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Types of Parallelism

Instruction-level Parallelism
Overlap instructions within a single thread of execution (e.g., pipelining, superscalar issue,
and out-of-order execution)

Data-level Parallelism
Execute an instruction in parallel on multiple data values (e.g., vector instructions)
for (int i = 0; i < N; i++) {
c[i] = a[i] + b[i];

}

Thread-level Parallelism
Concurrently execute multiple threads

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-I 3 / 60



Shared Memory Multiprocessor Architecture

Single address space shared by multiple cores
+ Exploits TLP by having a number of cores
+ Can share data efficiently, communication is implicit through memory instructions (i.e.,

loads and stores)
− Cost for accessing shared memory can be uniform or non-uniform across cores

Processors privately cache data to improve performance
Reduces average data access time and saves interconnect bandwidth
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Block Diagram of a SMP
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Interconnect (On-chip network)

LLC
Bank

LLC
Bank

LLC
Bank

LLC
Bank

Main Memory
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Data Coherence

Private caches create data coherence problem
� Copies of a variable can be present in multiple caches
� Private copies of shared data must be coherent, i.e., all copies must have the same

value (okay if the requirement holds eventually)

Consider the following sequence of operations on a single core system
Final value of x will be 30

C0x = x + 5
x = x + 15 L1 + L2

Main
Memory

x = 10

write-back
cache
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Coherence Challenge with Multicores

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

Main
Memory

x = 10

(i) Multicore system setup

C0
x = x + 5
x = x + 15

L1 + L2

C1 L1 + L2

x = 10

x = 10

Main
Memory

x = 10

(ii) Each core reads x
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Coherence Challenge with Multicores

C0x = x + 5 L1 + L2

Main
Memory

x = 10

C1 L1 + L2

x = 15

x = 25x = x + 15

(iii) Each core updates x in its private cache

C0x = x + 5 L1 + L2

Main
Memory

x = 25

C1 L1 + L2

x = 15

x = 25x = x + 15

1

2

(iv) Cores write back x, a store is lost
depending on the order of write backs
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Can Write-through Caches Avoid the Coherence Problem?

Assume 3 cores with write-through caches
(i) Core C0 reads x from memory, caches it, and gets the value 10

(ii) Core C1 reads x from memory, caches it, and gets the value 10

(iii) C1 writes x=20, and updates its cached and memory values

(iv) C0 reads x from its cache and gets the value 10

(v) C2 reads x from memory, caches it, and gets the value 20

(vi) C2 writes x=30, and updates its cached and memory value
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Sources of Errors in the Previous Examples

Write-back cache
� Stores are not visible to memory immediately
� Order of write backs are important
� Lesson learned: do not allow more than one copy of a cache line in dirty state

Write-through cache
� The value in memory may be correct if the writes are correctly ordered
� Our example system allowed a store to proceed when there is already a cached copy
� Lesson learned: must invalidate all cached copies before allowing a store to proceed
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Understanding Coherence

A memory system is coherent if the following hold:
(i) A read from a location X by a core C that follows a write by C to X always returns the

value written by C provided there are no writes of X by another processor between
the two accesses by C.

(ii) A read from a location X by a core C that follows a write to X by another core returns
the written value if the read and write are sufficiently separated in time and no other
writes to X occur between the two accesses.

(iii) Writes to the same location are serialized. That is, two writes to the same location by
any two cores are seen in the same order by all processors.
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Correctness Requirement

For sequential programs, there is only one correct output
A read from a memory location must return the “latest” value written to it

For parallel programs, there can be multiple correct outputs
� Defining “latest” precisely is crucial
� Assume that the latest value of a location is the latest value “committed” by any

thread/process
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Cache Coherence Protocol

Multicore processors implement a cache coherence protocol to keep private caches in sync

A “cache coherence protocol” is a set of actions that ensure that a load to address A
returns the “last committed” value to A
� Essentially, makes one core’s write visible to other cores by propagating the write to

other caches
� Aims to make the presence of private caches functionally invisible
� Coherence protocols can operate on granularities from 1–64 bytes, usually operate on

whole cache blocks (e.g., 64 bytes)
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Cache Coherence Protocol Invariants

1. Enforces the Single-Writer-Multiple-Reader (SWMR) invariant
For any given memory location, at any given moment in time, there is either a single core
that may write it (including read) or some number of cores that may read it

2. Data values must be propagated correctly (data invariant)
The value of a memory location at the start of a read-only time period is the same as the
value of the location at the end of its last read-write time period

read-only read-onlyread-write read-write

Cores 2 & 3 Core 2 Core 1 Cores 0 & 1
time
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Alternate Definitions of Coherence

Definition 2
A coherent system must appear to execute all threads’ loads and stores to a single memory
location in a total order that respects the program order of each thread

Definition 3
A coherent system satisfies two invariants:
write propagation every store is eventually made visible to all cores, and
write serialization writes to the same memory location are serialized (i.e., observed in the

same order by all cores)
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Implementing Coherence Protocols

Protocols are implemented as finite state machines called coherence controllers
A protocol formalizes the interactions between the different coherence controllers

Core 

Cache
Controller

Private
Cache

interconnection network

Loads and
stores

Loaded
values

Issued coherence
requests and responses

Received coherence 
requests and responses

Core
side

Network
side

Cache controller

LLC/Memory
Controller Memory

interconnection network

Issued coherence
responses

Received coherence 
requests

Network
side

Memory controller
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Important Characteristics of a Cache Block

Coherence protocols are implemented by associating states with each cache block

Validity A valid block has the most up-to-date value for this block. The block may be
read. It can be written if it is also exclusive.

Dirtyness A cache block is dirty if its value is the most up-to-date, and this value differs
from the value in the LLC/memory.

Exclusivity A cache block is exclusive if it is the only privately cached copy of that block
(i.e., the block is not cached anywhere else except perhaps in the shared LLC).

Ownership A cache or memory controller is the owner of a block if it is responsible for
responding to coherence requests for that block. In most protocols, there is
exactly one owner of a given block at all times.
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Stable States

M, S, and I are commonly-used states

Modified (M) The block is valid, exclusive, owned, and potentially dirty. The cache has the
only valid copy of the block, the cache must respond to requests for the
block, and the copy of the block at the LLC/memory is potentially stale.

Shared (S) The block is valid but not exclusive, not dirty, and not owned. The cache has
a read-only copy of the block. There may be multiple processors caching a
line in S state.

Invalid (I) The cache either does not contain the block (not present) or it contains a
potentially stale copy that it may not read or write.

Different protocol extensions add additional states (e.g., E, O, and F) to optimize for certain
sharing patterns
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Common Coherence Transactions

Transaction Goal of Requestor
GetS Obtain block in Shared (read-only) state
GetM Obtain block in Modified (read-write) state
Upg Upgrade block state from read-only (Shared or Owned) to read-write

(Modified); Upg (unlike GetM) does not require data to be sent to re-
questor

PutS Evict block in Shared state
PutE Evict block in Exclusive state
PutO Evict block in Owned state
PutM Evict block in Modified state
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Communication between Core and Cache Controller

Event Response from Cache Controller
Load If cache hit, respond with data from cache; else initiate GetS trans-

action
Store If cache hit in state E orM,write data into cache; else initiate GetM

or Upg transaction
Atomic RMW If cache hit in state E or M, atomically execute RMW semantics;

else initiate GetM or Upg transaction
Instruction fetch If I-cache hit, respond with instruction from cache; else initiate

GetS transaction
Read-only prefetch If cache hit, ignore; else (optionally) initiate GetS transaction
Read-write prefetch If cache hit in state M, ignore; else (optionally) initiate GetM or

Upg transaction
Replacement Depending on state of block, initiate PutS, PutE, PutO, or PutM

transaction
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Types of Coherence Protocols

Protocols differ in when and how writes are propagated
� The writes can be propagated synchronously or asynchronously
� Synchronous propagation means a write is made visible to other cores before returning

Two main axes to classify synchronous protocols
(i) Invalidation-based protocol and Update-based protocol
(ii) Snoopy protocol and Directory protocol
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Invalidation-Based Protocols

Invalidate all cached copies before allowing a store to proceed
Need to know the location of cached copies
Solution 1 : Broadcast that a core is going to do a store and sharers invalidate themselves
Solution 2 : Keep track of the sharers and invalidate them when needed

+ Only store misses go on bus and subsequent stores to the same line are cache hits
− Sharers will miss next time they try to access the line
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Update-Based Protocols

Update all cached copies with the new value of the store
+ Sharers continue to hit in the cache, do not need to initiate and wait for a GetS

transaction to complete
− Prevalence of spatial and temporal locality can lead to unnecessary updates, leading to

increased bandwidth requirements
− Complicates implementing many memory consistency models
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Snoopy Protocol

Cache controller initiates a request for a block by broadcasting a request message
to all other coherence controllers
� Each cache controller snoops (i.e., continuously monitors) the shared medium (e.g., bus

or switch) for write activity concerned with its cached data addresses
� Assumes a global bus structure where communication can be seen by all
� Relies on the interconnection network to deliver the broadcast messages in a

consistent order to all cores

How do you prevent simultaneous writes from different controllers?
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Snoopy Protocol

Invalidate on a write
� Core that wants to write to an address grabs a bus cycle and broadcasts a “write

invalidate” message
� All snooping caches invalidate their private copy of the appropriate cache line
� Core writes to its cached copy
� Any future read in other cores will now miss in cache and refetch new data

Update on a write
� Core that wants to write to an address grabs a bus cycle and broadcasts new data as it

updates its own copy
� All snooping caches update their copy
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Directory Protocol

Cache controller initiates a request for a block by unicasting it to the block’s home
memory controller
� Memory controller maintains a directory that holds state about each block in the

LLC/memory (e.g., coherence state, the current owner ID, and a bitvector for the list
of current sharers)

� If the LLC/memory is the owner, the memory controller completes the transaction by
sending a data response to the requestor

� If a cache controller is the owner, the memory controller forwards the request to the
owner cache

� When the owner cache receives the forwarded request, it completes the transaction
by sending a data response to the requestor
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Snoopy vs Directory Protocol

Snoopy Protocol

− Does not scale to large core counts
because of broadcast messages

− Requires some ordering guarantees on
messages which limits network
optimizations

Directory Protocol

+ Scalable because messages are unicast
+ The directory can be distributed to

improve scalability
− Few transactions take more cycles when

the home is not the owner
− Memory requirement increases with

core count
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Coherence Protocols



Directory System Model
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MSI Protocol

Req
I→S

Dir
I→S
S→S

(1) GetS

(2) Data

Req
I→S

Dir
M→S

Owner
M→S

(1) GetS (2) Fwd-GetS

(3) Data

(3) Data

Transitions from I to S

Req
M→I

Dir
M→I

(1) PutM+Data

(2) Put-Ack

Req
S→I

Dir
S→I
S→S

(1) PutS

(2) Put-Ack

Transitions from M or S to I



MSI Protocol

Req
I→M

Dir
I→M

(1) GetM

(2) Data[ack=0]

Req
I→M

Dir
M→M

Owner
M→I

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

Req
I→M
S→M

Dir
S→M

Sharer
S→I

Sharer
S→I

(1) GetM

(2) Data[ack>0]

(2) Inv

(2) Inv

(3) Inv-Ack

(3) Inv-Ack

Transitions from I or S to M



Usefulness of E State
Cores often read data before updating it
� Oftentimes, there is only one sharer in the system (also applicable for single-threaded

programs)
� But with MSI, the core will issue two coherence transactions: GetS followed by an Upg

Optimization with E state
� A core issues GetS for a block
� Core gets the block in E state if there are no existing sharers
� E state indicates the cache line is clean and is the only cached copy
� The core may then silently upgrade the block from E to M without issuing another

coherence request
� We will assume E is an ownership state, which implies evictions cannot be silent

MESI protocol
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MESI Protocol

Req
I→S

Dir
S→S

(1) GetS

(2) Data

Req
I→S

Dir
M→S

Owner
M→S
E→S

(1) GetS (2) Fwd-GetS

(3) Data

(3) Data

Transitions from I to S

Req
M→I

Dir
M→I

(1) PutM+Data

(2) Put-Ack

Req
E→I

Dir
E→I

(1) PutE (no data)

(2) Put-Ack

Req
S→I

Dir
S→I
S→S

(1) PutS

(2) Put-Ack

Transitions from M or E or S to I



MESI Protocol

Req
I→M

Dir
I→M

(1) GetM

(2) Data[ack=0]

Req
I→M

Dir
M→M
E→M

Owner
M→I
E→I

(1) GetM (2) Fwd-GetM

(3) Data[ack=0]

Req
I→M
S→M

Dir
S→M

Sharer
S→I

Sharer
S→I

(1) GetM

(2) Data[ack>0]

(2) Inv

(2) Inv

(3) Inv-Ack

(3) Inv-Ack
If the only sharer is the requestor, then no Inv messages are sent and the
Data message from the Dir to Req has an Ack count of zero.

Transitions from I or S to M

Req
I→E

Dir
I→E

(1) GetS

(2) Data

Transitions from I to E



Adding an Owned (O) State

Suppose a cache has a block in state M or E and receives a GetS
The cache changes the block state from M or E to S and sends the data to both the
requestor and the memory controller
� Why is it necessary to send the data to the memory controller?

MOESI protocol
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Adding an Owned (O) State

Owned state indicates that the block is valid, dirty, and shared, and the cache is the owner
� The owner cache does not have permission to modify the block, and is responsible for

eventually updating memory

Advantages of MOESI protocol (used in AMD Opteron)
+ Eliminates the extra data message to update the LLC/memory when a cache receives

a GetS request in the M or E state
+ Eliminates potentially unnecessary writes to the LLC if the block is written again

before being written back to the LLC
+ Allows subsequent requests to be satisfied by the private cache instead of the slower

LLC or far-slower memory
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Adding a Forwarding (F) State

Suppose a cache has a block in the S state and receives a GetS or GetM
− GetS is satisfied from the slow LLC/memory
− GetM is responded to by all the sharing caches, bombarding the requestor with

redundant responses

MESIF protocol
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Adding a Forwarding (F) State

The cache holding a shared block B in the F state is a designated responder for any
requests for B
� If any cache holds B in the S state, at most one other cache holds it in the F state
� The most recent requestor of the shared block B is assigned the F state
� When a cache in the F state responds, it gives up the F state to the new requestor for

B to minimize chances of eviction
� Memory responds in case no cache has the line in F state

▶ Sharer caches may exist but the cache responsible for forwarding responses may have
evicted
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Adding a Forwarding (F) State

� Unlike MESI, a read request for a shared block B always fetches B in the F state
▶ B switches to the S state only by responding to a read request from another cache

transferring the F state to it
� Unlike the F state, the O state indicates a dirty cache line

Advantages of MESIF protocol (used in Intel i7)
+ Allows faster responses in case of GetS and reduces messages for GetM requests
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Types of Cache Contention

Cache line contention arises from two types of read-write data sharing: true sharing and
false sharing

True Sharing

� Same location is accessed by multiple
cores

� Can be fixed only by means of
algorithmic changes

False Sharing

� Two unrelated locations lie on the same
cache line and are accessed by multiple
cores

� Can be fixed by modifying the data
layout (manual or automated)
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False Sharing

False sharing is a performance problem in cache-coherent systems
� Cores contend on cache blocks instead of data
� Can arise when threads access global or heap memory

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-I 44 / 60



Understanding False Sharing

Core 0 Core 1

Main Memory

L1D L1D

(i) Multicore system setup

Core 0 Core 1

Main Memory

L1D L1D

read B0

(ii) Core 0 reads block offset B0
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Understanding False Sharing

Core 0 Core 1

read B3

Main Memory

L1D L1D

(iii) Core 1 reads block offset B3

Core 0 Core 1

Main Memory

L1D L1D

write B0

invalidate

(iv) Core 0 writes block offset B0
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Understanding False Sharing

Core 0 Core 1

Main Memory

L1D L1D

write B3

invalidate

(v) Core 1 writes block offset B3

Core 0 Core 1

Main Memory

L1D L1D

write B0

invalidate

(ii) Core 0 writes block offset B0

Cache misses resulting from data sharing across cores are called coherence misses (e.g.,
the write to B3 by Core 1 in (v))
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Impact of False Sharing
1 int array[100];

3 void *func(void *param) {
int index = *((int*)param);

5 for (int i = 0; i < 100000000; i++)
array[index]+=1;

7 }

9 int main() {
int first_elem = 0;

11 int bad_elem = 1;
int good_elem = 99;

13 pthread_t thread_1;
pthread_t thread_2;

15
clock_gettime(CLOCK_REALTIME , ...);

17 func((void*)&first_elem);
func((void*)&bad_elem);

19 clock_gettime(CLOCK_REALTIME , ...);

clock_gettime(CLOCK_REALTIME , ...);
22 pthread_create(&thread_1 , NULL, func,

(void*)&first_elem);
24 pthread_create(&thread_2 , NULL, func,

(void*)&bad_elem);
26 pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);
28 clock_gettime(CLOCK_REALTIME , ...);

30 clock_gettime(CLOCK_REALTIME , ...);
pthread_create(&thread_1 , NULL, func,

32 (void*)&first_elem);
pthread_create(&thread_2 , NULL, func,

34 (void*)&good_elem);
pthread_join(thread_1, NULL);

36 pthread_join(thread_2, NULL);
clock_gettime(CLOCK_REALTIME , ...);

38 }

https://github.com/MJjainam/falseSharing
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Introducing False Sharing is Easy

1 // Global variables accessed by
2 // different threads me and you
3 me = 1;
4 you = 2;
5

6

1 // Heap objects can lie on the
2 // same line
3 me = new Foo();
4 you = new Bar()
5

1 // Class/struct fields can lie on
2 // the same line
3 class X {
4 int me;
5 float you;
6 };

1 // Array accesses by different
2 // threads me and you
3 array[me] = 12;
4 array[you] = 13;
5
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False Sharing in Real Applications

False sharing problems were reported in Linux kernel, JVM, and Boost library
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False Sharing Mitigation Techniques

� Compiler optimizations (cache block padding)
− Inflates memory requirement, can complicate address computations

� Runtime solutions (e.g., use hardware performance counters to detect false sharing)
− Can miss false sharing instances

� Sub-block coherence or false-sharing-aware coherence protocols
� Cache-conscious programming
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Fixing False Sharing can be Non-trivial



Fixing False Sharing can be Non-trivial

Problem is often embedded inside the source code

False sharing is sensitive to
� Application behavior (e.g., mapping of threads to cores)
� Compiler toolchain (e.g., data layout optimizations and memory allocator)

▶ GCC unintentionally eliminates false sharing in Phoenix linear_regression benchmark at
certain optimization levels, while LLVM does not do so at any optimization level

� Execution environment (e.g., object placements on the cache line, hardware platform
with different cache line sizes)
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Detect False Sharing with perf c2c

Idea is to check whether loads/stores frequently hit in a remote cache line that is in M state

Input with false sharing
Compile with gcc -O0 -g false-sharing.c -pthread

Using perf c2c
# May need to update /proc/sys/kernel/perf_event_paranoid to -1
# sudo sh -c ’echo 1 >/proc/sys/kernel/perf_event_paranoid’
perf c2c record -F 30000 -u -- ./a.out
perf c2c report -NN -i perf.data --stdio > ./perf-report.out
# Check the analysis report

C2C – False Sharing Detection in Linux Perf
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https://cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/false-sharing.c
https://joemario.github.io/blog/2016/09/01/c2c-blog
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