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Let us compare the performance!

for (i = 0; i < 100000000; i++) {
W = 1.599999 * X;
X = 0.999999 * W;

}

for (i = 0; i < 100000000; i++) {
W = 1.599999 * W + 0.000001;
X = 0.999999 * X;
Y = 3.14159 * Y + 0.000001;
Z = Z + 1.0001;

}

550–600 ns ??? ms
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Let us compare the performance!

#define T 1024 * 1024
double A[N][N];
for (it = 0; it < T; it++)
for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
A[i][j] += 1;

#define N 32
#define T 1024 * 1024

#define N 128
#define T 1024 * 1024

#define N 256
#define T 1024 * 1024

#define N 4096
#define T 1024 * 1024

235 ms

240 ms

420 ms

750 ms
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Cache Memories
� Cache memories are small, fast SRAM-based memories managed automatically in

hardware and hold frequently accessed blocks of main memory
▶ CPU looks first for data in caches (e.g., L1, L2, and L3), and then in main memory
▶ Because of locality, programs tend to access the data at level k (higher) more often than

they access the data at level k + 1
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Cache Organization and Lookup
� Caches are organized as arrays of cache lines (or blocks) containing program data
� Each cache line holds contiguous bytes of data (e.g., 64 or 128 bytes)
� Let us assume for now that caches are addressed using physical addresses (e.g., 40

bits)

t bits s bits b bits

tag set
index

block
offset

physical address

� Set index bits identify the desired line(s) we should search for looking up the data
� Block offset bits identify the starting location of the requested data in a cache line
� Tag bits check for an exact match with the address to be looked up
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Direct-Mapped Cache

V tag 0 1 2 ..... B-1

V tag 0 1 2 ..... B-1

V tag 0 1 2 ..... B-1

V tag 0 1 2 ..... B-1
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data begins at this offset
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(i) Locate set
(ii) Check if any line in the set

has a matching tag
(iii) Yes + line valid: Hit
(iv) Locate data starting at offset
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Addressing a Cache

� Let us assume a system with 32-bit physical address, 32 KB direct-mapped cache with
64 Byte blocks

� b = 6 bits, 512 cache lines or sets, s = 9 bits
� Hence, number of tag bits t = 17
� Each cache line contains 64 byte data, 17-bit tag, one valid/invalid bit, and additional

state bits (e.g., dirty)
� Tag and index bits have been extracted from the physical address, so the cache is

physically-indexed physically-tagged
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E-Way Set Associative Cache (E=2)

Set-associative caches reduce conflict misses by maintaining E lines per set
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Why are index bits not the high order bits?
� Using the high-order address bits for

indexing is inefficient
▶ A larger address range needs to be

stepped over for the high-order index
bits to change

▶ Will imply collision among
closely-located memory blocks
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Dealing with Writes
Possibilities on a hit
Write through Write immediately to memory

Write back Defer write to memory until replacement of line
� Need a dirty bit to indicate that the line has been updated

Possibilities on a miss
Write allocate Load into the cache and then update the line

� Good if more writes to the location follow
No-write allocate Writes straight to memory, does not load into cache

Typical setup
� Write back + Write allocate
� Write through + No-write allocate
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Evaluating Cache Performance

Hit time � Time to deliver a line in the cache to the processor, including the time to
determine whether the line is in the cache

� Reduce hit time: small direct-mapped structures, overlap or avoid
address translation when indexing the cache, and way prediction

Miss rate � Fraction of memory references not found in the cache (misses/access)
� Reduce miss rate: larger caches, larger block sizes, greater associativity,

and compiler optimizations
Miss Penalty � Time taken for a cache miss to complete

� Reduce miss penalty: multilevel caches, nonblocking caches, victim
cache, early restart, critical word first, fill before spill, prefetching
(hardware or software)

Average Memory Access Time

AMAT = timehit + probmiss ∗ penaltymiss
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Inclusion Policy in Cache Hierarchy

� In an inclusive hierarchy, all cache lines present at level i are also present in level i + 1
▶ A L1 and L2 miss will require fetching the line in both the caches
▶ Eviction of a L2 line will fetch the latest copy from L1 and invalidate the L1 line (if present)
▶ Inclusion lengthens miss handling but simplifies write back
▶ Intel Core i7-6700 (codename Skylake-S) uses inclusive private caches

L1 L2
X X
L1 L2

Read X misses

X
Y

X
Y

L1 L2

Write Y misses

X
Y

X
Y

L1 L2

Evict Y from L1

X X
Y

L1 L2

Evict X from L2

Write
back

Back
invalidation

or recall
fill fill

fill fill

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 14 / 24



Inclusion Policy in Cache Hierarchy

� In an exclusive hierarchy, the lower level cache contains only blocks that are not
present in the higher level cache
▶ L2 cache is filled when a L1 line is evicted
▶ L2 in AMD Opteron is exclusive
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Inclusion Policy in Cache Hierarchy

� In a non-inclusive non-exclusive (NINE) cache, the contents of the lower-level cache
are neither strictly inclusive nor exclusive of the higher-level cache
▶ The L3 in AMD Opteron is NINE
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Virtual Memory

Need for Virtual Memory
� Provides an illusion of larger memory (no

longer the primary concern)
� Reduces application start-up time
� Supports multiprocessing by allowing for

per-process privileges

� A processor generates virtual addresses
while memory is physically addressed
▶ Requires a virtual-to-physical address

translation
Virtual
Memory

Physical
Memory

address
translation

virtual
page

physical
page
frame
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Address Translation

� Virtual address VA is split into two parts: virtual page number (VPN) and the page
offset
▶ Given a 4 KB page with 32-bit virtual addresses, the low 12 bits are the page offset, and

the remaining 20 bits are the VPN
� The VPN is mapped to a physical page frame number (PFN) using the page table

▶ Each page table entry (PTE) also includes a valid bit, access permissions, and other state
information

▶ A page fault occurs when the valid bit is reset (i.e., no physical page in memory)
▶ The kernel allocates a new physical page frame (may involve running a replacement algorithm),

moves data from the disk to the new page frame, and the page table is updated with the new
mapping

� The physical address PA is obtained by concatenating the PFN and page offset
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Translation Lookaside Buffer (TLB)

� A TLB is used to cache recent address translations
▶ TLBs are usually fully associative and contain a mapping from VPNs to PTEs

� On a TLB miss,
(i) Hardware implementation will walk the page table
(ii) Software implementation will trap to the kernel, fill the TLB with the desired translation

and resume execution
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Physical Caches

� Every memory operation requires accessing the TLB first to translate a virtual to a
physical address
▶ Called a physically-indexed physically-tagged (PIPT) cache

� Address translation is performed before cache access in physically addressed caches
− Increases the cache hit time

� PIPT caches are popularly used for lower-level caches
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Virtual Caches

� Address translation is performed after cache access only on a miss in
virtually-addressed caches
▶ Called a virtually-indexed virtually-tagged (VIVT) cache
+ Hit time does not include translation
+ Can have larger and more sophisticated TLBs
− Permission bits need to be replicated in the cache
− Introduces synonyms (aliases) and homonyms
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Synonyms and Homonyms

Homonyms occur when the same virtual address points to different physical
addresses
� Possible solutions

▶ Use physically-addressed caches, or flush the cache on each context switch, or add an
address-space ID (ASID) to each tag

Different virtual pages point to the same physical page in synonyms
� More challenging because all synonyms must be kept coherent
� Possible solutions

▶ Use physically addressed caches, limit index bits to page offset bits, or use page coloring
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Virtually-Indexed Physically-Tagged Caches
� Indexing the cache is an expensive operation, so it is desirable to overlap indexing

with TLB lookup (faster than PIPT caches)
▶ Compute index from the virtual address, look up the desired set
▶ Compare tags after the PA is available
▶ Leads to virtually-indexed physically-tagged (VIPT) cache

+ Can detect homonyms because of physically addressed tags
− Need to deal with synonyms (either through page coloring or by constraining index bits)
− Page coloring (e.g., ARM v6) tightly couples the hardware and the OS
− Constraining index bits implies each set is limited in capacity to a single virtual memory page
− Using only huge pages breaks backward compatibility and has performance concerns
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