CS 610: Compiler Challenges for Parallel
Architectures

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-|

Improvements in Computing Capabilities

@ Last few decades have been exciting for the parallel computing community
@ Sources of improvements in computing capabilities

(i) Improvement in underlying technology (leads to Moore's law)
(ii) Advances in computer architecture

'50—65{ Instruction-level parallelism (pipelining) Vector operations }'75—90
'60-70{ Multiple functional/execution units Deeper and sophisticated memory hierarchies }’85-00
'65775{ Superscalar instruction issue and VLIW Core-level parallelism }'907...

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

10’
106
10°
10*
10°
102
10’
10°

50 Years of Microprocessor Trend Data

T T T T 1 =]
(S ""Kl"‘
S S 4aats ,..'._

II*I-HH |.'-n:|
'0
_— sk
o S = R A """"""" OQg S re
-i: ———————— s mmmoo ————————————————————————— -

I I I I I
1970 1980 1990 2000 2010 2020

Year

| Transistors

(thousands)

Single-Thread
Performance

| (SpecINT x 10%)

Typical Power
Watts)

Number of
Logical Cores

—_

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

https://github.com/karlrupp/microprocessor-trend-data/

https://github.com/karlrupp/microprocessor-trend-data/

50 Years of Microprocessor Trend Data

T T T T 1 =

v I N S SO R L
10 ; 4 X5 Transistors
DL IR e Wy . {(thousands)

3 I —— Single-Thread
10 *q,}," *® % performance 3
S S FNRS S S L. SN | (SpecINT x 107)

3 e '.'ﬂ Frequency (MHz)
10

2005 2020 @ Single core performance increase is ~20%
10° ® Programs do not run any faster by
10" | themselves

A‘ n - v v vV A\ A4 “‘ 7
100 —""' ———————— X ————— *- ‘————“0 mmmoo—————————i ——————————————————————— —

I 1 1 I I
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

https://github.com/karlrupp/microprocessor-trend-data/

https://github.com/karlrupp/microprocessor-trend-data/

Challenges to Growth in Performance

25
Clock speeds are
20 not increasing
any more
N
- =
g 5 2005 R
" oadmap Vd
K
[+
=
8 10
o
2007 Roadmap
Tl
“
Intel multicore
| | | | | |
2001 2003 2005 2007 2009 2011 2013

Power, and not manufacturing, limits microarchi-
tectural improvements - F. Pollack

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Programs Do Not Run Any Faster by Themselves!

Microarchitectural techniques

Multiple functional units, superscalar architecture, VLIW, sophisticated cache structures,
deeper pipelines

Law of diminishing returns!

There is little or no more hidden parallelism (ILP) to be found

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Programs Do Not Run Any Faster by Themselves!

Microarchitectural techniques

Multiple functional units, superscalar architecture, VLIW, sophisticated cache structures,
deeper pipelines

Complex systems are more difficult to program efficiently

Systems programmers now need to be aware of memory hierarchies and other
architectural features to fully exploit the potential of the hardware

Have you heard of ninja programmers?

Popular libraries like Intel oneDNN and NVIDIA cuDNN are hand-optimized
for performance

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

What is the software side of the story?

Develop Parallel Programs

From my perspective, parallelism is the biggest challenge since high-
level programming languages. It's the biggest thing in 50 years be-
cause industry is betting its future that parallel programming will be
useful.

Industry is building parallel hardware, assuming people can use it.
And | think there's a chance they'll fail since the software is not nec-
essarily in place. So this is a gigantic challenge facing the computer
science community.

- David Patterson, ACM Queue, 2006.

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-| 8/36

Develop Parallel Programs

To save the IT industry, researchers must demonstrate

greater end-user value from an increasing number of
cores.

- A View of Parallel Computing Landscape, CACM 20089.

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures

Sem 2024-25-|

New Challenges in Software Development

@ Adapt to the changing hardware landscape
® Many applications are single-threaded

How can we develop software that makes
effective use of the extra hardware?

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Compilers to the Rescue!

A compiler is a system software that translates a program into a source language to an

equivalent program in a target language.

source

orogram Compiler |

i

target
program

.

Role of a compiler
® Generate correct code
® Must improve the code according to some metric
@ Provide feedback to the user

Swarnendu Biswas (IIT Kanpur)

CS 610: Compiler Challenges for Parallel Architectures

Sem 2024-25-|

11/36

Relevance of Compiler Technologies

® Compiler technology has become more important as machines have become more
complex

@ Success of architecture innovations depends on the ability of compilers to provide
efficient language implementations on that architecture

@ Excellent techniques have been developed for vectorization, instruction scheduling,
and management of multilevel memory hierarchies

@ Automatic parallelization has been successful only for shared-memory parallel systems
with a few processors

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

The Golden Age of Compilers

in an era of Hardware/Software co-design

International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2021)

Chris Lattner
SiFive, Inc.

April 19, 2021

https://docs.google.com/presentation/d/1ZMtzT6nmfvNOlIaHRzdaXpFeaAklcT7DvfGjhgpzcxk/edit#slide=id.p

Pipelined Execution

@ Pipelining subdivides a complex operation into independent micro-operations
» Assume the different micro-operations use different resources
» Micro-operations can be overlapped by starting an operation as soon as its predecessor
has completed the first micro-operation

IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB
IF ID EX | MEM | WB

Cyles

® A pipelined functional unit is effective only when the pipeline is full
» Operands need to be available on each segment clock cycle

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Pipeline for Floating-Point Operations

Steps in floating-point addition

Inputs

Fetch
Operands
(FO)

Equate
Exponents
(EE)

Add Mantissa
(AM)

Normalize
Result (NR)

Result
— >

A pipelined execution unit computing a; = b; + ¢;

b5—)

Cg ———>

(FO)
by
Cq

(EE)
b3
C3

(AM)
b2 + Co

(NR)
a

Swarnendu Biswas (IIT Kanpur)

CS 610: Compiler Challenges for Parallel Architectures

Sem 2024-25-|

Parallel Functional Units

@ Multiple functional units
» Assume n units and m cycles for an

A 4

operation to complete
» Can issue n/m operations per cycle

Adder 1

Y

A 4

@ Also called fine-grained parallelism

Adder 2

az+b2

b
@ More flexible in allocating operations 5—>
compared to pipelining but costlier to Cs

A 4

implement

Adder 3

Y

Y

Results
>

a3+b3

A 4

Adder 4

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures

Sem 2024-25-|

Y

Compiler Challenges with Pipelining

The key performance barrier is pipeline stalls, which occur when a new set of inputs
cannot be injected into the pipeline because of a hazard

Structural hazards @ Available machine resources do not support instruction overlap

» For example, a machine cannot overlap instruction fetch with the
fetch of data if there is only one memory port

@ Such a hazard cannot be avoided through compiler strategies

IF ID EX | MEM | WB
IF ID EX |MEM | WB
IF ID EX | MEM | WB
Stall IF ID EX | MEM

Swarnendu Biswas (IIT Kanpur)

CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Compiler Challenges with Pipelining

The key performance barrier is pipeline stalls, which occur when a new set of inputs
cannot be injected into the pipeline because of a hazard

Data hazards @ Result produced by one instruction is needed by a later one

ADD R1, R2, R3 LW R1, O(R2)
SUB R4, R1, R5 ADD R3, R1, R4

® Compiler can schedule an instruction that does not use R1

Control hazards @ Occur during the processing of branch instructions

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Vector Instructions

® Apply the same operation to different positions of one or more arrays
Goal: Keep pipelines of execution units full

DILERE AL, b vectorize
VLOAD V2,B _ C(l:N) = A(C1:N) + B(1l:N)
VADD V3,V1,V2
VSTORE V3,C

Challenges
— Increases processor state to support vector registers

— Increases the cost of processor context switching
— Expanded instruction set, complicates instruction decode
— Stresses memory bandwidth, can pollute the cache hierarchy

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-| 19/36

Compiler Challenges with Vector Instructions

DO I =1, 64 vectorize C(1:64) = A(1:64) * B(1l:64)
C(I) = ACI) * B(I) :

DO I =1, 64 vectorize A(C2:65) = A(C1:64) + B(1l:64)
>

ACI+1) = A(I) + B(I)

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-1

Superscalar and VLIW Processors

Goal is to issue multiple instructions in the same cycle

Superscalar looks ahead in the instruction stream and issues instructions that are ready to
execute
VLIW executes a “wide” instruction consisting of multiple regular instructions per
cycle that utilize different functional units

Challenges
— Finding enough parallel instructions
— Require more memory bandwidth for fetching instructions and data
— Poor locality will waste memory bandwidth

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-| 21/36

Compiling for Multiple-Issue Processors

Compiler must recognize when operations are not related by dependence
Solution: vectorization

Compiler must schedule instructions so that it requires as few total cycles as

possible
Solution: instruction scheduling

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Importance of Instruction Scheduling

Assume that a memory access (i.e., LD/ST) takes 3 cycles and ADD takes 1 cycle.

Naive Improved
LD R1,A LD RI,A
LD R2,B LD R2,B
ADD R3,R1,R2 LD R4,C
ST X,R3 ADD R3,R1,R2
LD R4,C ADD R5,R3,R4
ADD R5,R3,R4 ST X,R3
ST Y,RS ST Y,RS

How many
cycles?

How many
cycles?

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Scheduling in VLIW

LD R1,A
LD R2,B - -
ADD R3,R1,R2 Consider a VLIW system that can issue two
ST X,R3 memory accesses and two additions per cycle
LD R4,C
LD R5,D
ADD R6,R4,R5
ST Y,R6
Schedule 1 Schedule 2
LDR1, A LD R4, C LD R1, A LD R4, C
LD R2,B LD R5,D LD R2,B LD R5,D
delay delay ADD R3, R1, R2 —
ADD R3, R1, R2 ADD Ré, R4, R5 — ADD Ré, R4, R5
delay delay ST X,R3 —
ST X, R3 STY,R6 — STY, R6

Swarnendu Biswas (IIT Kanpur)

CS 610: Compiler Challenges for Parallel Architectures

Sem 2024-25-|

Processor Parallelism

Synchronous Parallelism

® Replicate processors, with each
processor executing the same program
on different data

® Data Parallelism — same task on
different data

.

Asynchronous Parallelism

® Replicate processors, but each processor
can execute different programs

@ Requires explicit synchronization

@ Task Parallelism — independent tasks on
the same or different data

SMP - symmetric multiprocessor system

Main
memory

— |
L e

EX

.

Symmetric multiprocessing

Swarnendu Biswas (IIT Kanpur)

CS 610: Compiler Challenges for Parallel Architectures

Sem 2024-25-|

https://en.wikipedia.org/wiki/Symmetric_multiprocessing

Compiling for Asynchronous Parallelism

PARALLEL DO I =1, N
ACI+1) = A(I) + B(I)

SMP - sy ic multipra r sy

PARALLEL DO I = 1, N
_ A(I-1) = A(I) + B(I)

B3 [| [] PARALLEL DO I = 1, N

i] S = ACI) + B(ID)

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-1

Granularity of Parallelism

Vectorization

@ Parallelism is finer-grained

® Synchronization overhead is small

Asynchronous Parallelism

@ Parallelism is coarser-grained

@ Larger start-up and synchronization
overheads

1
I,J) = 2*B(I,J]) + 3*C(I,J)

Swarnendu Biswas (IIT Kanpur)

ompilers should parallelize the outer loops
and vectorize the inner ones

CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Challenges in Developing Parallel Programs

® Programmers tend to think sequentially
» Correctness issues - concurrency bugs like data races and deadlocks
» Performance issues - minimize communication across cores

® Overheads of parallel execution

» Amdahl’s law limits scalability
» Other challenges like load balancing

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Writing Concurrent Programs is Hard

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-| 30/36

Writing Concurrent Programs is Hard

BUSINESS SOFTWARE BUSINESS v
READY

Nasdaq's Facebook Glitch
Came From Race Conditions

Joab Jackson

@Joab_Jackson May 21, 2012

The Nasdaq computer system that delayed trade notices of the Facebook|
was plagued by race conditions, the stock exchange announced Monday.
this technical glitch in its Nasdag OMX system, the market expects to pa:
million or even more to traders.

A number of trading firms lost money due to mismatched Facebook share]

30 million shares’ worth of trading were affected, the exchange estimated.

On Friday, Nasdaq had delayed Facebook's IPO by 30 minutes. For abou
the exchange stopped confirming trades placed by brokers, who were ung
ot @ results of their orders for more than two hours.

Swarnendu Biswas (IIT Kanp CS 610: Compiler Challenges for Parallel Architectures

Performance Bugs

Thread 0

CPU O

Thread 1

CPU1

Cache Line

Cache Line

mikaelronstrom.blogspot.com

TUESDAY, APRIL 10, 2012

MySQL team increases scalability by >5
MySQL 5.6 labs release april 2012

/o for Sysbench OLTP RO in

AMySQL team focused on performance recently met in an internal meeting to discuss
and work on MySQL scalability issues. We had gathered specialists on InnoDB and all
its aspects of performance including scalability, adaptive flushing and other aspects of
InnoDB, we had also participants from MySQL support to help us understand what our
customers need and a number of generic specialists on computer performance and in
particular performance of the MySQL software.

The fruit of this meeting can be seen in the MySQL 5.6 labs release april 2012 released
today. We have a new very interesting solution to the adaptive flushing problem. We
also made a significant breakthrough in MySQL scalability. On one of our lab machines
we were able to increase performance of the Sysbench OLTP RO test case by more
than 50% by working together to find the issues and then quickly coming up with the
solution to the issues. Actually in one particular test case we were able to improve
MySQL performance by 6x with these scalability fixes.

In this blog | will provide some details on what we have done to improve the scalability
of the MySQL Server on large servers

MySQL have now reached a state where the solutions to the scalability is no longer only
related to protected regions and their related mutexes and read-write locks or atomic
variables. MySQL scalability is also affected by the type of scalability issues normally

Swarnendu Biswas (lIT Kanpu

found in high computing. When developing MySQL Cluster 7.2 and its
scalability enhancements we encountered the same type of problems as we discovered
in MySQL 5.6, s0 I'l describe the type of issues here.

In a moder server there are three levels of CPUs, there are CPU threads, there are
CPU cores and there are CPU sockets. A typical high-end server of today can have 4
CPU sockets, 32 CPU cores and 64 CPU threads. Different vendors name this building
blocks slightly differently but from a SW point of view it's sufficient to consider these 3
levels.

CS 610: Compiler Challenges for Parallel Architectures

MYSQL CLUSTER 7.5 INSIDE AND OUT

Buy the new book on MySQL Cluster
Bound version

Paperback version

E-book.version

INSPIRATIONAL MESSAGES OF THE
WEEK

Acall to democracy

Sense and Sensibiiity and Experiments
Periods in life

Achieving Perfection

Easter Message

FOLLOWERS
Followers (120) Next

Performance Bugs

-

Patch for Apache Bug 45464 What is this bug
MYSQL GLUSTER 7.5 INSIDE AND OUT
modules,fd EW;'fS,l'I'E pOS C ABAPaChe—API upgmde causes Buy the new book on MySQL Cluster
. apr stat to retrieve more sench OLTP RO in Bound version
] information from the file system
status = apr_stat (fscontext->info, and longer & ¥s mal mesting lo dscuse T o
- APR_DEFAULT); take longer time. 0o e sapaci of
- . derstand what z 2
+ APR_TYPE); Now, APR_TYPE retrieves exactly er porformance and i TR
what developers onginally needed INSPIRATIONAL MESSAGES OF THE
through APR. DEFAULT. e mwar®d . Acaltodamostay

one of our lab machines

Impact: causes httpd server 10+ times slower i file listing 20 test case by more e e & moaron
g::g;:i] ‘::1 :rlc(;\/;he Periods in life
‘ | ‘ ‘ | I MySQL performance by 6x with these scalability fixes. Achieving Perfection
‘ | ‘ ‘ In this bloa | will orovide some details on what we have done to imorove the scalability Easter Message
MySOL Bug 38941 & Patch | What is this bug
int fastmutex_lock (fmutex_t *mp){ . .
lock _t*mp) | random() is a serialized global- |
- maxdelay += (double) random(); i mutex-profected glibe function.
+ maxdelay += (double) park_rng(); | Using it inside “fasmiurer” causes i
- thr_mutex.c | 40X slowdown in users’ experiments.

u Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

Challenges with Concurrent Programming

Less More
synchronization synchronization
—————————

Order, gtomicity, and Concurrent Deadlock
sequential consistency and correct

violations

Poor performance:
lock contention,
serialization

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-| 32/36

Challenges with Concurrent Programming

Less More
synchronization synchronization

G ——l

Languages and libraries should
provide efficient portable data dlock
structures as building blocks

. ..ormance:
_ck contention,
serialization

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

We will focus on performance aspects!

Automated Parallelization with Compiler Support

// Disable optimizations
void serial(const float *A, const float *B, float *C) {
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];
}
}

void omp_parallel (const float * A, const float * B, float * C) {
// Enable auto-parallelization with threads with OpenMP
#pragma omp parallel for num_threads(omp_get_num_procs())
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];
}
}

B Input file

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

https://cse.iitk.ac.in/users/swarnendu/courses/spring2024-cs335/omp-parallelization.cpp

Automated Parallelization with Compiler Support

// Disable optimizations
void serial (const float *A, const float *B, float *C) {
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
) g++ -00 -fopenmp omp-parallelization.cpp

) ./a.out
Reference Version: Vector Size = 268435456, Approximately 0.582 GFLOPS; Time = 0.923 sec

OpenMP Version: Vector Size = 268435456, Approximately 2.228 GFLOPS; Time = 0.241 sec

for (int i = 0; i < N; i++) {
C[i]l = A[i] + B[il;
C[i]l = C[i] + C[il;

}

B Input file

Swarnendu Biswas (IIT Kanpur) 33/36

CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

https://cse.iitk.ac.in/users/swarnendu/courses/spring2024-cs335/omp-parallelization.cpp

Loop Transformations to Enable Parallelization

Thread Parallelism Data Parallelism

// N and M are very large values // N and M are very large values
// Parallelize loop j with threads for (int i = 1; i < M; i++) {
for (int j = 1; j < N; j++) { // Parallelize loop j with SIMD

for (int i = 1; i < M; i++) { // instructions

A[il[j] = A[i-11[j] + B; for (int j = 1; j < N; j++) {

3 A[il[j] = A[i-11[j]1 + B;

} }
}

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures

Determines the number of operations executed

Code that the compiler and architecture can effectively optimize
Determines the number of instructions executed

Proportion of parallelizable and concurrent code
Amdahl’s law

Specialize to the target architecture platform
Memory hierarchy, cache sizes, new features like AMX

Swarnendu Biswas (lIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-|

References

¥ R. Allen and K. Kennedy. Optimizing Compilers for Multicore Architectures. Sections 1.1-1.6,
Morgan Kaufmann.

