
CS 610: Compiler Challenges for Parallel
Architectures

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-I

Improvements in Computing Capabilities

� Last few decades have been exciting for the parallel computing community
� Sources of improvements in computing capabilities

(i) Improvement in underlying technology (leads to Moore’s law)
(ii) Advances in computer architecture

Instruction-level parallelism (pipelining) Vector operations

Multiple functional/execution units Deeper and sophisticated memory hierarchies

Superscalar instruction issue and VLIW Core-level parallelism

’50–65

’60–70

’65–75

’75–90

’85–00

’90–. . .

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 3 / 36

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Year

50 Years of Microprocessor Trend Data

https://github.com/karlrupp/microprocessor-trend-data/

https://github.com/karlrupp/microprocessor-trend-data/

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Year

50 Years of Microprocessor Trend Data

2005–2020 � Single core performance increase is ∼20%
� Programs do not run any faster by

themselves

https://github.com/karlrupp/microprocessor-trend-data/

https://github.com/karlrupp/microprocessor-trend-data/

Challenges to Growth in Performance

Clock speeds are
not increasing
any more

Power, and not manufacturing, limits microarchi-
tectural improvements – F. Pollack

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 5 / 36

Programs Do Not Run Any Faster by Themselves!

Microarchitectural techniques
Multiple functional units, superscalar architecture, VLIW, sophisticated cache structures,
deeper pipelines

Law of diminishing returns!
There is little or no more hidden parallelism (ILP) to be found

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 6 / 36

Programs Do Not Run Any Faster by Themselves!

Microarchitectural techniques
Multiple functional units, superscalar architecture, VLIW, sophisticated cache structures,
deeper pipelines

Complex systems are more difficult to program efficiently
Systems programmers now need to be aware of memory hierarchies and other
architectural features to fully exploit the potential of the hardware

Have you heard of ninja programmers?
Popular libraries like Intel oneDNN and NVIDIA cuDNN are hand-optimized
for performance

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 7 / 36

What is the software side of the story?

Develop Parallel Programs

From my perspective, parallelism is the biggest challenge since high-
level programming languages. It’s the biggest thing in 50 years be-
cause industry is betting its future that parallel programming will be
useful.
. . .
Industry is building parallel hardware, assuming people can use it.
And I think there’s a chance they’ll fail since the software is not nec-
essarily in place. So this is a gigantic challenge facing the computer
science community.

– David Patterson, ACM Queue, 2006.

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 8 / 36

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value from an increasing number of
cores.

– A View of Parallel Computing Landscape, CACM 2009.

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 9 / 36

New Challenges in Software Development

� Adapt to the changing hardware landscape
� Many applications are single-threaded

How can we develop software that makes
effective use of the extra hardware?

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 10 / 36

Compilers to the Rescue!

A compiler is a system software that translates a program into a source language to an
equivalent program in a target language.

Compilersource
program

target
program

Role of a compiler
� Generate correct code
� Must improve the code according to some metric
� Provide feedback to the user

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 11 / 36

Relevance of Compiler Technologies

� Compiler technology has become more important as machines have become more
complex

� Success of architecture innovations depends on the ability of compilers to provide
efficient language implementations on that architecture

� Excellent techniques have been developed for vectorization, instruction scheduling,
and management of multilevel memory hierarchies

� Automatic parallelization has been successful only for shared-memory parallel systems
with a few processors

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 12 / 36

https://docs.google.com/presentation/d/1ZMtzT6nmfvNOlIaHRzdaXpFeaAklcT7DvfGjhgpzcxk/edit#slide=id.p

Pipelined Execution
� Pipelining subdivides a complex operation into independent micro-operations

▶ Assume the different micro-operations use different resources
▶ Micro-operations can be overlapped by starting an operation as soon as its predecessor

has completed the first micro-operation

IF ID WBEX MEM
IF ID WBEX MEM

IF ID WBEX MEM
IF ID WBEX MEM

Cyles

1 2 3 4 5 6 7 8

� A pipelined functional unit is effective only when the pipeline is full
▶ Operands need to be available on each segment clock cycle

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 14 / 36

Pipeline for Floating-Point Operations

Fetch
Operands

(FO)

Equate
Exponents

(EE)

Add Mantissa
(AM)

Normalize
Result (NR)Inputs

Result

(FO)
b4
c4

(EE)
b3
c3

(AM)
b2 + c2

(NR)
a1

Steps in floating-point addition

A pipelined execution unit computing ai = bi + ci

b5

c5

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 15 / 36

Parallel Functional Units

� Multiple functional units
▶ Assume n units and m cycles for an

operation to complete
▶ Can issue n/m operations per cycle

� Also called fine-grained parallelism
� More flexible in allocating operations

compared to pipelining but costlier to
implement

Adder 1
a1+b1

b5

c5

Adder 2
a2+b2

Adder 3
a3+b3

Adder 4
a4+b4

Results

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 16 / 36

Compiler Challenges with Pipelining

The key performance barrier is pipeline stalls, which occur when a new set of inputs
cannot be injected into the pipeline because of a hazard

Structural hazards � Available machine resources do not support instruction overlap
▶ For example, a machine cannot overlap instruction fetch with the

fetch of data if there is only one memory port
� Such a hazard cannot be avoided through compiler strategies

Stall

IF ID WBEX MEM
IF ID WBEX MEM

IF ID WBEX MEM
IF MEMID EX

Cyles

1 2 3 4 5 6 7 8

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 17 / 36

Compiler Challenges with Pipelining

The key performance barrier is pipeline stalls, which occur when a new set of inputs
cannot be injected into the pipeline because of a hazard

Data hazards � Result produced by one instruction is needed by a later one

ADD R1, R2, R3
SUB R4, R1, R5

LW R1, 0(R2)
ADD R3, R1, R4

� Compiler can schedule an instruction that does not use R1

Control hazards � Occur during the processing of branch instructions

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 18 / 36

Vector Instructions

� Apply the same operation to different positions of one or more arrays
Goal: Keep pipelines of execution units full

VLOAD V1,A
VLOAD V2,B
VADD V3,V1,V2
VSTORE V3,C

vectorize
======⇒ C(1:N) = A(1:N) + B(1:N)

Challenges
− Increases processor state to support vector registers
− Increases the cost of processor context switching
− Expanded instruction set, complicates instruction decode
− Stresses memory bandwidth, can pollute the cache hierarchy

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 19 / 36

Compiler Challenges with Vector Instructions

DO I = 1, 64
C(I) = A(I) * B(I)

vectorize
======⇒ C(1:64) = A(1:64) * B(1:64)

DO I = 1, 64
A(I+1) = A(I) + B(I)

vectorize
======⇒ A(2:65) = A(1:64) + B(1:64)

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 20 / 36

Superscalar and VLIW Processors

Goal is to issue multiple instructions in the same cycle

Superscalar looks ahead in the instruction stream and issues instructions that are ready to
execute

VLIW executes a “wide” instruction consisting of multiple regular instructions per
cycle that utilize different functional units

Challenges
− Finding enough parallel instructions
− Require more memory bandwidth for fetching instructions and data

− Poor locality will waste memory bandwidth

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 21 / 36

Compiling for Multiple-Issue Processors

Compiler must recognize when operations are not related by dependence
Solution: vectorization

Compiler must schedule instructions so that it requires as few total cycles as
possible
Solution: instruction scheduling

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 22 / 36

Importance of Instruction Scheduling

Assume that a memory access (i.e., LD/ST) takes 3 cycles and ADD takes 1 cycle.

Naïve

LD R1,A
LD R2,B
ADD R3,R1,R2
ST X,R3
LD R4,C
ADD R5,R3,R4
ST Y,R5

Improved

LD R1,A
LD R2,B
LD R4,C
ADD R3,R1,R2
ADD R5,R3,R4
ST X,R3
ST Y,R5

How many
cycles?

How many
cycles?

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 23 / 36

Scheduling in VLIW
LD R1,A
LD R2,B
ADD R3,R1,R2
ST X,R3
LD R4,C
LD R5,D
ADD R6,R4,R5
ST Y,R6

Consider a VLIW system that can issue two
memory accesses and two additions per cycle

Schedule 1

LD R1, A LD R4, C
LD R2, B LD R5, D
delay delay
ADD R3, R1, R2 ADD R6, R4, R5
delay delay
ST X, R3 ST Y, R6

Schedule 2

LD R1, A LD R4, C
LD R2, B LD R5, D
ADD R3, R1, R2 —
— ADD R6, R4, R5
ST X, R3 —
— ST Y, R6

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 24 / 36

Processor Parallelism

Synchronous Parallelism
� Replicate processors, with each

processor executing the same program
on different data

� Data Parallelism — same task on
different data

Asynchronous Parallelism
� Replicate processors, but each processor

can execute different programs
� Requires explicit synchronization
� Task Parallelism — independent tasks on

the same or different data

SMP - symmetric multiprocessor system

System bus

Cache Cache Cache

Processor
1

Processor
2

Processor
n

Main
memory

By Ferruccio Zulian - Milan.Italy

Bus
arbiter

I/O

Symmetric multiprocessing

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 25 / 36

https://en.wikipedia.org/wiki/Symmetric_multiprocessing

Compiling for Asynchronous Parallelism

SMP - symmetric multiprocessor system

System bus

Cache Cache Cache

Processor
1

Processor
2

Processor
n

Main
memory

By Ferruccio Zulian - Milan.Italy

Bus
arbiter

I/O

PARALLEL DO I = 1, N
A(I+1) = A(I) + B(I)

PARALLEL DO I = 1, N
A(I-1) = A(I) + B(I)

PARALLEL DO I = 1, N
S = A(I) + B(I)

DO I = 1, M
DO J = 1, N
A(I,J) = 2*B(I,J) + 3*C(I,J)

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 27 / 36

Granularity of Parallelism

Vectorization

� Parallelism is finer-grained
� Synchronization overhead is small

Asynchronous Parallelism

� Parallelism is coarser-grained
� Larger start-up and synchronization

overheads

DO I = 1, M
DO J = 1, N
A(I,J) = 2*B(I,J) + 3*C(I,J)

Compilers should parallelize the outer loops
and vectorize the inner ones

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 28 / 36

Challenges in Developing Parallel Programs

� Programmers tend to think sequentially
▶ Correctness issues – concurrency bugs like data races and deadlocks
▶ Performance issues – minimize communication across cores

� Overheads of parallel execution
▶ Amdahl’s law limits scalability
▶ Other challenges like load balancing

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 29 / 36

Writing Concurrent Programs is Hard

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 30 / 36

Writing Concurrent Programs is Hard

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 30 / 36

Performance Bugs

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 31 / 36

Performance Bugs

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 31 / 36

Challenges with Concurrent Programming

Less
synchronization

More
synchronization

Order, atomicity, and
sequential consistency

violations

DeadlockConcurrent
and correct

Poor performance:
lock contention,

serialization

Languages and libraries should
provide efficient portable data
structures as building blocks

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 32 / 36

Challenges with Concurrent Programming

Less
synchronization

More
synchronization

Order, atomicity, and
sequential consistency

violations

DeadlockConcurrent
and correct

Poor performance:
lock contention,

serialization

Languages and libraries should
provide efficient portable data
structures as building blocks

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 32 / 36

We will focus on performance aspects!

Automated Parallelization with Compiler Support

// Disable optimizations
void serial(const float *A, const float *B, float *C) {
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

void omp_parallel(const float * A, const float * B, float * C) {
// Enable auto-parallelization with threads with OpenMP
#pragma omp parallel for num_threads(omp_get_num_procs())
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

Input file

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 33 / 36

https://cse.iitk.ac.in/users/swarnendu/courses/spring2024-cs335/omp-parallelization.cpp

Automated Parallelization with Compiler Support

// Disable optimizations
void serial(const float *A, const float *B, float *C) {
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

void omp_parallel(const float * A, const float * B, float * C) {
// Enable auto-parallelization with threads with OpenMP
#pragma omp parallel for num_threads(omp_get_num_procs())
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
C[i] = C[i] + C[i];

}
}

Input file

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 33 / 36

https://cse.iitk.ac.in/users/swarnendu/courses/spring2024-cs335/omp-parallelization.cpp

Loop Transformations to Enable Parallelization

Thread Parallelism

// N and M are very large values

// Parallelize loop j with threads
for (int j = 1; j < N; j++) {
for (int i = 1; i < M; i++) {
A[i][j] = A[i-1][j] + B;

}
}

Data Parallelism

// N and M are very large values

for (int i = 1; i < M; i++) {
// Parallelize loop j with SIMD
// instructions
for (int j = 1; j < N; j++) {
A[i][j] = A[i-1][j] + B;

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 34 / 36

How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures
Determines the number of operations executed

Code that the compiler and architecture can effectively optimize
Determines the number of instructions executed

Proportion of parallelizable and concurrent code
Amdahl’s law

Specialize to the target architecture platform
Memory hierarchy, cache sizes, new features like AMX

Swarnendu Biswas (IIT Kanpur) CS 610: Compiler Challenges for Parallel Architectures Sem 2024-25-I 35 / 36

References

R. Allen and K. Kennedy. Optimizing Compilers for Multicore Architectures. Sections 1.1–1.6,
Morgan Kaufmann.

