 1 9.50630us 9.5830us 9.5030us cuDeviceGetPCIBusId
2
3
3
1
2
1
$

=
o

.00% 9.2820us 4.6410us 865ns 8.4170us cudaEventCreate
.00% 5.1920us 1.7300us 787ns 2.4430us cudaEventElapsedTime
.00% 1.5260us 508ns 186ns 1.1610us cuDeviceGetCount
.00% 601ns 601ns 601ns 601ns cuDeviceTotalMem
.00% 598ns 299ns 125ns 473ns cuDeviceGet

0.00% 218ns 218ns 218ns 218ns cuDeviceGetUuid
swarnendu@nilgiri:~/cuda-examples/src/vector

ilo
0
0.
0
0
0
0
0
0
0
0
0
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cudaMemCpy () with Pinned Memory

swarnendu@nilgiri:~/cuda-examples/src/vector$ nvprof ./vector-addition-hostalloc-default.out
==1941051== NVPROF is profiling process 1941051, command: ./vector-addition-hostalloc-default.out
Time taken (ms): h2d: 87.2645 Kernel: 8.52237 d2h: 81.3356
==1941051== Profiling application: ./vector-addition-hostalloc-default.out
==1941051== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 66.03% 174.50ms 2 87.249ms 87.246ms 87.252ms [CUDA memcpy HtoD]
30.77% 81.317ms 1 81.317ms 81.317ms 81.317ms [CUDA memcpy DtoH]
3.20% 8.4589ms 1 8.4589ms 8.4589ms 8.4589ms vecAdd(float const *, float const *, float
%, unsigned int)
API calls: 68.93% 1.46052s 486.84ms 437.10ms 585.73ms cudaHostAlloc

.30% 387.85ms 129.28ms 125.50ms 136.48ms cudaFreeHost
.08% 255.92ms 85.306ms 81.333ms 87.328ms cudaMemcpy
.40% 8.4608ms 2.8203ms 3.1570us 8.4543ms cudaEventSynchronize
25% 5.2468ms 1.7489ms 627.15us 2.5135ms cudaFree
.03% 555.08us 185.03us 106.57us 322.72us cudaMalloc
.01% 144.27us 1.4280us 166ns 57.635us cuDeviceGetAttribute
.00% 57.403us 57.403us 57.403us 57.403us cudalaunchKernel
.00% 38.628us 6.4380us 1.7470us 26.804us cudaEventRecord
.00% 15.428us 7.7140us 1.1860us 14.242us cudaEventCreate
.00% 13.944us 13.944us 13.944us 13.944us cuDeviceGetName
.00% 10.629us 10.629us 10.629us 10.629us cuDeviceGetPCIBusId
4.1260us 1.3750us 769ns 2.4630us cudaEventElapsedTime
3.1800us 1.0600us 241ns 2.3700us cuDeviceGetCount

945ns 945ns 945ns 945ns cuDeviceTotalMem

812ns 406ns 156ns 656ns cuDeviceGet

[y
0o

2
0
0.
0
0
0
0
0
0
0
0.
0.
0.
0.
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Zero-Copy Memory

@ Zero copy memory is pinned memory
that is mapped into the device address
space

» Both host and device have
fine-grained direct access

+ Can leverage host memory when there
is insufficient device memory

-+ Avoids explicit data transfers between
host and device

» Should be used for occasional
accesses when the data is read-only
or the GPU memory is really scarce

Improving GPU Memory Oversubscription Performance

Idle GPU Memory

Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming

3.

1. Read Request
_

—_—
Bytes sent to GPU

‘2. Requested Bytes Read

L J

Y
Pinned Allocated System Memory
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cudaMemCpy () with Zero-Copy Memory

swarnendu@nilgiri:~/cuda-examples/src/vector$ nvprof ./vector-addition-hostalloc-mapped.out

==1948543== NVPROF is profiling process 1948543, command: ./vector-addition-hostalloc-mapped.out

Invocation 0 Time taken (ms): kernel: 378.814

Invocation 1 Time taken (ms): kernel: 373.741

Invocation 2 Time taken (ms): kernel: 373.747

Invocation 3 Time taken (ms): kernel: 373.714

Invocation 4 Time taken (ms): kernel: 373.742

Invocation 5 Time taken (ms): kernel: 373.717

Invocation 6 Time taken (ms): kernel: 376.482

Invocation 7 Time taken (ms): kernel: 373.599

Invocation 8 Time taken (ms): kernel: 376.099

Invocation 9 Time taken (ms): kernel: 376.226

==1948543== Proflllng application: ./vector-addition-hostalloc-mapped.out
==1948543== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 100.00% 3.74542s 10 374.54ms 373.60ms 376.60ms vecAdd(float const *, float const %, float
%, unsigned int)
API calls: B/ 3.76791s 376.79ms 375.56ms 378.79ms cudaEventSynchronize
30. 1.99639s 665.46ms 583.01ms 742.25ms cudaHostAlloc
6. 425.82ms 141.94ms 141.12ms 143.34ms cudaFreeHost

330.84ms 330.84ms 330.84ms 330.84ms cudaSetDeviceFlags
447.18us 44.718us 27.583us 94.893us cudalaunchKernel
207.81us 10.396us 2.7920us 30.620us cudaEventRecord
139.87us 1.3840us 146ns 55.603us cuDeviceGetAttribute
59.182us 5.9180us 3.9300us 14.372us cudaEventElapsedTime
41.062us 20.531us 940ns 40.122us cudaEventCreate

el e
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Managed Memory

@ Unified Virtual Memory (UVM) provides Unified Memory

Dramatically Lower Developer Effort

a single memory space accessible by L
all GPUs and CPUs in the system
® Use cudaMallocManaged() to

allocate data in unified memory or use

__managed__ keyword in the global

scope

» Returns a pointer that can be

accessed from both host and device
code

Unified Memory in CUDA 6
An Even Easier Introduction to CUDA
Unified Memory for CUDA Beginners
Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming

Developer View With
Unified Memory
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Managed Memory

® UVM features have been evolving
starting from CUDA 6+

» 6.x: use a single pointer in both CPU
functions and GPU kernels
» 8.x: added 49-bit virtual addressing
and on-demand page migration
® CUDA runtime automatically migrates
data allocated in Unified Memory
between host and device, different
from UVA

Improving GPU Memory Oversubscription Performance

Swarnendu Biswas (IIT Kanpur)

CS 610: GPU Architecture and CUDA Programming

Read Request
Bytes sent to GPU
Requested Bytes Read

GPU Memory: Filed by Pages CPU Pinned, GPU Mapped Pages
\ J
T
cudaMallocManaged Allocated Virtual
Address Space is interleaved across
both memory domains

Byte transfer

Read Request ‘
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On-demand Paging

CPU virtual memory ~ GPU virtual memory CPU virtual memory  GPU virgdal memory
CITT11T 11
L 1 1
CPU physical memory GPU physical memory CPU physical memory GPU physical memory
o Data allocated in CPU memory o GPU touches unallocated page, triggers page fault
CPU virtual memory GPU virtual memory CPU virtual memory GPU virtual memory

CPU physical memory GPU physical memory PU physical memory GPU physical memory

Page fault handler allocates page in GPU mem, o If GPU modifies page contents, invalidate CPU
copies contents copy. Next CPU access will cause data to be copied
back from GPU mem.

Advanced CUDA programming: asynchronous execution, memory models, unified memory
Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1 138/159
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cudaMemcpy () with Managed Memory

swarnendu@nilgiri:~/cuda-examples/src/vector$ nvprof ./vector-addition-managed.out
==1948976== NVPROF is profiling process 1948976, command: ./vector-addition-managed.out
Invocation: @ Time taken (ms): kernel: 1219.01
==1948976== Profiling application: ./vector-addition-managed.out
==1948976== Profiling result:
Type Time(%) Time [PEYRES Avg Min Max Name

GPU activities: 100.00% 1.21679s 1.21679s 1.21679s 1.21679s vecAdd(float const *, float const %, float*, int)

API calls: 73.02% 1.21899s 1.21899s 1.21899s 1.21899s cudaEventSynchronize

17.84% 297.79ms 99.265ms 23.511us 297.70ms cudaMallocManaged

12% 152.21ms 50.737ms 50.422ms 50.941ms cudaFree
01% 142.95us 1.4150us 145ns 55.431us cuDeviceGetAttribute
00% 75.898us 75.898us 75.898us 75.898us cudalaunchKernel
00% 59.680us 29.840us 5.5550us 54.125us cudaEventCreate
00% 46.808us 23.404us 3.9890us 42.819us cudaEventRecord
00% 30.918us 30.918us 30.918us 30.918us cuDeviceGetName
00% 9.5370us 9.5370us 9.5370us 9.5370us cuDeviceTotalMem
00% 9.3320us 9.3320us  9.3320us 9.3320us cuDeviceGetPCIBusId
00% 7.1650us 7.1650us 7.1650us 7.1650us cudaEventElapsedTime
00% 2.6680us 889ns 183ns 1.3890us cuDeviceGetCount
00% 883ns 441ns 367ns 51éns cuDeviceGet
00% 350ns 350ns 350ns 350ns cuDeviceGetUuid

7o
®o
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

==1948976== Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name

36250 54.919KB 4.0000KB 0.9961MB 1.8986176B 224.7973ms Host To Device

18408 170.67KB 4.0000KB 0.9961MB 2.9960946B 261.0419ms Device To Host

4693 - - - - 539.8935ms Gpu page fault groups
Total CPU Page faults: 15349
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cudaMemcpy () with Managed Memory

~/cuda-examples/src/vector$ nvprof --print-gpu-trace ./vector-addition-managed.out 2>&1 | tee output.txt

==1949017== Profiling result:
Start Duration Grid Size Block Size Regs* SSMemx DSMemx Device Context
Stream Unified Memory Virtual Address Name
499.24ms = = = = = =
= PC 0xe0f0Ocdc8 0x7fd774000000 [Unified Memory CPU page faults]
499.73ms = = = = =
= PC Oxe0fOcdc8  Ox7fd774010000 [Unified Memory CPU page faults]
499.76ms = = = = =
PC 0xe0f0cdc8 Ox7fd774020000 [Unified Memory CPU page faults]

.59851s = = = = =
PC 0xe0f0cdfo Ox7fd76fe80000 [Unified Memory CPU page faults]
.99862s = = = = =
PC 0xe0f0cdf® Ox7fd76ff00000 [Unified Memory CPU page faults]
.60122s .22684s (1048576 1 1) (256 1 1) 16 0B 0B Quadro RTX 5000
7 - - vecAdd(float const %, float const %, float*x, int) [117]
.60123s 334.53us = = = = - Quadro RTX 5000
- 8 Ox7fd730000000 [Unified Memory GPU page faults]
.60142s 10.016us = = = = - Quadro RTX 5000
= 96.000000KB 0x7fd730000000 [Unified Memory Memcpy HtoD]
.60143s  4.6720us = = = = - Quadro RTX 5000
= 32.000000KB  Ox7fd730018000 [Unified Memory Memcpy HtoD]
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Unified Virtual Memory (UVM)

® On pre-Pascal GPUs,
cudaMallocManaged () allocated managed
space on the device that was active at the time
of the call
@ Pascal onward, cudaMallocManaged ()
does not immediately allocate physical
memory
» Pages and page table entries are not created
until the first access by the GPU or the CPU
@ Hardware supports page faulting and
migration
» The GPU stalls the accessor threads when
they access absent pages
» The Page Migration Engine migrates pages to
the device before resuming the threads

Physical memory for UM Physical memory for UM

CPU side GPU side

0x3900d!

0040000

PCI-E

0x3900d!

Host UM
space

UM space —

(a) After the host has accessed page 1 and

Physical memory for UM Physical memory for UM

CPU side GPU side

0x3900d!

B3P00d1000

GPUUM
space

page 2.

0040000

0x3900d!

Host UM

space

UM space —

(b) After the GPU has accessed page

J. Jung et al. Overlapping Host-to-Device Copy and Computation using Hidden Unified Memory. PPoPP’20.
Swarnendu Biswas (IIT Kanpur) CS 610: GPU Architecture and CUDA Programming Sem 2024-25-1

580041000
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space
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Pre-Pascal Behavior of cudaMallocManaged ()

__g8lobal__ void add(int n, floatx x, floatx y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride blockDim.x * gridDim.x;
for (int i index; i < n; i += stride)

y[il = x[i] + y[il;

E
1n§n$all\‘.n£v¢z;dl<{20) . [x and y are allocated on GPU memory,}
float *x, *y; driver sets up page table entries

cudaMallocManaged(&x, N * sizeof(float))4”
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; 1 < N; i++)
x[i] = 1.0f; y[i] = 2.0f;
int blockSize = 256; Page faylt on CPU, x and y
int numBlocks = (N + blocksiémcomanocpumemmy:L ;
add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize () ;

Lacked support for page faults, so all data
Moves data back | | is copied to GPU before kernel launch

to CPU memory

Unified Memory for CUDA Beginners
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Pre-Pascal Behavior of cudaMallocManaged ()

__global_

void add(int n, floatx x, floatx y) {

int index = blockIdx.x * blockDim.x + threadIdx.x;

int stride
for (int i

blockDim.x * gridDim.x;
index; i < n; i += stride)

y[i] = x[i] + y[il];

int main(void) {

int N = (1 << 20y — NO concurrent access

float *x, *y;

cudaMallochanaged — NO On-demand migration to

cudaMallocManaged
for (int i = 0; i GPU

x[i] = 1.0f; y

int blockSize

int numBlocks =

[ . -
> — No oversubscription

(N FTPTOCKO D zey

add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize () ;

Lacked support for page faults, so all dat
is copied to GPU before kernel launch

Moves data back

)

to CPU memory

Unified Memory for CUDA Beginners

Swarnendu Biswas (IIT Kanpur)

CS 610: GPU Architecture and CUDA Programming
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Behavior of cudaMallocManaged () for Pascal+

__g8lobal__ void add(int n, floatx x, floatx y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stri - - -
[1] = x[i] + y[i]: Page migration cost.|s now part
Y ! of the kernel execution time

E
int main (VOid) { Physical memory for x and y are not immediately
int N = (1 << 20); allocated, allocated only on first access or prefetch

float *x, *y; 1
cudaMallocManaged (&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; 1 < N; i++)
x[i] = 1.0f; y[i] = 2.0
int blockSize 256;
int numBlocks (N + bloc
add<<<numBlocks, blockSize>>>(N, x, y);

Page fault on CPU, x and y
are allocated on CPU memory

cudaDeviceSynchronize () ; NS
Supports page faults, so no data migration
5 overhead before kernel launch

Unified Memory for CUDA Beginners
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Profiling with nvprof on Turing GPU

swarnendu@nilgiri:~/cuda-examples/src/uvm$ nvprof ./add-grid.out
==2284609== NVPROF is profiling process 2284609, command: ./add-grid.out
2284609== Profiling application: ./add-grid.out
==2284609== Profiling result:
Type Time(%) Time EYRE Avg Min Max Name
GPU activities: 100.00% 3.2329ms 3.2329ms  3.2329ms 3.2329ms add(float const %, float const %, float*, unsigned int)
API calls: 97.02% 138.15ms 46.049ms  22.308us 138.02ms cudaMallocManaged
2.28% 3.2434ms 3.2434ms  3.2434ms 3.2434ms cudaDeviceSynchronize
.53% 755.20us 251.73us 216.47us 315.78us cudaFree
.09% 133.92us 1.3250us 133ns 52.233us cuDeviceGetAttribute
.05% 71.813us 71.813us 71.813us 71.813us cudalaunchKernel
.02% 24.813us 24.813us 24.813us 24.813us cuDeviceGetName
.01% 9.2100us 9.2100us 9.2106us 9.2100us cuDeviceGetPCIBusId
.00% 2.4970us 832ns 192ns 2.0830us cuDeviceGetCount
.00% 933ns 466ns 145ns 788ns cuDeviceGet
.00% 584ns 584ns 584ns 584ns cuDeviceTotalMem
.00% 282ns 282ns 282ns 282ns cuDeviceGetUuid

==2284609== Unified Memory profiling result:
Device "Quadro RTX 5000 (@)"
Avg Size Min Size Max Size Total Size Total Time Name
64.000KB 4.0000KB 964.00KB 12.00000MB 1.347288ms Host To Device
170.67KB 4.0000KB 0.9961MB 12.00000MB 1.024603ms Device To Host
= = = - 3.202094ms Gpu page fault groups
Total CPU Page faults: 72
swarnendu@nilgiri:~/cuda-examples/src/uvm$
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Page Migration: High-Level Mechanism

@ Assume a Pascal+ GPU accesses a page is not present in the local GPU memory

@ Address translation for the faulting page generates a fault message and locks the
TLBs for the corresponding SM

» On some architectures, two SMs share a TLB, so both are locked
» Locking implies outstanding translations can proceed but new translations will be stalled
until all faults are resolved

@ GPU can generate many faults concurrently for the same page

® UVMdriver processes the faults, removes duplicates, updates page table mappings,
and transfers the data

@ Fault handling adds significant overhead to streaming performance of UVM

Maximizing Unified Memory Performance in CUDA
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Ways to Reduce Page Migration Overhead B

(i) Initialize data on the device __global__ void init(int n, float *x, float xy) {

int index = threadIdx.x + blockIdx.x % blockDim.x;

int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride) {
x[i] = 1.0f; y[i] = 2.0f;

§war‘nendu[dnilgir‘i:~/Cuda—Examples/sr‘c/uVm$ nvprof ./add-grid-init.out
8473 NVPROF is profiling process 2284736, command: ./add-grid-init.out
284731 Profiling application: ./add-grid-init.out
==2284736== Profiling result:
Type Time(%. Time Calls Avg Min Max Name
GPU activities: 98.70% 2.8188ms 2.8188ms 2.8188ms 2.8188ms init(floatx, floatx, float*, unsigned int)
1.30% 37.217us 37.217us 37.217us 37.217us add(float const *, float const *, float*, unsigned int)
API calls: 97.29% 137.84ms 45.948ms  14.291us 137.74ms cudaMallocManaged
2.01% 2.8438ms 2.8438ms 2.8438ms 2.8438ms cudaDeviceSynchronize
0.53% 749.47us 249.82us 214.63us 316.77us cudaFree

284734 Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"
Count Avg Size Min Size Max Size Total Size Total Time Name
121 101.55KB 4.00B0KB 0.9922MB 12.00000MB 1.259259ms Host To Device
72 170.67KB 4.0000KB 0.9961MB 12.00000MB 1.025338ms Device To Host
20 = = = - 2.793011ms Gpu page fault groups
Total CPU Page faults: 72
swarnendu@nilgiri:~/cuda-examples/src/uvm$

Unified Memory for CUDA Beginners
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Ways to Reduce Page Migration Overhead

(i) Use warm-up iterations or take the
average of kernel multiple runs

(iiii) Prefetch data on the GPU with
cudaMemPrefetchAsync ()

B

int device = -1;
cudaGetDevice(&device);

cudaMemPrefetchAsync (X,
cudaMemPrefetchAsync (Y,
cudaMemPrefetchAsync(Z,

Nxsizeof (float), device, NULL);
Nxsizeof (float), device, NULL);
Nxsizeof (float), device, NULL);

swarnendu@nilgiri:~/cuda-examples/src/uvm$ nvprof ./add-grid-prefetch.out
NVPROF is profiling process 2285986, command: ./add-grid-prefetch.out
Profiling application: ./add-grid-prefetch.out
Profiling result:

Type Time(%)

6PU activities: 100.00%
API calls: 98.85%
0.95%

0.53%

0.30%

285 Unified Memory

Count Avg Size Min Size

Total CPU Page faults: 72

Time
29.855us
137.99ms
1.3409ms
743.23us
426.23us

Calls Avg
29.855us
45.996ms
1.3409ms
247.74us
142.08us

profiling result:
Device "Quadro RTX 5000 (08)"

Max Size Total Size Total Time
6 2.0000MB 2.0000MB 2.00006MB 12.00000GMB 1.042556ms
72 170.67KB 4.0000KB 0.9961MB 12.00000MB 1.025625ms

swarnendu@nilgiri:~/cuda-examples/src/uvm$

Unified Memory for CUDA Beginners

Swarnendu Biswas (IIT Kanpur)

CS 610: GPU

Min
29.855us
35.369us
1.3409ms
214.38us
5.0270us

Max
29.855us
137.84ms
1.3409ms
313.59us
249.26us

Name
Host To Device
Device To Host

itecture and CUDA Programming

Name

add(float const *, float const *, flo
cudaMallocManaged
cudaDeviceSynchronize

cudaFree

cudaMemPrefetchAsync

*, unsigned int)
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Explicit Memory Hints in UVM B

@ Advise runtime on expected memory access behaviors
» cudaMemAdvise(ptr, count, hint, device)
@ Possible hints:

cudaMemAdviseSetReadMostly Specify read duplication
cudaMemAdviseSetPreferredLocation Suggest best location
cudaMemAdviseSetAccessedBy Suggest mapping

@ Hints do not trigger data movement by themselves

cudaMemAdviseSetReadMostly
@ Data will usually be read-only

® UM system will make a “local” copy of the data for each processor that touches it

@ If a processor writes to it, this invalidates all copies except the one written

CUDA Unified Memory
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Explicit Memory Hints in UVM

cudaMemAdviseSetPreferredLocation
@ Suggests which processor is the best location for the data

@ Data will be migrated to the preferred processor on-demand (or if prefetched)
@ If possible, data mappings will be provided when other processors touch it

@ If mapping is not possible, data is migrated

.

cudaMemAdviseSetAccessedBy
® Does not cause movement or affect location of data

@ Indicated processor receives a mapping to the data

@ If the data is migrated, mapping is updated

@ Objective: provide access without incurring page faults

.
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Hardware Prefetching

@ Providing user hints can be complicated and error-prone

@ Hardware can implement different prefetch policies: (i) random, (ii) sequential, or (iii)
locality-aware
» For example, “random” prefetches a random 4KB page from the 2MB large page
boundary along with the 4KB faulting page

@ Nvidia implements a locality-aware tree-based neighborhood prefetcher GeForce GTX
1080ti
» Migrate multiples of 64KB basic blocks contiguous in the virtual address space grouped
in a single transfer
» All pages being prefetched are local to the current faulty pages and are within 2MB large
page boundary

D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.
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Tree-based Neighborhood Prefetcher

@ Allocation with cudaMallocManaged() is
logically divided into 2MB large pages

® The 2MB pages are further divided into
logical 64KB basic blocks to create a
full binary tree

@ If the user-specified allocation request
is not a multiple of 2MB, the remainder
allocation is rounded up to the next
2ix 64 KB

» If the requests are for 4MB and
192KB, then two 2MB trees and 1
256KB trees are created
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D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.
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Note about UVM

® UVM provides a coherent view of a single virtual address struct dataElem {
space between CPUs and GPUs with automatic data migration int propl;
via demand paging int prop2;

+ Allows GPUs to access a page that resides in the CPU memory 3 CLESS LRI

as if it were in the GPU memory
-+ Allows applications to run without worrying about the device
memory capacity
@ Primary goal for UVM is to improve programmer productivity
+ Code is less verbose, makes it easy to work with nested data structures (think of C++
classes with dynamically allocated attributes)
® UVM kernels may have poorer performance
— Negative is the substantial cost of address translation overhead and demand paging
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Handling GPU Page Faults

® When a GPU tries to access a physical memory page that is not currently resident in
device memory, a page fault is raised and GPU runtime migrates the requested page

to the GPU memory

@ Page fault handling is expensive because it requires long latency communications
between the CPU and GPU over the PCIe bus

» The GPU runtime processes a group of page faults together to amortize overhead
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H. Kim et al. Batch-Aware Unified Memory Management in GPUs for Irregular Workloads. ASPLOS’20
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Memory Access Divergence

@ An SIMD memory instruction cannot complete until data for all threads are available
» Problematic for irregular applications with little scope for coalescing
» Execution of one instruction requires multiple cache accesses when accesses fall on
distinct cache lines and multiple virtual-to-physical address translations when accesses
fall on distinct pages
@ Negative impact from divergence can impact address translation more than cache
access
» Irregular memory accesses can lead from 1 to warp size (32/64) address translation
requests, most will miss in the TLB
» A page table walk on a TLB miss can take up to four memory accesses, for a total of
128-256 memory accesses per instruction
» GPUs employ physical caches which makes address translation the bottleneck
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Address Translation Request

® IOMMU is a hardware component on the CPU that
services address translation requests for
accesses to the DRAM by any accelerator (e.g.,
GPU)

» IOMMU supports multiple page table walkers
(e.g., 8-16) to concurrently service multiple page
table walk requests (TLB misses)

» IOMMU employs small page walk caches for the
first three levels of the page tables

® GPU multiprocessors (compute units) share a
private L1 TLB across SIMD units

® The GPU’s L1 TLBs are backed by a larger L2 TLB
that is shared across all the CUs in the GPU

S. Shin et al. Scheduling Page Table Walks for Irregular GPU Applications. ISCA’18.
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Address Translation Request
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(i)
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An address translation request is generated by a SIMD load/store
instruction

A hardware coalescer merges multiple requests to the same page
generated by the same SIMD instruction

The coalesced translation request looks up the GPU’s L1 TLB and
then the GPU’s shared L2

On a miss in the GPU’s L2 TLB, the request is sent to the IOMMU
At the IOMMU, the request looks up the IOMMU’s TLBs

On a miss, the request queues up as a page walk request in the
IOMMU buffer

When an IOMMU'’s page table walker becomes free, it selects a
pending request from the IOMMU buffer in some order

The page table walker first performs a PWC lookup and then
completes the walk of the page table, generating one to four
memory accesses

On finishing a walk, the desired translation is returned to the TLBs
and ultimately to the GPU SIMD unit that requested it

S. Shin et al. Scheduling Page Table Walks for Irregular GPU Applications. ISCA’18.
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Memory Oversubscription
® UVM support allows GPUs to oversubscribe memory

@ With oversubscription, a memory page is first evicted from GPU memory to system
memory, followed by transfer of requested memory from CPU to GPU
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Improving GPU Memory Oversubscription Performance
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Prefetching with Memory Oversubscription

® Aggressive prefetching under memory constraint can be counter-productive, may
cause displacement of heavily-accessed pages
@ CUDA drivers implement LRU 4KB page replacement policy
@ Penalty of faults are greater under oversubscription
» Threads need to be stalled for writing back pages along with the latency to migrate new
pages
@ An option is to disable prefetching on oversubscription
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