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Designing a Concurrent Set Data
Structure



Designing a Concurrent Set

1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

add(x)
adds x to the set and returns true if and
only if x was not already present

remove(x)
removes x from the set and returns true if
and only if x was present

contains(x)
returns true if and only if x is present in
the set

There are significantly more calls to contains() than add() and remove()

Swarnendu Biswas (IIT Kanpur) CS 610: Concurrent Data Structures Sem 2024-25-I 4 / 100



Designing a Concurrent Set Using Linked Lists

1 class Node {
2 T data;
3 int key;
4 Node next;
5 }

Two sentinel nodes head and tail
head a tail

Invariants
� Field key is data’s hash code to help with efficient search
� Nodes are sorted based on the key value
� Assume that all hash codes are unique
� Sentinel nodes are immutable, and tail is reachable from head
� Removed nodes continue to represent valid memory locations
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A Thread-Unsafe Set Data Structure

1 public class UnsafeList<T> {
2 private Node head;
3 public UnsafeList() {
4 head = new Node(Integer.MIN_VALUE);
5 head.next = new Node(Integer.

MAX_VALUE);
6 }

1 public boolean add(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr; curr = curr.next;
7 }
8 if (key == curr.key) {
9 return false;

10 } else {
11 Node node = new Node(x);
12 node.next = curr;
13 prev.next = node;
14 return true;
15 }
16 }
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A Thread-Unsafe Set Data Structure

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr;
7 curr = curr.next;
8 }
9 if (key == curr.key) {

10 pred.next = curr.next;
11 return true;
12 } else {
13 return false;
14 }
15 }

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 Node pred = head;
4 Node curr = pred.next;
5 while (curr.key < key) {
6 pred = curr;
7 curr = curr.next;
8 }
9 if (key == curr.key) {

10 return true;
11 } else {
12 return false;
13 }
14 }
15 }

Can you given an example
to show that remove()

is not thread-safe?
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Thread-Unsafe Set: Incorrect remove()

Thread 1 is executing remove(a) Thread 2 is executing remove(b)

head

prev1

a

curr1 prev2

b

curr2

tail

3 2

1

% %
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Concurrent Set with Coarse-Grained Synchronization

1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4
5 public CoarseList() {
6 head = new Node(Integer.MIN_VALUE);
7 head.next = new Node(Integer.MAX_VALUE);
8 }
9 ...

10
11 public boolean add(T x) {
12 Node pred, curr
13 int key = x.hashcode();
14 lock.lock();

15 try {
16 pred = head;
17 curr = pred.next;
18 while (curr.key < key) {
19 pred = curr;
20 curr = curr.next;
21 }
22 if (key == curr.key) {
23 return false;
24 } else {
25 Node node = new Node(x);
26 node.next = curr;
27 prev.next = node;
28 return true;
29 }
30 } finally {
31 lock.unlock();
32 }
33 }
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Concurrent Set with Coarse-Grained Synchronization

34 public boolean remove(T x) {
35 Node pred, curr;
36 int key = x.hashcode();
37 lock.lock();
38 try {
39 pred = head;
40 curr = pred.next;
41 while (curr.key < key) {
42 pred = curr;
43 curr = curr.next;
44 }
45 if (key == curr.key) {
46 pred.next = curr.next;
47 return true;
48 } else {
49 return false;
50 }
51 } finally {
52 lock.unlock();
53 }
54 }

55 public boolean contains(T x) {
56 Node curr;
57 int key = x.hashcode();
58 boolean found = false;
59 lock.lock();
60 try {
61 curr = head.next;
62 while (curr.key < key) {
63 curr = curr.next;
64 }
65 if (key == curr.key) {
66 found = true;
67 }
68 } finally {
69 lock.unlock();
70 }
71 return found;
72 }
73 }
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Concurrent Set with Fine-Grained Synchronization

Add a lock object to each list node 1 class Node {
2 T data;
3 int key;
4 Node key;
5 Lock lock;
6 }

Possible interleaving

Thread 1

1 curr.lock.lock();
2 next = curr.next;
3 curr.lock.unlock();
4

5 next.lock.lock();

Thread 2

1

2

3

4 // Remove next from list
5
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Is Locking One Node Sufficient?

Thread 1 is executing remove(a) Thread 2 is executing remove(b)

head a b c tail

2 remove(a) 3 remove(b)

1

% %

µ µ

Swarnendu Biswas (IIT Kanpur) CS 610: Concurrent Data Structures Sem 2024-25-I 12 / 100



Concurrent Set with Fine-Grained Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 head.lock();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }
15

16 if (key == curr.key) {
17 return false;
18 } else {
19 Node node = new Node(x);
20 node.next = curr;
21 pred.next = node;
22 return true;
23 }
24 } finally {
25 curr.unlock();
26 }
27 } finally {
28 pred.unlock();
29 }
30 }
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Concurrent Set with Fine-Grained Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 head.lock();
4 Node pred = null, curr = null;
5 try {
6 pred = head; curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }

15 if (key == curr.key) {
16 pred.next = curr.next;
17 return true;
18 } else {
19 return false;
20 }
21 } finally {
22 curr.unlock();
23 }
24 } finally {
25 pred.unlock();
26 }
27 }
28
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Challenges With Fine-Grained Synchronization

Need to avoid deadlocks
� Deadlocks are always a problem with fine-grained locking
� For the Set data structure, each thread must acquire locks in some predetermined

order

Are there other problems with the fine-grained Set design?

− Potentially long sequence of lock acquire and release operations
− Prohibits concurrent accesses to disjoint parts of the data structure
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Evaluating Concurrent Data Structures



Performance Metrics of Concurrent Data Structures

Speedup measures how effectively is an application utilizing resources
� Linear speedup is desirable
� Data structures whose speedup grow with resources is desirable

Amdahl’s law says we need to reduce amount of serialized code

Reduce lock contention
Lock implementations with single memory location can introduce additional coherence
and memory traffic due to unsuccessful acquires

Blocking or nonblocking implementations
Blocking Delay of any one thread can delay other threads

Nonblocking Delay of one thread cannot delay other threads
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Reasoning about Correctness of Sequential Data Structures

Need to describe how an object’s methods behave
� Possibilities include formal specification and API documentation
� Pre-condition describes the object’s state before the method call

▶ Operations on objects are not instantaneous. Each operation requires an invocation on
that object, followed by a response.

▶ Method call is the duration between an invocation event and a response event
� Post-condition describes the object’s state and return value after the method call

Example
Suppose the state of a queue q is a sequence of items Q (i.e., precondition). Then, a call to
q.enq(z) changes the state of the queue to Q•z, where • denotes concatenation.
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Reasoning about Correctness of Concurrent Data Structures

Multiple threads can access a shared object, e.g., a node in our Set data structure
Situation:

Thread 1 is checking for contains(a) Thread 2 is executing remove(a)

Using pre- and post-conditions no longer work. How do you reason about the outcome?

Correctness for interleaved operations on concurrent objects is determined by some
notion of equivalence with sequential behavior

We need ways to describe the correctness conditions
for operations on a concurrent object
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Reasoning about Correctness of Concurrent Data Structures

� Identify invariants and make sure they always hold
▶ For example, an item is in the set if and only if it is reachable from head

� Correctness (or safety) property is linearizability

� Progress (or liveness) properties are starvation and deadlock-freedom
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Definitions

Program order The order in which a single thread issues method calls is called its program order.
� Method calls by different threads are unrelated by program order.

Total method A method is total if it is defined for every object state, i.e., it does not need to wait
for certain conditions to become true.
� A total method is used when the caller thread has something useful to do

than wait for certain conditions to be met.

Partial method A partial method is not defined for every object state, it may have to block for
certain conditions to hold.
� For example, a partial Queue::get() call that tries to remove an item from

an empty queue blocks until an item is available to return.

Compositional A correctness property P is compositional if, whenever each object in the system
satisfies P, the system as a whole satisfies P.
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Correct Behavior Expected From a Concurrent Execution

(i) Method calls should appear to happen one-at-a-time in sequential order

r.write(7)

r.write(-3)

Thread 1

Thread 2

time

r.read(-7)

(ii) Method calls should appear to take effect in program order

r.write(-3)r.write(7)

time

r.read(7)Thread 1
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Sequentially Consistent Execution

An execution is sequentially consistent (SC) if the result is the same as if the operations
from all threads were executed in some sequential order, and the operations of each
individual thread appear in program order.

Consider the following operations on a FIFO queue q, where x and y are objects.

q.enq(x)

q.enq(y)

Thread 1

Thread 2

time

q.deq(x)

q.deq(y)

There are two possible sequential orders that can justify the above execution
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SC can Violate Real-Time Order

Reordering method calls unrelated by program order is allowed in SC, and so can violate
real-time order

q.enq(x)

q.enq(y)

Thread 1

Thread 2

time

q.deq(y)
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SC is Not Composable

p and q are each sequentially consistent, but the execution as a whole is not

p.enq(x)

q.enq(y)

Thread 1

Thread 2

time

p.enq(y)

q.enq(x) p.deq(y)

q.deq(x)
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Linearizability

Linearizability has two requirements
(i) Method calls should appear to happen one-at-a-time in sequential order

(ii) Each method call should appear to take effect instantaneously at some moment
between its invocation and response

� Linearization point represents a single atomic step where the method call “takes
effect”
▶ For coarse-grained lock-based implementations, each method’s critical section is its

linearization point
▶ For implementations that do not use locking, the linearization point is a single step where

the effects of the method call become visible to others
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Understanding Linearizability

� Say you perform some operations on an object (e.g., a method call)

� A history is a sequence of invocations and responses on an object made by concurrent
threads

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x)

Thread 1
succeeds Thread 2 fails

invocation response
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Sequential History

� Sequential history is where all invocations and responses are instantaneous
▶ Starts with an invocation, last invocation may not have a response
▶ Method calls do not overlap

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x) Thread 1 fails Thread 2

succeeds

Is this sequential
history?
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Understanding Linearizability

Every concurrent history is equivalent to some sequential history
� If one method call precedes another, then the earlier call must have taken effect

before the later call
� If two method calls overlap, we can order them in any way

Consider a concurrent history (set of method calls) H and a valid sequential history
S. The history H is linearizable if:
� For every completed call in H, the call returns the same result as it would return if

every operation in H would have been completed one after the other (i.e., in S)
� If method call m1 completes before method call m2 in H, then m1 precedes m2 in S
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Linearizability in Simpler Words

� Sequential history is correct according to the semantics of the object

� Invocations and responses can be reordered to form a sequential history

� If a response preceded an invocation in the original history, it must still precede it in
the sequential reordering
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Understanding Linearizability

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x)Thread 1 fails Thread 2

succeeds

Is this lineariable?
Is this sequential

history?
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Understanding Linearizability

Thread 1
invokes lock(x)

time

Thread 2
invokes lock(x) Thread 1 failsThread 2

succeeds

Successful
linearization
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Identifying Linearization Points

Linearization point represents a single atomic step where the method call “takes effect”,
and is between the function invocation and response

What are the linearization points for the meth-
ods add(), remove(), and contains() for
the coarsely- and finely-synchronized Set?
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Sequential Consistency vs Linearizability

Sequential Consistency

� Method calls appear to happen
instantaneously in some sequential
order

� A sequentially consistent history is not
necessarily linearizable

� Nonblocking but not composable

Linearizability

� Method calls appear to happen
instantaneously at some point between
its invocation and response

� Every linearizable history is sequentially
consistent

� Nonblocking and composable
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Progress Guarantees

wait-free A method is wait-free if it guarantees that every call finishes in a finite
number of steps

lock-free A method is lock-free if it guarantees that some call always finishes in a finite
number of steps
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Designing a Concurrent Set Data
Structure



How to Design a Concurrent Set?
Coarse-grained synchronization
Easy to get right, low concurrency, not scalable

Fine-grained synchronization
More concurrent and scalable than coarse-grained synchronization, difficult to get right

Optimistic synchronization
Avoid synchronization to search, good for low contention cases

Lazy synchronization
Defer expensive data structure manipulation operations

Nonblocking synchronization
Rely on atomic operations such as compareAndSet() for synchronization
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Optimistic Synchronization

Optimistic strategy
� Access data without acquiring a lock
� Lock only when required, and validate that the condition before locking is still valid
� If valid, then continue with access/mutation
� If invalid, restart by locking again

Optimistic strategy works well if conflicts
are rare
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Concurrent Set with Optimistic Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock(); curr.lock();
11

12

13

14

15

16

17 try {
18 if (validate(pred, curr)) {
19 if (curr.key == key) {
20 return false;
21 } else {
22 Node node = new Node(x);
23 node.next = curr;
24 prev.next = node;
25 return true;
26 }
27 }
28 } finally {
29 curr.unlock(); pred.unlock();
30 }
31 }
32 }
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Is Validation Necessary?

Thread 1 is executing remove(p) Other threads execute remove(b–p)

head a

prev1

z tail

b

curr1

p

1

1

2%
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How to Validate?

� Double check that the optimistic result is still valid

� Check that prev is reachable from head and prev.next == curr

1 boolean validate(Node prev, Node curr) {
2 Node node = head;
3 while (node.key <= prev.key) {
4 if (node == prev)
5 return prev.next == curr;
6 node = node.next;
7 }
8 return false;
9 }
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Concurrent Set with Optimistic Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock(); curr.lock();
11

12

13

14

15 try {
16 if (validate(pred, curr)) {
17 if (curr.key == key) {
18 pred.next = curr.next;
19 return true;
20 } else {
21 return false;
22 }
23 }
24 } finally {
25 curr.unlock(); pred.unlock();
26 }
27 }
28 }

Swarnendu Biswas (IIT Kanpur) CS 610: Concurrent Data Structures Sem 2024-25-I 41 / 100



Concurrent Set with Optimistic Synchronization

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock();
11 curr.lock();

12 try {
13 if (validate(pred, curr)) {
14 return curr.key == key;
15 }
16 } finally {
17 curr.unlock();
18 pred.unlock();
19 }
20 }
21 }
22
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Concurrent Set with Optimistic Synchronization

Are there problems with the optimistic-synchronization-based Set design?
− Validation can be costly (e.g., need to traverse the list again)
− Needs lock operations for contains() which is the most frequent method (bad

design)
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Lazy Synchronization

Delay mutation operations for a later time
� Add a mark or flag bit on each node to indicate logical deletion
� Invariant: every unmarked node is reachable from head

Guarantees
add() traverses the list, locks the predecessor, and inserts the node

remove() marks the target node logically removing it, then redirects the
predecessor’s next link physically removing the target node

contains() needs only one wait-free traversal (no locking is required)
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Concurrent Set with Lazy Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock();
11 try {
12 curr.lock();
13 try {
14 if (validate(pred, curr)) {
15 if (curr.key == key) {
16 return false;

17 } else {
18 Node node = new Node(x);
19 node.next = curr;
20 pred.next = node;
21 return true;
22 }
23 }
24 } finally {
25 curr.unlock(); }
26 }
27 } finally {
28 pred.unlock();
29 }
30 }
31 }
32
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How to Validate?

Check that both prev and curr are unmarked and prev.next == curr

1 boolean validate(Node prev, Node curr) {
2 return !prev.marked && !curr.marked && prev.next == curr;
3 }
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Concurrent Set with Lazy Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key < key) {
7 pred = curr;
8 curr = curr.next;
9 }

10 pred.lock();
11 try {
12 curr.lock();
13 try {
14 if (validate(pred, curr)) {
15 if (curr.key != key) {
16 return false;

17 } else {
18 // Logical deletion
19 curr.marked = true;
20 // Physical deletion
21 pred.next = curr.next;
22 return true;
23 }
24 }
25 } finally {
26 curr.unlock(); }
27 }
28 } finally {
29 pred.unlock();
30 }
31 }
32 }
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Detecting Conflicts: Scenario 1

Thread 1 is executing remove(b) Thread 2 is executing remove(a)

head,0 a,1

prev1

b,0

curr1

tail,0

1 1

2 3 3

%

µ µ

marked bit
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Detecting Conflicts: Scenario 2

Thread 1 is executing remove(b) Thread 2 is executing add(p)

head,0 a,0

prev1

b,0

curr1

tail,0

p,0

1 1

2

3 3

%

µ µ

Swarnendu Biswas (IIT Kanpur) CS 610: Concurrent Data Structures Sem 2024-25-I 49 / 100



Concurrent Set with Lazy Synchronization

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 Node curr = head;
4 while (curr.key < key) {
5 curr = curr.next;
6 }
7 return curr.key == key && !curr.marked;
8 }

wait-free
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Unsuccessful contains(): Scenario 1

Thread 1 is executing contains(x) Thread 2 is executing remove(p...x)

head,0 a,0

prev1

z,0 tail,0

p,1

curr1

x,1

1

1

2%

Thread 1’s contains(x) can be linearized when it sees that x
is marked for deletion and is no longer in the set
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Unsuccessful contains(): Scenario 2

Thread 1 is executing contains(x) Thread 2 is executing add(x)

head,0 a,0 z,0 tail,0

p,1

x,0

x,1

curr1

1

2

3

Thread 1 is traversing along the marked portion of the list p...x

Linearize an unsuccessful contains(x) at the ear-
lier of the following two points:
� A marked node with key x or a node with key greater than
x is found

� The point immediately before a new node with key x is
added to the list
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Unsuccessful contains(): Scenario 2
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Nonblocking Synchronization

Why do we need nonblocking designs?
− Blocked threads do not do useful work, problematic for high-priority or real-time

applications
− Getting the right degree of concurrency and correctness with locks is challenging
− Use of locks can lead to deadlocks, livelocks, and priority inversion

Idea: Use RMW instructions like CAS to update next field
Eliminate locks altogether
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Nonblocking Algorithms

+ Failure or suspension of a thread does not impact other threads

+ Guaranteed system-wide progress implies lock-freedom, while per-thread progress
implies wait-freedom
▶ Wait-freedom is the strongest nonblocking progress guarantee
▶ Lock-freedom allows an individual thread to starve
▶ All wait-free algorithms are lock-free

Lock-free implies “locking up” the application in some way (e.g., deadlock and
livelock)
Lock-free does not only imply absence of synchronization locks
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Compare-and-Swap (CAS) Primitive
� Modern architectures provide many atomic read-modify-write (RMW) instructions for

synchronization
▶ For example, test-and-set, fetch-and-add, compare-and-swap, and

load-linked/store-conditional

� Compare-and-Swap (CAS) compares the contents of a memory location with a given
value and, only if they are the same, updates the contents of that memory location to
a new given value

1 bool CAS(word* loc, word oldval, word newval) {
2 atomic { // Code block will execute atomically
3 res := (*loc == oldval);
4 if (res)
5 *loc := newval;
6 return res;
7 }
8 }
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Compare-and-Swap (CAS) Primitive

� CAS is implemented as the compare-and-exchange (CMPXCHG) instruction in x86
architectures
▶ On a multiprocessor, the LOCK prefix must be used

� CAS is a popular synchronization primitive for implementing both lock-based and
nonblocking concurrent data structures

1 xor %ecx, %ecx /*ecx=0*/
2 inc %ecx /*ecx=1*/
3 RETRY: xor %eax, %eax /*eax=0*/
4 lock compxchg %ecx, &lock
5 jnz RETRY
6 ret
7

1 void spinLock(lock* lk) {
2 // flag attribute is set when the
3 // lock is acquired
4 while (CAS(&lk->flag, 0, 1) == 1) {
5 // Keep spinning
6 }
7 }
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Nonblocking Synchronization with CAS

Thread 1 is executing remove(a) Thread 2 is executing add(b)

head,0

prev1

a,1

curr1

c,0 tail,0

b,0

1 1

2 add(b)

3 remove(a)

% %

a is deleted but b is not added to the list
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Nonblocking Synchronization with CAS

Thread 1 is executing remove(a) Thread 2 is executing remove(b)

head,0

prev1

a,1

curr1

b,1 c,0 tail,0

1 1

2 remove(b)3 remove(a)

% %

a is deleted but b is not deleted from the list
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Alternative Idea: AtomicMarkableReference<T>
� Cannot allow updates to a node once it has been logically or physically removed from

the list

� Treat the next and marked fields as atomic

� An attempt to update the next field when the marked field is true will fail

Java provides the AtomicMarkableReference<T> in the
java.util.concurrent.atomic package

public boolean compareAndSet(T expectedReference, T newReference,
boolean expectedMark, boolean newMark);

public T get(boolean[] marked);
public T getReference();
public Boolean isMarked();
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Designing a Nonblocking Set

� The next field is of type AtomicMarkableReference<Node>

� A thread logically removes a node by setting the marked bit in the next field

� As threads traverse the list, they clean up the list by physically removing marked
nodes

� Threads performing add() and remove() do not traverse marked nodes, they
remove them before continuing. Why?
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Challenge in Traversing Marked Nodes

Thread 1 is executing remove(b) Thread 2 marks a

head,0 a,1

prev1

b,1

curr1

c,0 tail,0

1 1

2 Marks a

3 Performs CAS

%

Thread 1 does not delete the marked node a =⇒ Thread 1 cannot redirect a.next
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Helper Method

Helper method public Window find(Node head, int key)
Traverses the list seeking to set pred to the node with the largest key less than key, and
curr to the node with the least key greater than or equal to key

1 class Window {
2 public Node pred, curr;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }
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Helper Method

1 public Window find(Node head, int key) {
2 Node pred = null, curr = null, succ = null;
3 boolean[] marked = {false};
4 boolean snip;
5 retry: while (true) {
6 pred = head; curr = pred.next.getReference();
7 while (true) {
8 succ = curr.next.get(marked);
9 while (marked[0]) {

10 snip = pred.next.compareAndSet(curr, succ, false, false);
11 if (!snip) continue retry;
12 curr = succ; succ = curr.next.get(marked);
13 }
14 if (curr.key >= key)
15 return new Window(pred, curr);
16 pred = curr; curr = succ;
17 }
18 } }
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Concurrent Set with Nonblocking Synchronization

1 public boolean add(T x) {
2 int key = x.hashcode();
3 while (true) {
4 Window w = find(head, key);
5 Node pred = w.pred, curr = w.curr;
6 if (curr.key == key) return false;
7 else {
8 Node node = new Node(x);
9 node.next = new AtomicMarkableReference(curr, false);

10 if (pred.next.compareAndSet(curr, node, false, false))
11 return true;
12 }
13 }
14 }
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Concurrent Set with Nonblocking Synchronization

1 public boolean remove(T x) {
2 int key = x.hashcode();
3 boolean snip;
4 while (true) {
5 Window w = find(head, key);
6 Node pred = w.pred, curr = w.curr;
7 if (curr.key != key) return false;
8 else {
9 Node succ = curr.next.getReference();

10 snip = curr.next.compareAndSet(succ, succ, false, true);
11 if (!snip) continue;
12 pred.next.compareAndSet(curr, succ, false, false);
13 return true;
14 }
15 }
16 }
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Concurrent Set with Nonblocking Synchronization

1 public boolean contains(T x) {
2 int key = x.hashcode();
3 Node curr = head;
4 while (curr.key < key) {
5 curr = curr.next.getReference();
6 }
7 return curr.key == key && !curr.next.isMarked();
8 }
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Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a)

head a b c d tail

Each thread recycles old nodes by maintaining a private free list of deleted nodes.
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Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a)

head a b c d tail

Assume that Thread 1 sees head points to a, but gets delayed while executing deq(a)
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Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a) Other threads execute deq(a, b, c,
d), then execute enq(a)

head a

b c d

tail
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Lock-Free Programming and ABA Problem

Thread 1 is executing deq(a) Other threads execute deq(a, b, c,
d), then execute enq(a)

head a

b c d

tail

Thread 1’s CAS succeeds, incorrectly setting head to the recycled node b which is in the
local pool of some thread
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Avoiding ABA Problem

� Common workaround is to add extra “tag” to the memory address being compared
▶ Tag can be a counter that tracks the number of updates to the reference
▶ Can steal lower order bits of memory address or use a separate tag field if 128-bit CAS is

available
▶ x86_64 supports 128-bit CAS, but NVIDIA GPUs only support up to 64-bit CAS

ABA Problem
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Concurrent Hash Sets for CPU



Hash Sets

Closed addressing Each table entry refers to a set of items, called a bucket. Closed
addressing is also known as chaining.

Open addressing Each table entry maps to a single item. Open addressing requires a
deterministic probing scheme to search for free slots.

Let l be the number of probing attempts, c be the capacity of the hash set, and s(k, l) the
l-th element in the probe sequence where s(k,0) = h(k).

Linear probing Probing sequence is s(k, l) = (h(k) + l)mod c. Cache efficient but
suffers from clustering.

Quadratic probing Probing sequence is s(k, l) = (h(k) + l2)mod c. Incurs more cache
misses but avoids primary clustering.

Chaotic probing Probing sequence is s(k, l) = (h(k) + l · g(k))mod c where g(k) is a
second hash function. Incurs more cache misses but avoids primary
clustering. Chaotic probing is also known as double hashing.
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Hash Set with Closed Addressing: Abstract Base Class

1 public abstract class BaseHashSet<T> {
2 protected List<T>[] table;
3 protected int setSize;
4 public BaseHashSet(int capacity) {
5 setSize = 0;
6 table = (List<T>[]) new List[capacity];
7 for (int i = 0; i < capacity; i++)
8 table[i] = new ArrayList<T>();
9 }

10 public boolean contains(T x) {
11 acquire(x);
12 try {
13 int myBucket = x.hashCode() % table.length;
14 return table[myBucket].contains(x);
15 } finally {
16 release(x);
17 }
18 }
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Hash Set with Closed Addressing: Abstract Base Class

19 public boolean add(T x) {
20 boolean result = false;
21 acquire(x);
22 try {
23 int myBucket = x.hashCode() % table.length;
24 result = table[myBucket].add(x);
25 setSize = result ? setSize + 1 : setSize;
26 } finally {
27 release(x);
28 }
29 if (policy()) // When to resize the hash set?
30 resize();
31 return result;
32 }
33 }

Policies: average bucket size exceeds a fixed threshold, more than 1/4 of the buckets
exceed a bucket threshold, or if any single bucket exceeds a global threshold
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Hash Set with Closed Addressing: Coarse-Grained Locking

1 public class CoarseHashSet<T> extends BaseHashSet<T>{
2 final Lock lock;
3 CoarseHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock();
6 }
7 public final void acquire(T x) {
8 lock.lock();
9 }

10 public void release(T x) {
11 lock.unlock();
12 }
13 public boolean policy() {
14 // Average size of a bucket is > 4
15 return setSize / table.length > 4;
16 }
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Hash Set with Closed Addressing: Coarse-Grained Locking

17 public void resize() {
18 int oldCapacity = table.length;
19 lock.lock();
20 try {
21 if (oldCapacity != table.length)
22 return; // someone beat us to it
23 int newCapacity = 2 * oldCapacity;
24 List<T>[] oldTable = table;
25 table = (List<T>[]) new List[newCapacity];
26 for (int i = 0; i < newCapacity; i++)
27 table[i] = new ArrayList<T>();
28 for (List<T> bucket : oldTable)
29 for (T x : bucket)
30 table[x.hashCode() % table.length].add(x);
31 } finally {
32 lock.unlock();
33 }
34 }
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Hash Set with Closed Addressing: Striped Locking
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can grow

� Each lock protects N/L buckets

� Allows more concurrency than
coarse-grained lock
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Hash Set with Closed Addressing: Striped Locking

1 public class StripedHashSet<T> extends BaseHashSet<T>{
2 final ReentrantLock[] locks;
3 public StripedHashSet(int capacity) {
4 super(capacity);
5 // Number of locks is initially same as the length of the table. The table
6 // can dynamically grow, but not locks. Increasing the number of locks is
7 // challenging.
8 locks = new Lock[capacity];
9 for (int j = 0; j < locks.length; j++)

10 locks[j] = new ReentrantLock();
11 }
12 public final void acquire(T x) {
13 locks[x.hashCode() % locks.length].lock();
14 }
15 public void release(T x) {
16 locks[x.hashCode() % locks.length].unlock();
17 }
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Hash Set with Closed Addressing: Striped Locking

15 public void resize() {
16 int oldCapacity = table.length;
17 for (Lock lock : locks)
18 lock.lock();
19 try {
20 if (oldCapacity != table.length) return; // someone beat us to it
21 int newCapacity = 2 * oldCapacity;
22 List<T>[] oldTable = table;
23 table = (List<T>[]) new List[newCapacity];
24 for (int i = 0; i < newCapacity; i++)
25 table[i] = new ArrayList<T>();
26 for (List<T> bucket : oldTable)
27 for (T x : bucket)
28 table[x.hashCode() % table.length].add(x);
29 } finally {
30 for (Lock lock : locks)
31 lock.unlock();
32 }
33 }
34 }
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Hash Set with Closed Addressing: Refinable Hash Set

1 // Allow resizing number of locks
2 public class RefinableHashSet<T> extends BaseHashSet<T> {
3 // Identifies the owner thread who is resizing, and the boolean is set to true.
4 // Used for mutual exclusion with other mutation methods (e.g., add()).
5 AtomicMarkableReference<Thread> owner;
6 volatile ReentrantLock[] locks;
7 public RefinableHashSet(int capacity) {
8 super(capacity);
9 locks = new ReentrantLock[capacity];

10 for (int i = 0; i < capacity; i++)
11 locks[i] = new ReentrantLock();
12 owner = new AtomicMarkableReference<Thread>(null, false);
13 }
14 public void release(T x) {
15 locks[x.hashCode() % locks.length].unlock();
16 }
17 protected void quiesce() { // Visit each lock and wait until it is free
18 for (ReentrantLock lock : locks)
19 while (lock.isLocked()) {}
20 }
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Hash Set with Closed Addressing: Refinable Hash Set

22 public void acquire(T x) {
23 boolean[] mark = {true};
24 Thread me = Thread.currentThread();
25 Thread who;
26 while (true) {
27 do { // Wait while some other thread is the owner
28 who = owner.get(mark);
29 } while (mark[0] && who != me);
30 ReentrantLock[] oldLocks = locks;
31 ReentrantLock oldLock = oldLocks[x.hashCode() % oldLocks.length];
32 oldLock.lock();
33 // Check again to see if the locks array has been resized in the meantime
34 who = owner.get(mark);
35 // locks array has not changed, mark is not set or mark is set and I am the owner
36 if ((!mark[0] || who == me) && locks == oldLocks) {
37 return;
38 } else {
39 oldLock.unlock();
40 }
41 }
42 }
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Hash Set with Closed Addressing: Refinable Hash Set

42 public void resize() {
43 int oldCapacity = table.length;
44 boolean[] mark = {false};
45 int newCapacity = 2 * oldCapacity;
46 Thread me = Thread.currentThread();
47 if (owner.compareAndSet(null, me, false, true)) { // Try to make yourself the owner
48 try {
49 if (table.length != oldCapacity) return; // someone else resized first
50 quiesce();
51 List<T>[] oldTable = table;
52 table = (List<T>[]) new List[newCapacity];
53 for (int i = 0; i < newCapacity; i++)
54 table[i] = new ArrayList<T>();
55 locks = new ReentrantLock[newCapacity];
56 for (int j = 0; j < locks.length; j++)
57 locks[j] = new ReentrantLock();
58 initializeFrom(oldTable);
59 } finally {
60 owner.set(null, false);
61 }
62 } } }
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Hash Set with Closed Addressing: Lock-free Hash Set

Challenging to design a correct algorithm with synchronization primitives like CAS
� Not enough to make individual buckets lock-free
� Resizing the table requires atomically moving entries from old buckets to new buckets
� If the table doubles in capacity, then items in the old bucket must be distributed

between two new buckets
� CAS operates only on one memory location
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Hash Set with Open Addressing: Cuckoo Hashing

Cuckoo hashing is a type of open addressing scheme where collisions are resolved
by displacing any earlier item occupying the same slot with a newly added item
� Uses two hash functions which provides two possible locations for each key
� Assume a hash set of size N = 2k, and two tables each of size k (denoted by
table[0] and table[1]

� Two independent hash functions h0 and h1 map the keys to 0, . . . , k− 1

contains(x) Tests whether either table[0][h0(x)] or table[1][h1(x)] is equal to x
remove(x) Checks whether x is in either table[0][h0(x)] or table[1][h1(x)] and

removes it if found
add(x) Repeatedly displace conflicting items until every key has a slot

� May not find an empty slot if the table is full or the sequence of displacements form
a cycle

� Need to resize the hash table, choose new hash functions, and restart the add
operation after a THRESHOLD of successive displacements is reached
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Sequential Cuckoo Hashing: add()

1 public boolean add(T x) {
2 if (contains(x)) {
3 return false;
4 }
5 for (int i = 0; i < THRESHOLD; i++) {
6 if ((x = swap(h0(x), x)) == null) {
7 return true;
8 } else if ((x = swap(h1(x), x)) == null)

{
9 return true;

10 }
11 }
12 resize();
13 add(x);
14 }
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Concurrent Cuckoo Hashing

Challenge is in the possibly long sequence of swap operations during add()

Break up each method call into a sequence of phases, where each phase adds, removes,
or displaces a single item x

� Hash table is organized as a 2D table of probe sets
� Probe set is a constant-sized set of items with the same hash code
� Each probe set holds at most PROBE_SIZE items
� Implementation tries to ensure that when the set is quiescent (i.e., no method calls

are in progress) each probe set holds no more than THRESHOLD < PROBE_SIZE
items
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Concurrent Cuckoo Hashing using Phases

1 public abstract class PhasedCuckooHashSet<T> {
2 volatile int capacity;
3 volatile List<T>[][] table;
4 public PhasedCuckooHashSet(int size) {
5 capacity = size;
6 table = (List<T>[][]) new java.util.ArrayList[2][capacity];
7 for (int i = 0; i < 2; i++) {
8 for (int j = 0; j < capacity; j++) {
9 table[i][j] = new ArrayList<T>(PROBE_SIZE);

10 }
11 }
12 }

Swarnendu Biswas (IIT Kanpur) CS 610: Concurrent Data Structures Sem 2024-25-I 87 / 100



Concurrent Cuckoo Hashing using Phases
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Concurrent Cuckoo Hashing using Phases
13 public boolean remove(T x) {
14 acquire(x);
15 try {
16 List<T> set0 = table[0][hash0(x) % capacity];
17 if (set0.contains(x)) {
18 set0.remove(x);
19 return true;
20 } else {
21 List<T> set1 = table[1][hash1(x) % capacity];
22 if (set1.contains(x)) {
23 set1.remove(x);
24 return true;
25 }
26 }
27 return false;
28 } finally {
29 release(x);
30 }
31 }
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Concurrent Cuckoo Hashing using Phases

32 public boolean add(T x) {
33 T y = null;
34 acquire(x);
35 int h0 = hash0(x) % capacity;
36 int h1 = hash1(x) % capacity;
37 int i = -1, h = -1;
38 boolean mustResize = false;
39 try {
40 if (present(x)) return false;
41 List<T> set0 = table[0][h0];
42 List<T> set1 = table[1][h1];
43 if (set0.size() < THRESHOLD) {
44 set0.add(x); return true;
45 } else if (set1.size() < THRESHOLD

) {
46 set1.add(x); return true;
47 } else if (set0.size() <

PROBE_SIZE) {
48 set0.add(x); i = 0; h = h0;
49 } else if (set1.size() <

PROBE_SIZE) {
50 set1.add(x); i = 1; h = h1;

51 } else {
52 mustResize = true;
53 }
54 } finally {
55 release(x);
56 }
57 if (mustResize) {
58 resize(); add(x);
59 } else if (!relocate(i, h)) {
60 resize();
61 }
62 return true; // x must have been

present
63 }
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Concurrent Cuckoo Hashing using Phases
64 protected boolean relocate(int i, int

hi) {
65 int hj = 0;
66 int j = 1 - i;
67 for (int round = 0; round < LIMIT;

round++) {
68 List<T> iSet = table[i][hi];
69 T y = iSet.get(0);
70 switch (i) {
71 case 0: hj = hash1(y) % capacity

; break;
72 case 1: hj = hash0(y) % capacity

; break;
73 }
74 acquire(y);
75 List<T> jSet = table[j][hj];
76 try {
77 if (iSet.remove(y)) {
78 if (jSet.size() < THRESHOLD) {
79 jSet.add(y);
80 return true;
81

82 } else if (jSet.size() <
PROBE_SIZE) {

83 jSet.add(y);
84 i = 1 - i;
85 hi = hj;
86 j = 1 - j;
87 } else {
88 iSet.add(y);
89 return false;
90 }
91 } else if (iSet.size() >=

THRESHOLD) {
92 continue;
93 } else {
94 return true;
95 }
96 } finally {
97 release(y);
98 }
99 }

100 return false;
101 }
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Concurrent Cuckoo Hashing using Striped Locking
1 public class StripedCuckooHashSet<T> extends PhasedCuckooHashSet<T>{
2 final ReentrantLock[][] lock;
3 public StripedCuckooHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock[2][capacity];
6 for (int i = 0; i < 2; i++) {
7 for (int j = 0; j < capacity; j++)
8 lock[i][j] = new ReentrantLock();
9 }

10 }
11 public final void acquire(T x) {
12 lock[0][hash0(x) % lock[0].length].lock();
13 lock[1][hash1(x) % lock[1].length].lock();
14 }
15 public final void release(T x) {
16 lock[0][hash0(x) % lock[0].length].unlock();
17 lock[1][hash1(x) % lock[1].length].unlock();
18 }
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Concurrent Cuckoo Hashing using Striped Locking

19 public void resize() {
20 int oldCapacity = capacity;
21 for (Lock aLock : lock[0]) {
22 aLock.lock();
23 }
24 try {
25 if (capacity != oldCapacity) {
26 return;
27 }
28 List<T>[][] oldTable = table;
29 capacity = 2 * capacity;
30 table = (List<T>[][]) new List[2][

capacity];
31 for (List<T>[] row : table) {
32 for (int i = 0; i < row.length; i

++) {
33 row[i] = new ArrayList<T>(

PROBE_SIZE);
34 }
35 }

36 for (List<T>[] row : oldTable) {
37 for (List<T> set : row) {
38 for (T z : set) {
39 add(z);
40 }
41 }
42 }
43 } finally {
44 for (Lock aLock : lock[0]) {
45 aLock.unlock();
46 }
47 }
48 }
49 }
50
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Concurrent Data Structures for GPU



Concurrent Hashing on GPUs

Requirements
� Need to support high throughput for concurrent accesses to the hash tables
� Need to devise nonblocking algorithms that are tuned to the GPU programming model

for good performance

Challenges in designing an efficient hash table
� Lock-based synchronization will not scale to thousands of GPU threads
� Accessing linked-list-based data structures imply making random (uncoalesced)

memory accesses from threads in a warp
▶ High memory bandwidth is achieved when threads in a warp access consecutive memory

locations with a fixed stride
� Dynamically allocating linked list nodes for numerous GPU threads is a bottleneck
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Concurrent Hashing on GPUs with SlabHash

SlabHash builds a concurrent hash table using slab lists instead of linked lists
� A slab consists of multiple words of data (i.e., unordered set) and a single next pointer,

thereby reducing memory overhead
� Slabs on NVIDIA GPUs can be of 32 words
� Can search a slab list node using a single ballot instruction

B0data next

Linked list node
B1

B2

...

Bn-1

0 1 ... next 0 1 ... null

0 1 ... null

0 1 ... null

0 1 ... null

Slab list node

data0 data1 datan-1 next

Slab list node

S. Ashkiani et al. A Dynamic Hash Table for the GPU, IPDPS’18.
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Operations on a Slab List

search Search from the head of the list, load the next slab if the item cannot be
found in the current slab

insert Start from the head of the list, use an atomic CAS to insert the new key-value
pair into the first empty data slot. An unsuccessful CAS implies someone else
occupied the empty slot, so restart looking for an empty slot. Load the next
slab if no empty slots are found. Allocate a new slab at the end of the list if all
slabs are full.

replace Similar to insert except that the entire slab list needs to be searched
delete Similar to insert except that the entire slab list needs to be searched

(depending on whether duplicates are allowed)
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More about SlabHash

Provides a dynamic hash table that uses chaining for collision resolution
Universal hash function of the form h(k;a,b) = ((ak+ b)modp)modB is used, where
a,b are random arbitrary integers, p is a random prime number, and B is the number of
buckets.

Threads are assigned independent tasks (i.e., keys), but work is done in parallel per-warp,
called warp-cooperative work sharing (WCWS)
� One-to-one mapping maps each thread to a single key, threads in a warp process

their 32 keys individually
� Advantage of WCWS is that it significantly reduces branch divergence when compared

to per-thread processing
� Disadvantage of WCWS is that all threads within a warp should be active
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Concurrent Hashing on GPUs with WarpCore

WarpCore argues that open addressing with linear probing is more amenable to
the SIMT execution model on GPUs
Linked lists are cache-inefficient and lock-free insertion and deletion of nodes in linked lists is
complicated because of the ABA problem

Parallel probing scheme
� Mapping each thread to a key will lead to a different probing sequence for threads in a warp,

leading to non-coalesced global memory accesses

� Can use an entire warp of 32 threads per input key k, such that each thread with lane ID t
probes a different hash table position h(k, t)mod c, but linear probing suffers from clustering

� WarpCore uses double hashing with an inner intra-warp linear probing, double hashing
determines the starting offset for linear probing

D. Jünger et al. WarpCore: A Library for fast Hash Tables on GPUs, HiPC’20.
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Example of Insertion Operation with WarpCore
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