CS 610: Cache Coherence and False Sharing

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-1

Types of Parallelism

Instruction-level Parallelism

Overlap instructions within a single thread of execution (e.g., pipelining, superscalar issue,
and out-of-order execution)

\

Data-level Parallelism
Execute an instruction in parallel on multiple data values (e.g., vector instructions)

for (int i = 0; i < N; i++) {
c[i] = a[i] + b[i];

Thread-level Parallelism
Concurrently execute multiple threads

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Shared Memory Multiprocessor Architecture

Single address space shared by multiple cores
+ Exploits TLP by having a number of cores
+ Can share data efficiently, communication is implicit through memory instructions (i.e.,
loads and stores)
— Cost for accessing shared memory can be uniform or non-uniform across cores

Processors privately cache data to improve performance
Reduces average data access time and saves interconnect bandwidth

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Block Diagram of a SMP

Main Memory

Interconnect (On-chip network)

[L1+L2] [L1+L2] L1+L2

N

L1+L2

Swarnendu Biswas (IIT Kanpur)

CS 610: Cache Coherence and False Sharing

Sem 2024-25-|

Data Coherence

Private caches create data coherence problem

® Copies of a variable can be present in multiple caches

@ Private copies of shared data must be coherent, i.e., all copies must have the same
value (okay if the requirement holds eventually)

Consider the following sequence of operations on a single core system
Final value of x will be 30

s (o)l

ATAT Y ; Main

write-back

cache M emory

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Coherence Challenge with Multicores

Main
Memory

(i) Multicore system setup

Swarnendu Biswas (IIT Kanpur)

__________________ _A{co)@m
X=x+5 ‘

CS 610: Cache Coherence and False Sharing

ey

Main
Memory

(ii) Each core reads x

Sem 2024-25-|

Coherence Challenge with Multicores

(iii) Each core updates x in its private cache

Swarnendu Biswas (IIT Kanpur)

Main
Memory

D

Main
Memory

(iv) Cores write back x, a store is lost

depending on the order of write backs

CS 610: Cache Coherence and False Sharing

Sem 2024-25-|

Can Write-through Caches Avoid the Coherence Problem?

Assume 3 cores with write-through caches

(i) Core CO reads x from memory, caches it, and gets the value 10

(ii) Core C1 reads x from memory, caches it, and gets the value 10

(iii) C1 writes x=20, and updates its cached and memory values

(v) C2 reads x from memory, caches it, and gets the value 20

)
)
(iv) CO reads x from its cache and gets the value 10
)
)

(vi) C2 writes x=30, and updates its cached and memory value

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Sources of Errors in the Previous Examples

Write-back cache
@ Stores are not visible to memory immediately

@ Order of write backs are important
@ Lesson learned: do not allow more than one copy of a cache line in dirty state

Write-through cache
@ The value in memory may be correct if the writes are correctly ordered

® Our example system allowed a store to proceed when there is already a cached copy
@ Lesson learned: must invalidate all cached copies before allowing a store to proceed

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Understanding Coherence

A memory system is coherent if the following hold:

(i) A read from a location X by a core C that follows a write by C to X always returns the
value written by C provided there are no writes of X by another processor between
the two accesses by C.

(ii) A read from a location X by a core C that follows a write to X by another core returns
the written value if the read and write are sufficiently separated in time and no other
writes to X occur between the two accesses.

(iii) Writes to the same location are serialized. That is, two writes to the same location by
any two cores are seen in the same order by all processors.

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Correctness Requirement

For sequential programs, there is only one correct output
A read from a memory location must return the “latest” value written to it

For parallel programs, there can be multiple correct outputs
@ Defining “latest” precisely is crucial

® Assume that the latest value of a location is the latest value “committed” by any
thread/process

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Cache Coherence

Cache Coherence Protocol

Multicore processors implement a cache coherence protocol to keep private caches in sync |

A “cache coherence protocol” is a set of actions that ensure that a load to address A
returns the “last committed” value to A
@ Essentially, makes one core’s write visible to other cores by propagating the write to
other caches

® Aims to make the presence of private caches functionally invisible

® Coherence protocols can operate on granularities from 1-64 bytes, usually operate on
whole cache blocks (e.g., 64 bytes))

Sem 2024-25-|

CS 610: Cache Coherence and False Sharing

Swarnendu Biswas (IIT Kanpur)

Cache Coherence Protocol Invariants

1. Enforces the Single-Writer-Multiple-Reader (SWMR) invariant

For any given memory location, at any given moment in time, there is either a single core
that may write it (including read) or some number of cores that may read it

2. Data values must be propagated correctly (data invariant)

The value of a memory location at the start of a read-only time period is the same as the
value of the location at the end of its last read-write time period

read-only : read-write . read-write . read-only

* = time- >

Cores2&3 . Core 2 . Core 1 . Cores0&1

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Alternate Definitions of Coherence

A coherent system must appear to execute all threads’ loads and stores to a single memory
location in a total order that respects the program order of each thread

A coherent system satisfies two invariants:

write propagation every store is eventually made visible to all cores, and

write serialization writes to the same memory location are serialized (i.e., observed in the
same order by all cores)

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Implementing Coherence Protocols

Protocols are implemented as finite state machines called coherence controllers
A protocol formalizes the interactions between the different coherence controllers

Loads and Loaded

. storjs vallues LLC/Memory ”
ore
side Cache Private == " Controller | Memory
e — |
Controller «— Cache Netl\évork Issued coherence
1 side
Nztigeork Issued coherence responses
requests and responses Received coherence

Received coherence requests
requests and responses
interconnection network interconnection network
Cache controller Memory controller

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Important Characteristics of a Cache Block

Coherence protocols are implemented by associating states with each cache block

Validity A valid block has the most up-to-date value for this block. The block may be
read. It can be written if it is also exclusive.

Dirtyness A cache block is dirty if its value is the most up-to-date, and this value differs
from the value in the LLC/memory.
Exclusivity A cache block is exclusive if it is the only privately cached copy of that block
(i.e., the block is not cached anywhere else except perhaps in the shared LLC).

Ownership A cache or memory controller is the owner of a block if it is responsible for
responding to coherence requests for that block. In most protocols, there is
exactly one owner of a given block at all times.

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-| 19/ 60

Stable States

M, S, and | are commonly-used states

Modified (M) The block is valid, exclusive, owned, and potentially dirty. The cache has the
only valid copy of the block, the cache must respond to requests for the
block, and the copy of the block at the LLC/memory is potentially stale.

Shared (S) The block is valid but not exclusive, not dirty, and not owned. The cache has
a read-only copy of the block. There may be multiple processors caching a
line in S state.

Invalid (I) The cache either does not contain the block (not present) or it contains a
potentially stale copy that it may not read or write.

Different protocol extensions add additional states (e.g., E, O, and F) to optimize for certain
sharing patterns

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-| 20/ 60

Common Coherence Transactions

Transaction Goal of Requestor

GetS Obtain block in Shared (read-only) state

GetM Obtain block in Modified (read-write) state

Upg Upgrade block state from read-only (Shared or Owned) to read-write
(Modified); Upg (unlike GetM) does not require data to be sent to re-
questor

PutS Evict block in Shared state

PutE Evict block in Exclusive state

PutO Evict block in Owned state

PutM Evict block in Modified state

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-|

Communication between Core and Cache Controller

Event Response from Cache Controller

Load If cache hit, respond with data from cache; else initiate GetS trans-
action

Store If cache hit in state E or M, write data into cache; else initiate GetM
or Upg transaction

Atomic RMW If cache hit in state E or M, atomically execute RMW semantics;

Instruction fetch

Read-only prefetch
Read-write prefetch

Replacement

else initiate GetM or Upg transaction

If I-cache hit, respond with instruction from cache; else initiate
GetS transaction

If cache hit, ignore; else (optionally) initiate GetS transaction

If cache hit in state M, ignore; else (optionally) initiate GetM or
Upg transaction

Depending on state of block, initiate PutS, PutE, PutO, or PutM
transaction

Swarnendu Biswas (IIT Kanpur)

CS 610: Cache Coherence and False Sharing Sem 2024-25-|

22/60

Types of Coherence Protocols

Protocols differ in when and how writes are propagated
® The writes can be propagated synchronously or asynchronously

® Synchronous propagation means a write is made visible to other cores before returning

Two main axes to classify synchronous protocols

(i) Invalidation-based protocol and Update-based protocol
(ii) Snoopy protocol and Directory protocol

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Invalidation-Based Protocols

Invalidate all cached copies before allowing a store to proceed
Need to know the location of cached copies

Solution 1 : Broadcast that a core is going to do a store and sharers invalidate themselves
Solution 2 : Keep track of the sharers and invalidate them when needed

+ Only store misses go on bus and subsequent stores to the same line are cache hits
— Sharers will miss next time they try to access the line

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Update-Based Protocols

Update all cached copies with the new value of the store

+ Sharers continue to hit in the cache, do not need to initiate and wait for a GetS
transaction to complete

— Prevalence of spatial and temporal locality can lead to unnecessary updates, leading to
increased bandwidth requirements

— Complicates implementing many memory consistency models

Swarnendu Biswas (IIT Kanpur)

CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Snoopy Protocol

Cache controller initiates a request for a block by broadcasting a request message

to all other coherence controllers

® Each cache controller snoops (i.e., continuously monitors) the shared medium (e.g., bus
or switch) for write activity concerned with its cached data addresses

® Assumes a global bus structure where communication can be seen by all

@ Relies on the interconnection network to deliver the broadcast messages in a
consistent order to all cores

How do you prevent simultaneous writes from different controllers?

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Snoopy Protocol

Invalidate on a write

@ Core that wants to write to an address grabs a bus cycle and broadcasts a “write
invalidate” message

@ All snooping caches invalidate their private copy of the appropriate cache line
@ Core writes to its cached copy
® Any future read in other cores will now miss in cache and refetch new data

Update on a write

@ Core that wants to write to an address grabs a bus cycle and broadcasts new data as it
updates its own copy

@ All snooping caches update their copy

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Directory Protocol

Cache controller initiates a request for a block by unicasting it to the block’s home

memory controller
® Memory controller maintains a directory that holds state about each block in the
LLC/memory (e.g., coherence state, the current owner ID, and a bitvector for the list
of current sharers)
@ If the LLC/memory is the owner, the memory controller completes the transaction by
sending a data response to the requestor

@ If a cache controller is the owner, the memory controller forwards the request to the
owner cache

® When the owner cache receives the forwarded request, it completes the transaction
by sending a data response to the requestor

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Snoopy vs Directory Protocol

Snoopy Protocol Directory Protocol

Scalable because messages are unicast

+

— Does not scale to large core counts

because of broadcast messages + The directory can be distributed to
— Requires some ordering guarantees on improve scalability
messages which limits network — Few transactions take more cycles when
optimizations the home is not the owner
— Memory requirement increases with
core count

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Coherence Protocols

Directory System Model

~

Cache Private
Controller «—1 1D

interconnection network

LLC/Directory .
Controller 4—{ LLC ‘ ‘Dlrectory‘

4

Core

v
Cache
Controller

~

Private

<«<— L1D

Multicore
Chip‘/

Main Memory

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing

Sem 2024-25-|

MSI Protocol

(1) GetS (1) GetS 2) Fwd-GetS
B @l
(2) Data 3) Data

Transitions from | to S

(1) PutM+Data (1) PutS
(2) Put-Ack (2) Put-Ack

Transitions from M or S to |

MSI Protocol

(1) GetM (1) GetM (2) Fwd-GetM

&L) G

(2) Datalack=0] (3) Data[ack=0]

(3) Inv-Ack

(3) Inv-Ack

Transitions from |l or Sto M

Usefulness of E State

Cores often read data before updating it

@ Oftentimes, there is only one sharer in the system (also applicable for single-threaded
programs)

@ But with MSI, the core will issue two coherence transactions: GetS followed by an Upg

Optimization with E state

® A core issues GetS for a block

@ Core gets the block in E state if there are no existing sharers
® E state indicates the cache line is clean and is the only cached copy

® The core may then silently upgrade the block from E to M without issuing another
coherence request

® We will assume E is an ownership state, which implies evictions cannot be silent

MESI protocol

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-|

https://en.wikipedia.org/wiki/MESI_protocol

MESI Protocol

(1) GetS (1) GetS (2) Fwd-GetS

(2) Data (3) Data

Transitions from | to S

‘/\@P‘Mata ‘%\% (1) Puts l
2) Put-Ack 2) Put-Ack (2) Put-Ack

Transitions from M or Eor Sto |

MESI Protocol

(2) Fwd-GetM
) Geti (1) GetM (1) GetS
et r
J (2) Data
2) Data[ack=0] 3) Data[ack=0]

(3) Inv-Ack Transitions from | to E

Datalack>0]

(3) Inv-Ack

If the only sharer is the requestor, then no Inv messages are sent and the
Data message from the Dir to Req has an Ack count of zero.

Transitions from |l or S to M

Adding an Owned (O) State

Suppose a cache has a block in state M or E and receives a GetS

The cache changes the block state from M or E to S and sends the data to both the
requestor and the memory controller

® Why is it necessary to send the data to the memory controller?

MOESI protocol

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

https://en.wikipedia.org/wiki/MOESI_protocol

Adding an Owned (O) State

Owned state indicates that the block is valid, dirty, and shared, and the cache is the owner

® The owner cache does not have permission to modify the block, and is responsible for
eventually updating memory

Advantages of MOESI protocol (used in AMD Opteron)

+ Eliminates the extra data message to update the LLC/memory when a cache receives
a GetS request in the M or E state

+ Eliminates potentially unnecessary writes to the LLC if the block is written again
before being written back to the LLC

+ Allows subsequent requests to be satisfied by the private cache instead of the slower
LLC or far-slower memory

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-| 39/60

Adding a Forwarding (F) State

Suppose a cache has a block in the S state and receives a GetS or GetM
— GetS is satisfied from the slow LLC/memory

— GetM is responded to by all the sharing caches, bombarding the requestor with
redundant responses

MESIF protocol

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

https://en.wikipedia.org/wiki/MESIF_protocol

Adding a Forwarding (F) State

The cache holding a shared block B in the F state is a designated responder for any

requests for B
@ If any cache holds B in the S state, at most one other cache holds it in the F state

® The most recent requestor of the shared block B is assigned the F state

® When a cache in the F state responds, it gives up the F state to the new requestor for
B to minimize chances of eviction

® Memory responds in case no cache has the line in F state

» Sharer caches may exist but the cache responsible for forwarding responses may have
evicted

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Adding a Forwarding (F) State

® Unlike MESI, a read request for a shared block B always fetches B in the F state

» B switches to the S state only by responding to a read request from another cache
transferring the F state to it

@ Unlike the F state, the O state indicates a dirty cache line

Advantages of MESIF protocol (used in Intel i7)
+ Allows faster responses in case of GetS and reduces messages for GetM requests

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Cache Contention

Types of Cache Contention

Cache line contention arises from two types of read-write data sharing: true sharing and
false sharing

True Sharing False Sharing
® Same location is accessed by multiple ® Two unrelated locations lie on the same
cores cache line and are accessed by multiple
@ Can be fixed only by means of cores
algorithmic changes ® Can be fixed by modifying the data

layout (manual or automated)

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

False Sharing

False sharing is a performance problem in cache-coherent systems
@ Cores contend on cache blocks instead of data
@ Can arise when threads access global or heap memory

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Understanding False Sharing

L1D L1D L1D
I_'_I
read BO

Main Memory Main Memory

NN

(i) Multicore system setup (i) Core O reads block offset BO

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Understanding False Sharing

L1D L1D L1D lid L1D
invalidate
[] [] — L
Main Memory Main Memory
(iii) Core 1 reads block offset B3 (iv) Core O writes block offset BO

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Understanding False Sharing

i invalidate te - invalidate to
e O O i
Main Memory Main Memory
(v) Core 1 writes block offset B3 (ii) Core O writes block offset BO

Cache misses resulting from data sharing across cores are called coherence misses (e.g.,
the write to B3 by Core 1 in (v)) J

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Impact of False Sharing

1

3

11

13

15

17

19

int array[100];

void *func(void *param) {
int index = *((int*)param);

clock_gettime (CLOCK_REALTIME,

22 pthread_create (&thread_1, NULL,
(void*)&first_elem);
24 pthread_create(&thread_2, NULL,

for (int i = 0; i < 100000000; i++)

array[index]+=1;

3

int main(Q) {
int first_elem = 0;
int bad_elem = 1;
int good_elem = 99;
pthread_t thread_1;
pthread_t thread_2;

clock_gettime (CLOCK_REALTIME,
func ((void*)&first_elem);
func ((void*)&bad_elem);
clock_gettime (CLOCK_REALTIME,

30 clock_gettime (CLOCK_REALTIME,

)5

func,

func,

(void*)&bad_elem);
26 pthread_join(thread_1, NULL);

pthread_join(thread_2, NULL);
28 clock_gettime (CLOCK_REALTINME,

pthread_create(&thread_1, NULL,
(void*)&first_elem);
pthread_create(&thread_2, NULL,
(void*)&good_elem);

pthread_join(thread_1, NULL);
2) 3 36 pthread_join(thread_2, NULL);

clock_gettime (CLOCK_REALTIME,

32

34

38 }

D)

DF

func,

func,

DF

https://github.com/MJjainam/falseSharing

Swarnendu Biswas (IIT Kanpur)

CS 610: Cache Coherence and False Sharing

Sem 2024-25-|

https://github.com/MJjainam/falseSharing

Impact of False Sharing

1

3

int array[100]; clock_gettime (CLOCK_REALTIME, ...);
22 pthread_create (&thread_1, NULL, func,
void *func(void *param) { (void*)&first_elem);

int index = *((int*)param); 24 pthread_create (&thread_2, func,
swarnendu@vindhya:~/falseSharing$./a.out

array[first_element]: 300000000 array[bad_element]: 2006000000 array[good_element]: 100000000

NULL,

Time take with false sharing : 330.773397 ms

Time taken without false sharing : 173.216272 ms

Time taken in Sequential computing : 325.908369 ms

swarnendu@vindhya:~/falseSharing$./a.out

array[first_element]: 300000000 array[bad_element]: 200000000 array[good_element]: 100000000

Time take with false sharing 1 326.360157 ms
Time taken without false sharing : 176.690517 ms
Time taken in Sequential computing : 324.763425 ms

func ((void*)&bad_elem); 38 %}
clock_gettime (CLOCK_REALTIME, ...);

https://github.com/MJjainam/falseSharing

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-| 50/ 60

https://github.com/MJjainam/falseSharing

o LA WN R

v AW N e

Introducing False Sharing is Easy

// Global variables accessed by 1 // Class/struct fields can lie on
// different threads me and you 2 J// the same line
me = 1; 3 class X {
you = 2; 4 int me;
5 float you;
6 1;
// Heap objects can lie on the 1 // Array accesses by different
// same line 2 // threads me and you
me = new Foo(); 3 array[me] = 12;
you = new Bar() 4 array[you] = 13;
5

Swarnendu Biswas (IIT Kanpur)

CS 610: Cache Coherence and False Sharing

Sem 2024-25-|

False Sharing in Real Applications

False sharing problems were reported in Linux kernel, JVM, and Boost library J

mikaelronstrom.blogspot.com

PR ruesoaapri 10,2012 MYSQL GLUSTER 7.5 INSIDE AND OUT
! Buy e new book on MySQL Clusier
B wsao foam increcses sed lability by >50% for Sysbench OLTP RO in Bound version

MysQL e april 2012

AMySQL team focused on performance recently met in an intermal meeting (o discuss

8 and work on MySQL scalabilty issues. We had gathered specialsts on InnoDB and all Paperback verson
its aspecs of performance including scalabilty, adaptive lushing and other aspects of

Bl | 1005, we had aiso partcipants from MySQL support o help us understand what our ot 18

- m i din f

particular performance of the MySQL software.
INSPIRATIONAL MESSAGES OF THE
WEEK

et of s meoing can o soen o MySCL 56 abe lease pr 2012 lesos

today. We have daptive we

also made a swgmrcavvl breakthrough in MySOL sm\abm{y On one of our lab machines

we were able to increase performance of the Sysbench OLTP RO test case by more

than 50% by working together to find the issues and then quickly coming up with the

Ao damocracy

‘Sensa and Sensibiity and Experimens

Penbds n ffe
solution 1o the issues. Actually in one particular test case we were able 1o improve

MySQL performance by 6x with these scalabilty ixes. Achieving Perlection
I this blog | will provide some details on what we have done to improve the scalabilty Eastor Message

of the MySQL Server on large servers.

MySQL have now reached a state where the solutions to the scalability s no longer only
related 10 protected regions and their related mutexes and read-wite locks or atomic
variables. MySQL scalabilty is also affected by the type of scalabilty issues normally

found n g perormance computing. Wien develoing MySQL Cuter 7.2 and |
scalabilty enhancements we encountered the same type of problems as we discovered
in MySQL 5.6, s0 Il describe the type of issues here. (Eollowers (120) Next

FOLLOWERS

In amodem server there are three levels of CPUs, there are CPU threads, there are
CPU cores and there are CPU sockets. A typical high-end server of today can have &
CPU sockets, 32 CPU cores and 64 CPU threads. Different vendors name this buiding
blocks slightly difierently but from a SW point of view s suffcient to consider these 3
levels.

Seeing through hardware counters:
ajourney to threefold performance
increase

Netflix Technology Blog - Follow
@ Fusishedin Netix Techiog - 10 minread - Nov10,2022

By Vadim Filanovsky and Harshad Sane

In one of our previous A Mi on Microservices we

outlined three broad domains of observability (or “levels of magnification,”
as we referred to them) — Fleet-wide, Microservice and Instance. We
described the tools and techniques we use to gain insight within each
domain. There is, however, a class of problems that requires an even
stronger level of magnification going deeper down the stack to introspect

CPU microarchitecture. In this blogpost we describe one such problem and

https://dl.acm.org/doi/10.5555/1924943.1924944
https://bugs.openjdk.org/browse/JDK-8180450
https://stackoverflow.com/questions/11037655/false-sharing-in-boostdetailspinlock-pool

False Sharing Mitigation Techniques

® Compiler optimizations (cache block padding)
— Inflates memory requirement, can complicate address computations

@ Runtime solutions (e.g., use hardware performance counters to detect false sharing)
— Can miss false sharing instances

® Sub-block coherence or false-sharing-aware coherence protocols

@ Cache-conscious programming

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-1

Fixing False Sharing can be Non-trivial

mikaelronstrom.blogspot.com

TUESDAY, APRIL 10, 2012

MySQL team increases scalability by >50% for Sysbench OLTP RO in
MySQL 5.6 labs release april 2012

A MySQL team focused on performance recently met in an internal meeting to discuss
and work on MySQL scalability issues. We had gathered specialists on InnoDB and all
its aspects of performance including scalability, adaptive flushing and other aspects of
InnoDB, we had also participants from MySQL support to help us understand what our
customers need and a number of generic specialists on computer performance and in
particular performance of the MySQL software.

The fruit of this meeting can be seen in the MySQL 5.6 labs release april 2012 released
today. We have a new very interesting solution to the adaptive flushing problem. We
also made a significant breakthrough in MySQL scalability. On one of our lab machines
we were able to increase performance of the Sysbench OLTP RO test case by more
than 50% by working together to find the issues and then quickly coming up with the
solution to the issues. Actually in one particular test case we were able to improve
MySQL performance by 6x with these scalability fixes.

Fixing False Sharing can be Non-trivial

Problem is often embedded inside the source code)

False sharing is sensitive to

@ Application behavior (e.g., mapping of threads to cores)
® Compiler toolchain (e.g., data layout optimizations and memory allocator)

» GCC unintentionally eliminates false sharing in Phoenix linear_regression benchmark at
certain optimization levels, while LLVM does not do so at any optimization level

@ Execution environment (e.g., object placements on the cache line, hardware platform
with different cache line sizes)

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing Sem 2024-25-|

Detect False Sharing with perf c2c

Idea is to check whether loads/stores frequently hit in a remote cache line that is in M state

Input I8l with false sharing

Compile with gcc -00 -g false-sharing.c -pthread

Using perf c2c

May need to update /proc/sys/kernel/perf_event_paranoid to -1
sudo sh -c ’echo 1 >/proc/sys/kernel/perf_event_paranoid’
perf c2c record -F 30000 -u -- ./a.out

perf c2c report -NN -i perf.data --stdio > ./perf-report.out
Check the analysis report

C2C - False Sharing Detection in Linux Perf

Swarnendu Biswas (IIT Kanpur) CS 610: Cache Coherence and False Sharing

Sem 2024-25-|

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2024-cs610/false-sharing.c
https://joemario.github.io/blog/2016/09/01/c2c-blog

References

¥ V. Nagarajan et al. A Primer on Memory Consistency and Cache Coherence. Chapters 1,2,6-8,
2d edition, Morgan and Claypool.

¥ J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Sections 5.2,
5.4, 6t edition, Morgan Kaufmann.

¥ A. Gupta et al. Parallel Computer Architecture: A Hardware/Software Approach. Morgan
Kaufmann.

@ Mainak Chaudhuri. Cache Coherence. Computer Architecture Summer School, lIT Kanpur,
2018.

https://www.cse.iitk.ac.in/users/biswap/CASS18/coherence.pdf
https://www.cse.iitk.ac.in/users/biswap/CASS18/coherence.pdf

	Need for Coherence
	Cache Coherence
	Types of Coherence Protocols
	Coherence Protocols
	Cache Contention
	Tools to Detect False Sharing

