
CS 610: Dependence Testing

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-I

How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures
Determines the number of operations executed

Code that the compiler and architecture can effectively optimize
Determines the number of instructions executed

Proportion of parallelizable and concurrent code
Amdahl’s law

Specialize to the target architecture platform
Memory hierarchy, cache sizes, advanced features like AMX

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 3 / 49

Role of a Good Parallelizing Compiler

Try and extract performance automatically

Optimize memory access latency
� Code restructuring optimizations (e.g., loop

interchange)
� Prefetching optimizations (e.g., software

prefetching)
� Data layout optimizations
� Code layout optimizations

hot path
test cond

hot path
test cond

call cold func

FalseTrue

hot path
test cond

call cold func

hot path
test cond

TrueFalse

Machine code layout optimizations

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 4 / 49

https://easyperf.net/blog/2019/03/27/Machine-code-layout-optimizatoins

Parallelism Challenges for a Compiler

On single-core machines
Focus is on register allocation, instruction scheduling, reducing the cost of array accesses

On parallel machines
� Find parallelism in sequential code, find portions of work that can be executed in

parallel
� Principle strategy is data decomposition—good idea because data parallelism can

scale

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 5 / 49

Can we parallelize the following loops?

Focus is on loop parallelism because it can provide more savings
Inter-statement and intra-statement parallelism is limited

DO I = 1, 100
A(I) = A(I) + 1

DO I = 1, 100
A(I) = A(I-1) + 1

i R W
1 A(1) A(1)
2 A(2) A(2)
3 A(3) A(3)

i R W
1 A(0) A(1)
2 A(1) A(2)
3 A(2) A(3)un

ro
ll

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 6 / 49

Data Dependences

S1 a = b + c
S2 d = a * 2
S3 a = c + 2
S4 e = d + c + 2

Execution constraints
� S2 must execute after S1
� S3 must execute after S2
� S3 must execute after S1
� S3 and S4 can execute concurrently (in any order)

There is a data dependence from S1 to S2 if and only if
(i) Both statements access the same memory location,

(ii) At least one of the accesses is a write,
(iii) There is a feasible execution path at run-time from S1 to S2.

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 7 / 49

Types of Dependences Based on Memory Accesses

Flow (a.k.a. true or RAW)
(denoted by S1𝛿S2)

S1 X = ...
S2 ... = X

Anti (a.k.a. WAR)
(denoted by S1𝛿−1S2)

S1 ... = X
S2 X = ...

Output (a.k.a. WAW)
(denoted by S1𝛿oS2)

S1 X = ...
S2 X = ...

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 8 / 49

Bernstein’s Conditions

� Suppose there are two processes P1 and P2
� Let Ii be the set of all input variables for the process Pi
� Let Oi be the set of all output variables for the process Pi
� P1 and P2 can execute in parallel (denoted by P1 | |P2) if and only if

▶ O1 ∩ I2 = 𝜙

▶ O2 ∩ I1 = 𝜙

▶ O1 ∩ I2 = 𝜙

Two processes can execute in parallel if they are flow-, anti-, and
output-independent
� If Pi | |Pj, does that imply Pj | |Pi?
� If Pi | |Pj and Pj | |Pk, does that imply Pi | |Pk?

A. Bernstein. Analysis of Programs for Parallel Processing. IEEE Transactions on Electronic Computers, 1966.

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 9 / 49

https://ieeexplore.ieee.org/document/4038883

Finding Parallelism in Loops—Is it Easy?

Need to check whether two array subscripts access the same mem-
ory location

for i = 1 to N
S1 A[i+1] = A[i] + B[i]

for i = 1 to N
S1 A[i+4] = A[i] + B[i]

� Statement S1 depends on itself in both examples, however, there is a subtle
difference

� Compilers need formalism to analyze dependences and transform loops

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 10 / 49

Enumerate All Dependences in Loops

for i = 1 to 50
S1 A[i] = B[i-1] + C[i]
S2 B[i] = A[i+2] + C[i]

Unrolling loops helps figure out
dependences

S1(1) A[1] = B[0] + C[1]
S2(1) B[1] = A[3] + C[1]
S1(2) A[2] = B[1] + C[2]
S2(2) B[2] = A[4] + C[2]
S1(3) A[3] = B[2] + C[3]
S2(3) B[3] = A[5] + C[3]

� large loop bounds
� loop bounds may not be

known at compile time

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 11 / 49

Normalized Iteration Number

Parameterize the statement with the loop
iteration number

DO I = 1, N
S1 A(I+1) = A(I) + B(I)

DO I = L, U, S
S2 ...

For a loop where the loop index I runs from L to U in steps of S, the
normalized iteration number of a specific iteration is (I − L)/S + 1,
where I is the value of the index on that iteration

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 12 / 49

Iteration Vector and Lexicographic Ordering

Given a nest of n loops, the iteration vector i of an iteration of the
innermost loop is a vector of integers containing the iteration num-
bers for each of the loops in order of nesting level.
The iteration vector ®i is {i1, i2, . . . , in} where ik, 1 ≤ k ≤ n, represents
the iteration number for the loop at nesting level k.

� A vector (d1, d2) is positive if (0,0) < (d1, d2), i.e., its first non-zero component is
positive

� Iteration ®i precedes iteration ®j, denoted by ®i < ®j, if and only if
(i) i[1 : n − 1] < j[1 : n − 1], or

(ii) i[1 : n − 1] = j[1 : n − 1] and in < jn

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 13 / 49

Iteration Space Graphs

� Represents each dynamic instance of a loop as a point in the graph
� Arrows among points represent dependences

for i = 1 to 4 do
for j = 1 to 4 do

S1 A(i,j) = A(i,j-1) * x

j=1 j=2 j=3 j=4

i=1

i=2

i=3

i=4

Dimensions of an iteration space depends
the loop nest depth, need not always be
rectangular

for i = 1 to 5 do
for j = i to 5 do

S1 A(i,j) = B(i,j) + C(j)

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 14 / 49

Formal Definition of Loop Dependence

There is a loop dependence from S1 to S2 in a loop nest iff there exist two
iteration vectors i and j such that

(i) i < j or i = j and there is a path from S1 to S2 in the body of the loop,
(ii) S1 accesses memory location M on iteration i and S2 accesses M on iteration j, and

(iii) One of these accesses is a write.

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 15 / 49

Distance and Direction Vectors

� For each dimension of an iteration space, the distance is the number of iterations
between accesses to the same memory location

� Dependence distance vector ®d(i, j) is defined as a vector of length n such that
®d(i, j)k = jk − ik

DO i = 1, 6
DO j = 1, 5
A(i,j) = A(i-1,j-2) + 1

i

j

Distance vector = (1, 2)

outer
loop

inner
loop

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 16 / 49

Direction Vectors

Dependence direction vector ®D(i, j) is defined as a vector of
length n such that

D(i, j)k =

− if D(i, j)k < 0
0 if D(i, j)k = 0
+ if D(i, j)k > 0

< Positive
> Negative
= Zero
* Mixed

Distance vector is a more precise form of a direction vector

For a valid dependence, the leftmost non-“0” compo-
nent of the direction vector must be “+”

alternate
notation

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 17 / 49

Summarizing Dependences

DO J = 1, 10
DO I = 1, 10

S1 A(I+1,J) = A(I,J) + 5

The number of dependences between a pair of accesses is equal to the
number of distinct direction vectors over all the dependences between
those accesses

What are the
dependences?

How many?

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 18 / 49

Distance and Direction Vector Examples
�

DO I = 1, N
DO J = 1, M

S1 A(I,J) = ...
S2 ... = A(I,J) + ...
� �

�
DO I = 1, N
DO J = 1, M

S1 A(I,J) = A(I,1) + ...

� �
�

DO I = 1, N
DO J = 1, M
DO K = 1, L

S1 A(I+1,J,K-1) = A(I,J,K) + 10
� �

�
DO I = 1, N
DO J = 1, M

S1 A(I,J) = A(I,J-3) + A(I-2,J) +
A(I-1,J+2) + A(I+1,J-1)
� �

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 19 / 49

Dependence Types

� There are two ways in which a
statement S2 can depend on another
statement S1, where both S1 and S2 are
inside a loop
▶ Loop-carried: S1 and S2 execute in

different iterations
▶ Loop-independent: S1 and S2 execute

in the same iteration
� These types partition all possible data

dependences

DO I = 1, N
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)

DO I = 1, N
S1 A(I+1) = F(I)
S2 G(I+1) = A(I+1)

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 20 / 49

Loop-Carried and Loop-Independent Dependences

Loop-carried

� S1 references location M on iteration i
� S2 references M on iteration j
� D(i, j) > 0 (i.e., contains a “+” as

leftmost non-“0” component)

Loop-independent

� S1 refers to location M on iteration i
� S2 refers to M on iteration j and i = j
� There is a control flow path from S1 to

S2 within the iteration

DO I = 1, 10
DO J = 1, 10
DO K = 1, 10

S1 A(I,J,K+1) = A(I,J,K)

DO I = 1, 9
S1 A(I) = ...
S2 ... = A(10-I)

Having a common loop is not necessary
Level of a loop-carried dependence
is the leftmost non-“0” index of the
dependence D(i,j) (denoted by S1𝛿lS2)

denoted by S1𝛿∞S2

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 21 / 49

Program Transformations and Validity

Parallelism and Data Dependence

� Parallel loop iterations imply random interleaving of statements in the loop body
� Compilers apply transformations only when it is safe to do so

A reordering transformation merely changes the order of execu-
tion of the code, without adding or deleting any executions of
any statements

� A reordering transformation that preserves every dependence preserves the
meaning of the program

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 22 / 49

Direction Vector Transformation

� Let T be a transformation applied to a loop nest
� Assume T does not rearrange the statements in the body of the loop
� T is valid if, after it is applied, none of the direction vectors for dependences with

source and sink in the nest has a leftmost non-“0” component that is “-”

A transformation is valid for the program to which it applies
if it preserves all dependences in the program

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 23 / 49

Utility of Dependence Levels

� A reordering transformation preserves all level-k dependences if it
(i) preserves the iteration order of the level-k loop,

(ii) does not interchange any loop at level < k to a position inside the level-k loop, and
(iii) does not interchange any loop at level > k to a position outside the level-k loop.

DO I = 1, 10
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)

DO I = 1, 10
S2 F(I+1) = A(I)
S1 A(I+1) = F(I)

Statement order is irrelevant for loop-carried dependences
but is important for loop-independent dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 24 / 49

Are these transformations valid?

DO I = 1, 10
DO J = 1, 10
DO K = 1, 10

S A(I+1,J+2,K+3) = A(I,J,K) + B

DO I = 1, 10
DO K = 10, 1, -1

DO J = 1, 10
S A(I+1,J+2,K+3) = A(I,J,K) + B

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I) + E

D(1) = A(1) + E
DO I = 2, N

S1 A(I-1) = B(I-1) + C
S2 D(I) = A(I) + E

A(N) = B(N) + C

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 25 / 49

Dependence Testing

Dependence Testing

Dependence testing is used to determine whether dependences
exist between two subscripted references to the same array in a
loop nest

Dependence question
Can 4 ∗ I be equal to 2 ∗ I + 2 for I ∈ [1,N]?

DO I=1, N
A(4*I) = ...
... = A(2*I+2)

Given (i) two subscript functions f and g and (ii) lower and upper
loop bounds L and U respectively, does f (i1) = g(i2) have a solution
such that L ≤ i1, i2 ≤ U?

affine

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 26 / 49

Multiple Loop Indices, Multi-Dimensional Array

� Assumptions
▶ Array subscripts are affine
▶ Loops are in normalized form

� Let 𝛼 and 𝛽 be two valid vectors in the iteration space of the loop nest
� There is a dependence from S1 to S2 iff

∃𝛼, 𝛽, 𝛼 ≤ 𝛽 ∧ fi(𝛼) == gi(𝛽) ∀i, 1 ≤ i ≤ m

DO i1=L1,U1,S1
DO i2=L2,U2,S2
...
DO in=Ln,Un,Sn

S1 X(f1(i1,...,in), ..., fm(i1,...,in)) = ...
S2 ... = X(g1(i1,...,in), ..., gm(i1,...,in))

Solving the system of equa-
tions for arbitrary functions
f and g is NP-complete

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 27 / 49

Approximate Dependence Testing

� The following system of equations with 2n variables and m equations is the most
common

a11i1 + a12i2 + · · · + a1nin + c1 = b11j1 + b12j2 + · · · + b1njn + d1
a21i1 + a22i2 + · · · + a2nin + c2 = b21j1 + b22j2 + · · · + b2njn + d2

. . .

am1i1 + am2i2 + · · · + amnin + cm = bm1j1 + bm2j2 + · · · + bmnjn + dm

� Solve the system of the form Ax = B for integer solutions
▶ A is a m × 2n matrix and B is a vector of m elements

� Finding solutions to Diophantine equations is NP-complete

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 28 / 49

Dependence Testing with GCD
� Coefficients of the loop indices are integers in Diophantine equations
� The Diophantine equation a1i1 + a2i2 + · · · + anin = c has an integer solution iff

gcd(a1, a2, . . . , an) evenly divides c
▶ If there is a solution, we can test if it lies within the loop bounds
▶ If not, then there is no dependence

for i = 1 to N
S1 a[x*i+k] = ...
S2 ... = a[y*i+m];

� If GCD(x, y) divides (m − k), then a dependence may exist
between S1 and S2

� If GCD(x, y) does not divide (m − k), then S1 and S2 are
independent and can be executed in parallel

x ∗ i1 + k = y ∗ i2 +m,
where 0 ≤ i1, i2 ≤ N

Examples:
� 15 ∗ i + 6 ∗ j − 9 ∗ k = 12 has a solution, gcd=3
� 2 ∗ i + 7 ∗ j = 3 has a solution, gcd=1
� 9 ∗ i + 3 ∗ j + 6 ∗ k = 5 has no solution, gcd=3

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 29 / 49

Problems with Dependence Testing with GCD
� Coefficients of the loop indices are integers in Diophantine equations
� The Diophantine equation a1i1 + a2i2 + · · · + anin = c has an integer solution iff

gcd(a1, a2, . . . , an) evenly divides c
▶ If there is a solution, we can test if it lies within the loop bounds
▶ If not, then there is no dependence

for i = 1 to 10
S1 a[i] = b[i]+c[i]
S2 d[i] = a[i-100];

Problems
− Provides no information on distance or

direction of dependence, only tells if there are
no dependences

− Ignores loop bounds and GCD is often 1,
resulting in false dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 30 / 49

Lamport Test

� Used when there is a single index variable in the
subscripts and the coefficients of the index
variables are the same

� There is an integer solution only if d =
c1−c2
b is

an integer
▶ Dependence is valid if |d| ≤ Ui − Li

A[...,b*i+c1,...] = ...
... = A[...,b*i+c2,...]

for i = 1 to n
for j = 1 to n

S1 a[i,j] = a[i-1,j+1]

for i = 1 to n
for j = 1 to n

S1 a[i,2j] = a[i-1,2j+1]

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 31 / 49

Classifying Subscripts

� A subscript is a pair of subscript positions in a pair of array references
▶ A(i, j) = A(i, k) + C
▶ ⟨i, i⟩ is the first subscript, ⟨j, k⟩ is the second subscript

� A subscript is said to be
▶ Zero index variable (ZIV) if it contains no index variable
▶ Single index variable (SIV) if it contains only one index variable
▶ Multi index variable (MIV) if it contains more than one index variable

� Consider A(5, i + 1, j) = A(1, i, k) + C
▶ First subscript is ZIV, second subscript is SIV, third subscript is MIV

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 32 / 49

Separability and Coupled Subscript Groups

� A subscript is separable if its indices do not occur in other subscripts
� If two different subscripts contain the same index they are coupled

▶ A(i + 1, j) = A(k, j) + C : Both subscripts are separable
▶ A(i, j, j) = A(i, j, k) + C : Second and third subscripts are coupled

� Coupling indicates complexity in dependence testing

DO I = 1, 100
S1 A(I+1,I) = B(I) + C
S2 D(I) = A(I,I) * E

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 33 / 49

Overview of Dependence Testing

(i) Partition subscripts of a pair of array references into separable and coupled groups
(ii) Classify each subscript as ZIV, SIV, or MIV

(iii) For each separable subscript apply single subscript test
▶ If not done, go to next step

(iv) For each coupled group apply multiple subscript tests like Delta Test
(v) If still not done, merge all direction vectors computed in the previous steps into a

single set of direction vectors

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 34 / 49

Simple Subscript Tests

� ZIV test
▶ e1 and e2 are constants or loop invariant

symbols
▶ If e1 ≠ e2, then no dependence exists

DO j = 1,100
A(e1) = A(e2) + B(j)

� SIV test
▶ Strong SIV test: ⟨a ∗ i + c1, a ∗ i + c2⟩

▶ a,c1,c2 are constants or loop invariant symbols
▶ Example: ⟨4i + 1, 4i + 5⟩
▶ Solution: d = (c2 − c1)/a is an integer and |d| ≤ |Ui − Li |

▶ Weak SIV test: ⟨a1 ∗ i + c1, a2 ∗ i + c2⟩
▶ a1,a2,c1,c2 are constants or loop invariant symbols
▶ Example: ⟨4i + 1, 2i + 5⟩ or ⟨i + 3, 2i⟩

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 35 / 49

Weak SIV Test
� Weak zero SIV: ⟨a1 ∗ i + c1, c2⟩

▶ Solution: i = (c2 − c1)/a1 is an integer and |i| ≤ |U − L|

DO I = 1, N
S1 Y(I,N) = Y(1,N) + Y(N,N)

Y(1,N) = Y(1,N) + Y(N,N)
DO I = 2, N-1

S1 Y(I,N) = Y(1,N) + Y(N,N)
Y(N,N) = Y(1,N) + Y(N,N)

� Weak crossing SIV: ⟨a ∗ i + c1,−a ∗ i + c2⟩
▶ Solution: i = (c2 − c − 1)/2a is an integer and |i| ≤ |U − L|

DO I = 1, N
S1 A(I) = A(N-I+1) + C

DO I = 1, (N+1)/2
S1 A(I) = A(N-I+1) + C

DO I = (N+1)/2+1, N
S2 A(I) = A(N-I+1) + C

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 36 / 49

Other Dependence Tests

� Banerjee-Wolfe test: widely used test
� Power test: improves over Banerjee test
� Delta test: specializes in common array subscript patterns
� Omega test: “precise” test, most accurate for linear subscripts
� Range test: handles non-linear and symbolic subscripts

� Many variants of these tests exits

W. Pugh. The Omega Test: a fast and practical integer programming algorithm for dependence analysis, SC’91.

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 37 / 49

https://dl.acm.org/doi/pdf/10.1145/125826.125848

Banerjee-Wolfe Test

If the total subscript range accessed by ref1
does not overlap with the range accessed by
ref2, then ref1 and ref2 are independent

DO j=1,100
a(j) = ...
... = a(j+200)

DO j=1,100
a(j) = ...
... = a(j+5)

for (k=0; k < N; k++) {
c[f(i)] = ...;
... = c[g(j)];

}

True: ∃i, j ∈ [0,N − 1], i ≤ j ∧ f (i) = g(j)
Anti: ∃i, j ∈ [0,N − 1], i > j ∧ f (i) = g(j)

for (k=0; k < N; k++) {
... = c[g(j)];
c[f(i)] = ...;

}

True: ∃i, j ∈ [0,N − 1], i < j ∧ f (i) = g(j)

[1 : 100]
[201 : 300]

[1 : 100]
[6 : 105]

Banerjee test

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 38 / 49

https://en.wikipedia.org/wiki/Banerjee_test

Delta Test

� Notation represents index values at the source and sink

DO I = 1, N
A(I + 1) = A(I) + B

� Let source iteration be denoted by I0, and sink iteration be denoted by I0 + ΔI
� Valid dependence implies I0 + 1 = I0 + ΔI
� We get ΔI = 1 =⇒ Loop-carried dependence with distance vector (1) and direction

vector (+)

G. Goff et al. Practical Dependence Testing, PLDI’91.

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 39 / 49

https://dl.acm.org/doi/epdf/10.1145/113446.113448

Delta Test

DO I = 1, 100
DO J = 1, 100
DO K = 1, 100

A(I+1,J,K) = A(I,J,K+1) + B

� I0 + 1 = I0 + ΔI; J0 = J0 + ΔJ;
K0 = K0 + 1 + ΔK

� Solution: ΔI = 1; ΔJ = 0; ΔK = −1
� Corresponding direction vector: (+,0,-)

DO I = 1, 100
DO J = 1, 100

A(I+1) = A(I) + B(J)

� If a loop index does not appear in a
subscript, its distance is unconstrained
and its direction is “*” (denotes union
of all 3 directions)

� Direction vector is (+, *)
▶ (*, +) denotes (+, +), (0, +), (-, +)
▶ (-, +) denotes a level 1

anti-dependence with direction
vector (+,-)

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 40 / 49

Delta Test

Extract constraints from SIV subscripts and use them for other subscripts

DO I = 1, N
A(I,I) = A(1,I-1) + C

DO I = 1, N
A(I+1,I+2) = A(I,1) + C

DO I = 1, 100
DO J = 1, 100

A(I+1, I+J) = A(I, I+J-1) + C

DO I = 1, N
DO J = 1, N

DO K = 1, N
A(J-I,I+1,J+K) = A(J-I,I,J+K)

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 41 / 49

Solving Integer Inequalities

� The loop nest inequalities specify a convex polyhedron
▶ A polyhedron is convex if for two points in the polyhedron, all points on the line

between them are also in the polyhedron
� Data dependence implies a search for integer solutions that satisfy a set of linear

inequalities
▶ Integer linear programming is an NP-complete problem

� Steps
1. Use GCD test to check if integer solutions may exist
2. Use simple heuristics to handle typical inequalities
3. Use a linear integer programming solver that uses a branch-and-bound approach based

on Fourier-Motzkin elimination for unsolved inequalities

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 42 / 49

Fourier-Motzkin Elimination

Input An n-dimensional polyhedron S with variables x1, x2, . . . xn
Goal Eliminate xm, m ≤ n

Output A polyhedron S′ with variables x1, x2, . . . xm−1, xm+1, . . . xn
Steps Let C be all constraints in S involving xm

1. For every pair of a lower bound and upper bound on xm ∈ C, such as,
L ≤ c1xm and c2xm ≤ U, create a new constant c2L ≤ c1U

2. If integers c1 and c2 have a common factor, divide both sides by that factor
3. If the new constraint is not satisfiable, then there is no solution to S, i.e., S

and S′ are empty spaces
4. S′ is the set of constraints S− C, plus the new constraints generated in Step 2

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 43 / 49

Example of Fourier-Motzkin Elimination

Consider the code
for (i = 0; i <= 5; i++)

for (j = i; j <= 7; j++)
Z[j,i] = 0;

Goal is to interchange the loops
for (j = __; j <= __; j++)

for (i = __; i <= __; i++)
Z[j,i] = 0;

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 44 / 49

Example of Fourier-Motzkin Elimination

for (i = 0; i <= 5; i++)
for (j = i; j <= 7; j++)
Z[j,i] = 0;

Use Fourier-Motzkin elimination to project
the 2D space away from the i dimension
and onto the j dimension

0 ≤ i ∧ i ≤ 5 ∧ i ≤ j =⇒ 0 ≤ j ∧ 0 ≤ 5,

and we already have j ≤ 7

The new constraints are:
0 ≤ i, i ≤ 5, i ≤ j,0 ≤ j, j ≤ 7

Find the loop bounds from the original loop
nest: Li : 0;Ui : 5, j; Lj : 0;Uj : 7

for (j = 0; j <= 7; j++)
for (i = 0; i <= min(5,j); i++)

Z[j,i] = 0;

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 45 / 49

Use ILP for Dependence Testing

� Algorithm
Input A convex polyhedron S over variables v1, v2, . . . vn

Output “Yes” if S has an integer solution, “no” otherwise

for (i=1; i < 10; i++)
Z[i] = Z[i+10];

Show that there are no two dynamic accesses i and i′ with 1 ≤ i ≤ 9, 1 ≤ i′ ≤ 9, and
i = i′ + 10.

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 46 / 49

Dependence Testing is Hard

� Most dependence tests assume affine
array subscripts

� Unknown loop bounds can lead to
false dependences

� Need to be conservative about aliasing
� Triangular loops adds new constraints
� Loop transformations can add

additional variables

for (i=0; i < N; i++) {
a[i] = a[i+10];

}

for (i=0; i < N; i++) {
for (j=0; j < i-1; j++) {

a[i][j] = a[j][i];
}

for (i=L; i < H; i++) {
a[i] = a[i-1];

}

How do we compare
N and 10?

Add j < i as a new
constraint

Loop transformations (e.g., nor-
malization) add new variables

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 47 / 49

Why is Dependence Analysis Important?

� Dependence information is used to drive important loop transformations
� Goal is to remove dependences or parallelize in the presence of dependences
� We will discuss many transformations (e.g., loop interchange and loop fusion) next

Swarnendu Biswas (IIT Kanpur) CS 610: Dependence Testing Sem 2024-25-I 48 / 49

References

R. Allen and K. Kennedy. Optimizing Compilers for Multicore Architectures. Sections 1.1–1.6,
Morgan Kaufmann.

A. Aho et al. Compilers: Principles, Techniques, and Tools. Section 11.6, 2nd edition, Pearson
Education.

Qing Yi. Dependence Testing: Solving System of Diophantine Equations.

http://www.cs.uccs.edu/~qyi/UTSA-classes/cs6363/slides/Ch03TestingSlides.pdf

