
CS 610: A Quick Refresher on Cache Memory

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2024-25-I

Let us compare the performance!

for (i = 0; i < 100000000; i++) {
W = 1.599999 * X;
X = 0.999999 * W;

}

for (i = 0; i < 100000000; i++) {
W = 1.599999 * W + 0.000001;
X = 0.999999 * X;
Y = 3.14159 * Y + 0.000001;
Z = Z + 1.0001;

}

550–600 ns ??? ms

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 3 / 24

lstopo –output-format png -v –no-io > cpu.png

Let us compare the performance!

#define T 1024 * 1024
double A[N][N];
for (it = 0; it < T; it++)
for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
A[i][j] += 1;

#define N 32
#define T 1024 * 1024

#define N 128
#define T 1024 * 1024

#define N 256
#define T 1024 * 1024

#define N 4096
#define T 1024 * 1024

235 ms

240 ms

420 ms

750 ms

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 5 / 24

Cache Memories
� Cache memories are small, fast SRAM-based memories managed automatically in

hardware and hold frequently accessed blocks of main memory
▶ CPU looks first for data in caches (e.g., L1, L2, and L3), and then in main memory
▶ Because of locality, programs tend to access the data at level k (higher) more often than

they access the data at level k + 1

Cache
Memories ALU

Bus interface I/O bridge Main
Memory

System
bus

Memory
bus

Register
file

CPU Chip

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 6 / 24

Cache Organization and Lookup
� Caches are organized as arrays of cache lines (or blocks) containing program data
� Each cache line holds contiguous bytes of data (e.g., 64 or 128 bytes)
� Let us assume for now that caches are addressed using physical addresses (e.g., 40

bits)

t bits s bits b bits

tag set
index

block
offset

physical address

� Set index bits identify the desired line(s) we should search for looking up the data
� Block offset bits identify the starting location of the requested data in a cache line
� Tag bits check for an exact match with the address to be looked up

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 7 / 24

Direct-Mapped Cache

V tag 0 1 2 B-1

V tag 0 1 2 B-1

V tag 0 1 2 B-1

V tag 0 1 2 B-1

S
=

2s
se

ts

valid bit

B = 2b bytes per cache block

t bits s bits b bits

tag set
index

block
offset

physical address

data begins at this offset

comparator

Hit/Miss

(i) Locate set
(ii) Check if any line in the set

has a matching tag
(iii) Yes + line valid: Hit
(iv) Locate data starting at offset

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 8 / 24

Addressing a Cache

� Let us assume a system with 32-bit physical address, 32 KB direct-mapped cache with
64 Byte blocks

� b = 6 bits, 512 cache lines or sets, s = 9 bits
� Hence, number of tag bits t = 17
� Each cache line contains 64 byte data, 17-bit tag, one valid/invalid bit, and additional

state bits (e.g., dirty)
� Tag and index bits have been extracted from the physical address, so the cache is

physically-indexed physically-tagged

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 9 / 24

E-Way Set Associative Cache (E=2)

Set-associative caches reduce conflict misses by maintaining E lines per set

V tag 0 1 2 B-1

V tag 0 1 2 B-1

V tag 0 1 2 B-1

V tag 0 1 2 B-1

S
=

2s
se

ts

t bits s bits b bits

tag set
index

block
offset

physical address

data begins at this offset

comparator

V tag 0 1 2 B-1

V tag 0 1 2 B-1

V tag 0 1 2 B-1

V tag 0 1 2 B-1

E = 2e lines per set

comparator

Hit/Miss

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 10 / 24

Why are index bits not the high order bits?
� Using the high-order address bits for

indexing is inefficient
▶ A larger address range needs to be

stepped over for the high-order index
bits to change

▶ Will imply collision among
closely-located memory blocks

00

01

10

11

Four-set
cache

Middle-order
bit indexing

High-order
bit indexing

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

index and tag switching position

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 11 / 24

https://stackoverflow.com/questions/64483279/index-and-tag-switching-position

Dealing with Writes
Possibilities on a hit
Write through Write immediately to memory

Write back Defer write to memory until replacement of line
� Need a dirty bit to indicate that the line has been updated

Possibilities on a miss
Write allocate Load into the cache and then update the line

� Good if more writes to the location follow
No-write allocate Writes straight to memory, does not load into cache

Typical setup
� Write back + Write allocate
� Write through + No-write allocate

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 12 / 24

Evaluating Cache Performance

Hit time � Time to deliver a line in the cache to the processor, including the time to
determine whether the line is in the cache

� Reduce hit time: small direct-mapped structures, overlap or avoid
address translation when indexing the cache, and way prediction

Miss rate � Fraction of memory references not found in the cache (misses/access)
� Reduce miss rate: larger caches, larger block sizes, greater associativity,

and compiler optimizations
Miss Penalty � Time taken for a cache miss to complete

� Reduce miss penalty: multilevel caches, nonblocking caches, victim
cache, early restart, critical word first, fill before spill, prefetching
(hardware or software)

Average Memory Access Time

AMAT = timehit + probmiss ∗ penaltymiss

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 13 / 24

Inclusion Policy in Cache Hierarchy

� In an inclusive hierarchy, all cache lines present at level i are also present in level i + 1
▶ A L1 and L2 miss will require fetching the line in both the caches
▶ Eviction of a L2 line will fetch the latest copy from L1 and invalidate the L1 line (if present)
▶ Inclusion lengthens miss handling but simplifies write back
▶ Intel Core i7-6700 (codename Skylake-S) uses inclusive private caches

L1 L2
X X
L1 L2

Read X misses

X
Y

X
Y

L1 L2

Write Y misses

X
Y

X
Y

L1 L2

Evict Y from L1

X X
Y

L1 L2

Evict X from L2

Write
back

Back
invalidation

or recall
fill fill

fill fill

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 14 / 24

Inclusion Policy in Cache Hierarchy

� In an exclusive hierarchy, the lower level cache contains only blocks that are not
present in the higher level cache
▶ L2 cache is filled when a L1 line is evicted
▶ L2 in AMD Opteron is exclusive

Y
Z

L1 L2
X

Y
Z

L1 L2

Read X misses

X
Y Y

Z

L1 L2

Write Y misses
in L1, hits in L2

X
Y

X

Z

L1 L2

Evict X from L1

Y
X

Z

L1 L2

Evict Z from L2

Write
back

fill

fill

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 15 / 24

Inclusion Policy in Cache Hierarchy

� In a non-inclusive non-exclusive (NINE) cache, the contents of the lower-level cache
are neither strictly inclusive nor exclusive of the higher-level cache
▶ The L3 in AMD Opteron is NINE

L1 L2
X X
L1 L2

Read X misses

X
Y

X
Y

L1 L2

Read Y misses

X
Y

X
Y

L1 L2

Evict X from L1

Y
X
Y

L1 L2

Evict Y from L2
(no recall)

Write
back

fill

fill

fill

fill

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 16 / 24

Virtual Memory

Need for Virtual Memory
� Provides an illusion of larger memory (no

longer the primary concern)
� Reduces application start-up time
� Supports multiprocessing by allowing for

per-process privileges

� A processor generates virtual addresses
while memory is physically addressed
▶ Requires a virtual-to-physical address

translation
Virtual
Memory

Physical
Memory

address
translation

virtual
page

physical
page
frame

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 17 / 24

Address Translation

� Virtual address VA is split into two parts: virtual page number (VPN) and the page
offset
▶ Given a 4 KB page with 32-bit virtual addresses, the low 12 bits are the page offset, and

the remaining 20 bits are the VPN
� The VPN is mapped to a physical page frame number (PFN) using the page table

▶ Each page table entry (PTE) also includes a valid bit, access permissions, and other state
information

▶ A page fault occurs when the valid bit is reset (i.e., no physical page in memory)
▶ The kernel allocates a new physical page frame (may involve running a replacement algorithm),

moves data from the disk to the new page frame, and the page table is updated with the new
mapping

� The physical address PA is obtained by concatenating the PFN and page offset

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 18 / 24

Translation Lookaside Buffer (TLB)

� A TLB is used to cache recent address translations
▶ TLBs are usually fully associative and contain a mapping from VPNs to PTEs

� On a TLB miss,
(i) Hardware implementation will walk the page table
(ii) Software implementation will trap to the kernel, fill the TLB with the desired translation

and resume execution

Core TLB Page Table

Physical
Memory

MissVirtual
address

Virtual
address

+

Physical
Page Frame

Hit Valid

Offset

Raise
exceptionInvalid

Data

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 19 / 24

Physical Caches

� Every memory operation requires accessing the TLB first to translate a virtual to a
physical address
▶ Called a physically-indexed physically-tagged (PIPT) cache

� Address translation is performed before cache access in physically addressed caches
− Increases the cache hit time

� PIPT caches are popularly used for lower-level caches

Core Address
translation

Cache
lookup

Virtual
address

Physical
address Miss

Data

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 20 / 24

Virtual Caches

� Address translation is performed after cache access only on a miss in
virtually-addressed caches
▶ Called a virtually-indexed virtually-tagged (VIVT) cache
+ Hit time does not include translation
+ Can have larger and more sophisticated TLBs
− Permission bits need to be replicated in the cache
− Introduces synonyms (aliases) and homonyms

Core Cache
lookup

Virtual
address Miss

Data

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 21 / 24

Synonyms and Homonyms

Homonyms occur when the same virtual address points to different physical
addresses
� Possible solutions

▶ Use physically-addressed caches, or flush the cache on each context switch, or add an
address-space ID (ASID) to each tag

Different virtual pages point to the same physical page in synonyms
� More challenging because all synonyms must be kept coherent
� Possible solutions

▶ Use physically addressed caches, limit index bits to page offset bits, or use page coloring

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 22 / 24

Virtually-Indexed Physically-Tagged Caches
� Indexing the cache is an expensive operation, so it is desirable to overlap indexing

with TLB lookup (faster than PIPT caches)
▶ Compute index from the virtual address, look up the desired set
▶ Compare tags after the PA is available
▶ Leads to virtually-indexed physically-tagged (VIPT) cache

+ Can detect homonyms because of physically addressed tags
− Need to deal with synonyms (either through page coloring or by constraining index bits)
− Page coloring (e.g., ARM v6) tightly couples the hardware and the OS
− Constraining index bits implies each set is limited in capacity to a single virtual memory page
− Using only huge pages breaks backward compatibility and has performance concerns

Core

Address
translation

Cache
lookup

Virtual
address

Physical
address

=
Physical
Tag

Swarnendu Biswas (IIT Kanpur) CS 610: A Quick Refresher on Cache Memory Sem 2024-25-I 23 / 24

References

D. Patterson and J. Hennessy. Computer Organization and Design. Sections 5.1, 5.3–5.4,
5.7–5.8, 5th edition, Morgan Kaufmann.

J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Appendix
B.1-B.4, Sections 2.1, 2.3 6th edition, Morgan Kaufmann.

R. Bryant and D. O’Hallaron. Computer Systems: A Programmer’s Perspective. Sections
6.2–6.4, 3rd edition, Pearson Education.

J. L. Baer. Microprocessor Architecture: From Simple Pipelines to Chip Multiprocessors.
Sections 6.1–6.3, Cambridge University Press.

