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Enhancing Program Performance

Possible ideas
• Adequate fine-grained parallelism

• Multiple pipelined functional units in each core

• Exploit vector instruction sets (SSE, AVX, AVX-512)

• Adequate parallelism for SMP-type systems 
• Keep multiple asynchronous processors busy with work

• Minimize cost of memory accesses
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Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

• Code restructuring optimizations

• Prefetching optimizations

• Data layout optimizations

• Code layout optimizations
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Loop Optimizations

• Loops are one of most commonly used constructs in HPC program

• Compiler performs many loop optimization techniques automatically 
• In some cases, source code modifications can enhance optimizer’s ability to 

transform code
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Reordering Transformations

• A reordering transformation does not add or remove statements from 
a loop nest 
• Only reorders the execution of the statements that are already in the loop
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Do not add or remove 
statements

Do not add or remove 
any new dependences



Reordering Transformations

• A reordering transformation does not add or remove statements from 
a loop nest 
• Only reorders the execution of the statements that are already in the loop
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Do not add or remove 
statements

Do not add or remove 
any new dependences

A reordering transformation is valid if it preserves all existing 
dependences in the loop



Iteration Reordering and Parallelization

• A transformation that reorders the iterations of a level-k loop, 
without making any other changes, is valid if the loop carries no 
dependence

• Each iteration of a loop may be executed in parallel if it carries no 
dependences
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Data Dependence Graph and Parallelization

• If the Data Dependence Graph (DDG) is acyclic, then vectorization of 
the program is possible and is straightforward

• Otherwise, try to transform the DDG to an acyclic graph 
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FOR I=1,N
FOR J=1,M

S1      A(I,J) = B(I-1,J+1) + C
S2      B(I,J) = A(I-1,J-1) + K

S1 S2
𝛿

𝛿



Enhancing Fine-Grained 
Parallelism
Focus is on vectorization of inner loops
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System Setup

• Setup: vector or superscalar architectures

• Focus is mostly on parallelizing the inner loops

• We will see optimizations for coarse-grained parallelism later
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Loop Interchange (Loop Permutation)

• Switch the nesting order of loops 
in a perfect loop nest

• Can increase parallelism, can 
improve spatial locality

• Dependence is now carried by 
the outer loop, inner loop can be 
vectorized

DO I = 1, N

DO J = 1, M

S     A(I,J+1) = A(I,J) + B

ENDDO

ENDDO
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DO J = 1, M

DO I = 1, N

S     A(I,J+1) = A(I,J) + B

ENDDO

ENDDO



Example of Loop Interchange

do i = 1, n 

do j = 1, n

C(i, j) = C(i-1,j+1)

enddo

enddo

do j = 1, n

do i = 1, n 

C(i,j) = C(i-1,j+1) 

enddo 

enddo
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Validity of Loop Interchange

1. Construct direction vectors for all possible dependences in the loop 
to form a direction matrix
• Identical direction vectors are represented by a single row in the matrix

2. Compute direction vectors after permutation

3. Permutation of the loops in a perfect nest is legal iff there are no “-” 
direction as the leftmost non–“0” direction in any direction vector
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Validity of Loop Interchange

• Loop interchange is valid for a 2D 
loop nest if none of the dependence 
vectors has any negative 
components

• Interchange is legal: (1,1), (2,1), 
(0,1), (3,0)

• Interchange is not legal: (1,-1), (3,-2)
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DO J = 1, M

DO I = 1, N

A(I,J+1) = A(I+1,J) + B

ENDDO

ENDDO



Validity of Loop Permutation

• Generalization to higher-dimensional loops: Permute all dependence 
vectors exactly the same way as the intended loop permutation 

• If any permuted vector is lexicographically negative, permutation is 
illegal

• Example: 𝑑1 = (1,−1,1) and 𝑑2 = (0,2, −1)
• ijk→ jik? (1,-1,1) → (-1,1,1): illegal
• ijk→ kij? (0,2,-1) → (-1,0,2): illegal
• ijk→ ikj? (0,2,-1) → (0,-1,2): illegal
• No valid permutation: j cannot be outermost loop (-1 component in 𝑑1), and 
k cannot be outermost loop (-1 component in 𝑑2)

• A loop nest is fully permutable if any permutation transformation to 
the loop nest is legal
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Benefits from Loop Permutation

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k]*B[k][j];

Stride ikj kij jik ijk jki kji

C[i][j] 1 1 0 0 n n

A[i][k] 0 0 1 1 n n

B[k][j] 1 1 n n 0 0
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Understanding Loop Interchange

Pros

• Goal is to improve locality of 
reference or allow vectorization

Cons

• Need to be careful about the 
iteration order, order of array 
accesses, and data involved
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Does Loop Interchange/Permutation Always 
Help?
do i = 1, 10000

do j = 1, 1000

a[i] = a[i] + b[j,i] * c[i]

end do

end do
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do I = 1, N

do J = 1, M

do K = 1, L

A(I+1,J+1,K) = A(I,J,K) + B       

end do

end do

end do

• Type and benefit from loop interchange depends on the target machine, the 
data structures accessed, memory layout and stride patterns

• Optimization choices for the snippet on the right: vectorize J and K, 
parallelize K with threads, and vectorize I assuming column-major layout



Loop Shifting

• In a perfect loop nest, if loops at level 𝑖, 𝑖 + 1,… , 𝑖 + 𝑛 carry no 
dependence, i.e., all dependences are carried by loops at level less 
than 𝑖 or greater than 𝑖 + 𝑛, then it is always legal to shift these loops 
inside of loop 𝑖 + 𝑛 + 1. 

• These loops will not carry any dependences in their new position.
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+ 0 + 0 0 0

0 + - + + 0

0 0 0 0 + +

0 0 0 0 0 +

Loops 𝑖 to 𝑖 + 𝑛

Dependence carried
by outer loops

Dependence carried
by inner loops



Loop Shift for Matrix Multiply

DO I = 1, N

DO J = 1, N

DO K = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO
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We can move loops 
I and J inside

Is the loop nest 
vectorizable as is?



Scalar Expansion

DO I = 1, N

S1    T = A(I)

S2    A(I) = B(I)

S3    B(I) = T

ENDDO
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S1

S2

S3



Scalar Expansion

DO I = 1, N

S1    $T(I) = A(I)

S2    A(I) = B(I)

S3    B(I) = $T(I)

ENDDO

T = $T(N)
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S1

S2

S3

Eliminates dependences that arise from reuse of 
memory locations at the cost of extra memory



Scalar Expansion

DO I = 1, N

T = T + A(I) + A(I-1)

A(I) = T

ENDDO

$T(0) = T

DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)

A(I) = $T(I)

ENDDO

T = $T(N)
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Can we parallelize the I loop? 
Check the dependence graph.



Understanding Scalar Expansion

Pros

• Eliminates dependences due to 
reuse of memory locations, 
helps with parallelism

Cons

• Increases memory overhead

• Incurs addressing overhead
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DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

ENDDO 

DO I = 1, N, 64
DO i = 0, 63

T = A(I+i) + A(I+1+i)
A(I+i) = T + B(I+i)

ENDDO 

DO I = 1, N, 64
DO i = 0, 63

$T(i) = A(I+i) + A(I+1+i)
A(I+i) = $T(i) + B(I+i)

ENDDO 

Strip-mining
Strip loop

Can also try forward 
substitution



Limits of Scalar Expansion

DO I = 1, 100

S1    T = A(I) + B(I)

S2    C(I) = T + T

S3 T = D(I) - B(I)

S4    A(I+1) = T * T

ENDDO

DO I = 1, 100

S1 $T(I) = A(I) + B(I)

S2    C(I) = $T(I) + $T(I)

S3 $T(I) = D(I) - B(I)

S4    A(I+1) = $T(I) * $T(I)

ENDDO
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Can we vectorize this 
loop nest? Check the 
dependence graph.



Scalar Renaming

DO I = 1, 100

S1    T = A(I) + B(I)

S2    C(I) = T + T

S3 T = D(I) - B(I)

S4    A(I+1) = T * T

ENDDO
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DO I = 1, 100

S1    T1 = A(I) + B(I)

S2    C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4    A(I+1) = T2 * T2

ENDDO

T = T2

Can we vectorize this 
loop nest as is?



Allow Vectorization with Statement Interchange
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DO I = 1, 100

S1    T1 = A(I) + B(I)

S2    C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4    A(I+1) = T2 * T2

ENDDO

T = T2

DO I = 1, 100

S3 T2 = D(I) - B(I)

S4    A(I+1) = T2 * T2

S1    T1 = A(I) + B(I)

S2    C(I) = T1 + T1

ENDDO

T = T2

S3 T2[1:100] = D(1:100) - B(1:100)

S4    A[2:101] = T2[1:100] * T2[1:100]

S1    T1[1:100] = A[1:100] + B[1:100]

S2    C[1:100] = T1[1:100] + T1[1:100]

T = T2[100]



Array Renaming
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DO I = 1, 100

S1    A(I) = A(I-1) + X

S2    Y(I) = A(I) + Z

S3    A(I) = B(I) + C

ENDDO

DO I = 1, 100

S1    $A(I) = A(I-1) + X

S2    Y(I) = $A(I) + Z

S3    A(I) = B(I) + C

ENDDO

Array renaming requires sophisticated 
analysis

S1

𝛿∞

S3

𝛿∞
−1

S2
𝛿∞
𝑜

𝛿1



Node Splitting
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DO I = 1, 100

S1    A(I) = X(I+1) + X(I)

S2    X(I+1) = B(I) + 10

ENDDO

S1 S2
𝛿0
−1

𝛿1

DO I = 1, 100

S0    $X(I) = X(I+1)

S1    A(I) = $X(I) + X(I)

S2    X(I+1) = B(I) + 10

ENDDO



Index-Set Splitting
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An index-set splitting transformation subdivides the loop into different iteration 
ranges

DO I = 1, 100

A(I+20) = A(I) + B

ENDDO

DO I = 1, 100, 20

DO i = I, I+19

A(i+20) = A(i) + B

ENDDO

ENDDO

strip-
mining



Loop Peeling
• Splits any problematic iterations (could be first, middle, or last few) 

from the loop body

• Change from a loop-carried dependence to loop-independent 
dependence

• Transformed loop carries no dependence, can be parallelized

• Peeled iterations execute in the original order, transformation is 
always legal to perform
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DO I = 1, N
A(I) = A(I) + A(1)

ENDDO

A(1) = A(1) + A(1)
DO I = 2, N
A(I) = A(I) + A(1)

ENDDO

Loop splitting

https://en.wikipedia.org/wiki/Loop_splitting


Loop Splitting

DO I = 1, N

A(I) = A(N/2) + B(I)

ENDDO

M = N/2

DO I = 1, M-1

A(I) = A(N/2) + B(I)

ENDDO

A(M) = A(N/2) + B(I)

DO I = M+1, N

A(I) = A(N/2) + B(I)

ENDDO
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assume N is 
divisible by 2

S1

𝛿∞
−1



Section-Based Splitting

DO I = 1,N

DO J = 1, N/2

S1      B(J,I) = A(J,I) + C

ENDDO

DO J = 1,N

S2      A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

DO I = 1,N

DO J = 1, N/2

S1      B(J,I) = A(J,I) + C

ENDDO

DO J = 1,N/2

S2      A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N

S3      A(J,I+1) = B(J,I) + D

ENDDO

ENDDO
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𝛿∞
𝛿1

S3 is 
independent



Enabling Vectorization with Section-Based Splitting
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DO I = 1,N

DO J = 1, N/2

S1      B(J,I) = A(J,I) + C

ENDDO

DO J = 1,N/2

S2      A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N

S3      A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

DO I = 1,N
DO J = N/2+1, N

S3      A(J,I+1) = B(J,I) + D
ENDDO

DO I = 1,N
DO J = 1,N/2

S1      B(J,I) = A(J,I) + C
ENDDO
DO J = 1, N/2

S2      A(J,I+1) = B(J,I) + D
ENDDO

ENDDO



Enabling Vectorization with Section-Based Splitting
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DO I = 1,N

DO J = N/2+1, N

S3      A(J,I+1) = B(J,I) + D

ENDDO

DO I = 1,N

DO J = 1,N/2

S1      B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N/2

S2      A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

M = N/2

S3  A(M+1:N,2:N+1) = B(M+1:N,1:N) + D

DO I = 1, N

S1    B(1:M,I) = A(1:M,I) + C

S2    A(1:M,I+1) = B(1:M,I) + D

ENDDO

cannot 
vectorize I



Loop Skewing

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

ENDDO

ENDDO
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I+J is 
same

Which loops carry 
dependences?



Loop Skewing

DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO
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j = I+J

What are the dependences now? Which 
loop carries the dependence?

Loop skewing skews the execution of the inner loop relative to the outer loop by adding 
the index of the outer loop times a skewing factor 𝑓 to the bounds of the inner loop and 
subtracting the same value from all the uses of the inner loop index.



Perform Loop Interchange

DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO

DO j = 2, N+N

DO I = max(1,j-N), min(N,j-1)

S      A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO
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Are the loops 
vectorizable?

Can use Fourier-
Motzkin elimination

Given a dependency vector (𝑎, 𝑏), 
skewing transforms it to (𝑎, 𝑓𝑎 + 𝑏). 



Understanding Loop Skewing

Pros

• Reshapes the iteration space to 
find possible parallelism

• Preserves lexicographic order of 
the dependences, is always legal

• Allows for loop interchange in 
future

Cons

• Resulting iteration space can be 
trapezoidal

• Irregular loops are not very 
amenable for vectorization

• Need to be careful about load 
imbalance
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Loop Unrolling (Loop Unwinding)

• Reduce number of iterations of loops 

• Add statement(s) to do work of missing iterations

• JIT compilers try to perform unrolling at run-time
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for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

y[i] = y[i] + a[i][j]*x[j];

}

}

for (i=0; i<n; i++) {

for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j]

+ a[i][j+1]*x[j+1]

+ a[i][j+2]*x[j+2]

+ a[i][j+3]*x[j+3]; 

}

}

4-way inner 
loop unrolling



Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++) {

for (j=0; j<m; j++) { 

loop-body(i,j);

}

}

for (i=0; i<2*n; i+=2) {        

for (j=0; j<m; j++) { 

loop-body(i,j) 

}

for (j=0; j<m; j++) { 

loop-body(i+1,j) 

}

}
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for (i=0; i<2*n; i+=2) {        

for (j=0; j<m; j++) { 

loop-body(i,j) 

loop-body(i+1,j) 

}

}

2-way outer unroll does not 
increase operation-level 

parallelism in the inner loop



Is Unroll and Jam Legal?

DO I = 1, N

DO J = 1, M

A(I,J) = A(I-1,J+1)+C

ENDDO

ENDDO

DO I = 1, N, 2

DO J = 1, M

A(I,J) = A(I-1,J+1)+C

A(I+1,J) = A(I,J+1)+C  

ENDDO

ENDDO
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Validity Condition for Loop Unroll/Jam

• Complete unroll/jam of a loop is equivalent to a loop permutation 
that moves that loop innermost, without changing order of other 
loops

• If such a loop permutation is valid, unroll/jam of the loop is valid

• Example: 4D loop ijkl; 𝑑1 = (1,-1,0,2), 𝑑2 = (1,1,-2,-1)
• i: 𝑑1 → (-1,0,2,1) ⟹ invalid to unroll/jam

• j: 𝑑1 → (1,0,2,-1); d2 -> (1,-2,-1,1) ⟹ valid to unroll/jam

• k: 𝑑1 → (1,-1,2,0); d2 -> (1,1,-1,-2) ⟹ valid to unroll/jam

• l: 𝑑1 and 𝑑2 are unchanged; innermost loop always unrollable

CS 610, IIT Kanpur Swarnendu Biswas



Understanding Loop Unrolling

Pros

• Small loop bodies are problematic, 
reduces control overhead of loops

• Increases operation-level parallelism 
in loop body

• Allows other optimizations like reuse 
of temporaries across iterations

Cons

• Increases the executable size

• Increases register usage 

• May prevent function inlining
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Loop Tiling (Loop Blocking)

• Improve data reuse by chunking the data in to smaller tiles (blocks)
• All the required blocks are supposed to fit in the cache

• Performs strip mining in multiple array dimensions

• Tries to exploit spatial and temporal locality of data
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for (i = 0; i < N; i++) {
…

}

for (j = 0; j < N; j +=B) {
for (i = j; i < min(N, j+B); j++) {

…
}

}



MVM with 2x2 Blocking
int i, j, n = 100;

int a[100][100], b[100], c[100];

for (i=0; i<n; i++) {

c[i] = 0;

for (j=0; j<n; j++) {

c[i] = c[i] + a[i][j] * b[j];

}

}

int i, j, x, y, n = 100;

int a[100][100], b[100], c[100];

for (i=0; i<n; i+=2) {

c[i] = 0;

c[i + 1] = 0;

for (j=0; j<n; j+=2) {

for (x=i; x<min(i+2,n); x++) {

for (y=j; y<min(j+2,n); y++) 

c[x] = c[x] + a[x][y] * b[y];

}

}

}

Loop nest optimization
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https://en.wikipedia.org/wiki/Loop_nest_optimization


Loop Tiling

• Determining the tile size 
• Requires accurate estimate of array accesses and the cache size of the target 

machine

• Loop nest order also influences performance

• Difficult theoretical problem, usually heuristics are applied

• Cache-oblivious algorithms make efficient use of cache without explicit 
blocking
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Validity Condition for Loop Tiling

• A band of loops is fully permutable 
if all permutations of the loops in 
that band are legal

• A contiguous band of loops can be 
tiled if they are fully permutable

• Example: 𝑑 = (1,2,-3)
• Tiling all three loops ijk is not valid, 

since the permutation kij is invalid 

• 2D tiling of band ij is valid

• 2D tiling of band jk is valid

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

loop_body(i,j,k)
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for (it = 0; it < n; it+=T)

for (jt = 0; tj < n; j+=T)

for (i = it; i < it+T; i++)

for (j = jt; j < jt+T; j++)

for (k = 0; k < n; k++)

loop_body(i,j,k)



Creating Coarse-Grained 
Parallelism
Focus is on parallelism of outer loops
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Find Work For Threads

• Setup
• Symmetric multiprocessors with shared memory 

• Threads are running on each core and are coordinating execution with 
occasional synchronization
• A basic synchronization element is a barrier

• A barrier in a program forces all processes to reach a certain point before execution 
continues

• Challenge: Balance the granularity of parallelism with communication 
overheads
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Challenges in Coarse-Grained Parallelism

• Running everything on one processor 
achieves minimal communication and 
synchronization overhead

• Very fine-grained parallelism achieves 
good load balance, but benefits may 
be outweighed by frequent 
communication and synchronization

CS 610, IIT Kanpur Swarnendu Biswas

Minimize communication and synchronization overhead while evenly 
load balancing across the processors



Challenges in Coarse-Grained Parallelism

• Running everything on one processor 
achieves minimal communication and 
synchronization overhead

• Very fine-grained parallelism achieves 
good load balance, but benefits may 
be outweighed by frequent 
communication and synchronization
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Minimize communication and synchronization overhead while evenly 
load balancing across the processors

One expectation from an 
optimizing compiler is to 

find the sweet spot



Few Ideas to Try

• Single loop
• Carries a dependence ⟹ Try transformations (e.g., loop distribution and 

scalar expansion) to eliminate the loop-carried dependence

• Decide on the granularity of the new parallel loop

• Perfect loop nests
• Try loop interchange to see if the dependence level can be changed
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Privatization

• Privatization is similar in flavor to scalar expansion

• Temporaries can be made local to each iteration
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DO I = 1,N

S1     T = A(I)

S2     A(I) = B(I)

S3     B(I) = T

ENDDO

PARALLEL DO I = 1,N

PRIVATE t

S1    t = A(I)

S2    A(I) = B(I)

S3    B(I) = t

ENDDO     



Privatization

• A scalar variable x in a loop L is privatizable if every path from the 
entry of L to a use of x in the loop passes through a definition of x
• No use of the variable is upward exposed, i.e., the use never reads a value 

that was assigned outside the loop

• No use of the variable is from an assignment in an earlier iteration

• Computing upward-exposed variables from a block 𝑥

• Computing privatizable variables for a loop body 𝐵 where 𝑏0 is the 
entry block
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𝑢𝑝 𝑥 = 𝑢𝑠𝑒 𝑥 ∪ (¬ 𝑑𝑒𝑓 𝑥 ∩ ራ

𝑦∈𝑠𝑢𝑐𝑐(𝑥)

𝑢𝑝(𝑦))

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝐵 = ¬𝑢𝑝 𝑏0 ∩ (ራ

𝑦∈𝐵

𝑑𝑒𝑓(𝑦))



Privatization

• If all dependences carried by a loop involve a privatizable variable, 
then loop can be parallelized by making the variables private

• Preferred compared to scalar expansion
• Less memory requirement

• Scalar expansion may suffer from false sharing

• However, there can be situations where scalar expansion works but 
privatization does not
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Comparing Privatization and Scalar Expansion
DO I = 1, N

T = A(I) + B(I)

A(I-1) = T

ENDDO

PARALLEL DO I = 1, N

T$(I) = A(I) + B(I)

A(I-1) = T$(I)

ENDDO
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DO I = 1, N

PRIVATE T

T = A(I) + B(I) 

A(I-1) = T

ENDDO     

PARALLEL DO I = 1, N

T$(I) = A(I) + B(I)

ENDDO

PARALLEL DO I = 1, N

A(I-1) = T$(I)

ENDDO

Privatization

DO I = 1, N

T = A(I) + B(I)

A(I-1) = T

ENDDO

Scalar 

Expansion

𝛿∞𝛿1
−1



Loop Distribution (Loop Fission)

DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

S2 D(I,J) = A(I,J-1) * 2.0

ENDDO

ENDDO

DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

ENDDO

DO J = 1, 100

S2 D(I,J) = A(I,J-1) * 2.0

ENDDO

ENDDO
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Eliminates loop-carried 
dependences

𝛿



Validity Condition for Loop Distribution

• Sufficient (but not necessary) condition: A loop with two statements 
can be distributed if there are no dependences from any instance of 
the later statement to any instance of the earlier one
• Generalizes to more statements
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For I = 1, N

S1    A(I) = B(I) + C(I)

S2    E(I) = A(I+1) * D(I)

EndFor

For I = 1, N

S1    A(I) = B(I) + C(I)

S2    E(I) = A(I-1) * D(I)

EndFor



Performing Loop Distribution
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FOR I = 1, N
S1:   A[I] = A[I] + B[I-1]
S2:   B[I] = C[I-1] + X
S3:   C[I] = B[I] + Y
S4:   D[I] = C[I] + D[I-1]

S1

S2

S3

S4

𝛿1

𝛿∞ 𝛿1

𝛿∞

𝛿1

S1

S2 S3

S4S4

𝛿1 𝛿∞

𝛿1

FOR I = 1, N
S2:   B[I] = C[I-1] + X
S3:   C[I] = B[I] + Y

FOR I = 1, N
S1:   A[I] = A[I] + B[I-1]

FOR I = 1, N
S4:   D[I] = C[I] + D[I-1]

Steps
i. Build the DDG
ii. Identify strongly-connected 

components (SCCs) in the DDG
iii. Make each SCC a separate loop
iv. Arrange the new loops in a 

topological order of the DDG



Understanding Loop Distribution

Pros

• Execute source of a dependence 
before the sink

• Reduces the memory footprint of the 
original loop for both data and code

• Improves opportunities for 
vectorization

Cons

• Can increase the synchronization 
required between dependence points

CS 610, IIT Kanpur Swarnendu Biswas



Loop Alignment

• Unlike loop distribution, realign the loop to compute and use the 
values in the same iteration
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DO I = 2, N

S1    A(I) = B(I) + C(I)

S2    D(I) = A(I-1) * 2.0

ENDDO

Cannot be 
parallelized DO i = 1, N+1

if i > 1 && i < N+1

S1      A(i) = B(i) + C(i)

if i < N

S2      D(i+1) = A(i) * 2.0

ENDDO
carried dependence 

becomes loop
independent



Can Loop Alignment Eliminate All Carried 
Dependences?
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DO i = 1, N+1

if i > 1

S1      B(i) = A(i-1) + D

if i < N+1

S2      A(i) = B(i) + C

ENDDO

A is aligned, B
is misaligned 

DO i = 0, N

if i > 0

S1      A(i+1) = B(i) + C

if i < N

S2      X(i+1) = A(i+2) + A(i+1)

ENDDO

A is aligned, B
is misaligned 

DO I = 1, N

S1    A(I) = B(I) + C

S2    B(I+1) = A(I) + D

ENDDO
A is aligned, B
is misaligned 

DO I = 1, N

S1    A(I+1) = B(I) + C

S2    X(I) = A(I+1) + A(I)

ENDDO



Loop Fusion (Loop Jamming)

DO I = 1, N

S1    A(I) = B(I) + 1

S2    C(I) = A(I) + C(I-1)

S3    D(I) = A(I) + X

ENDDO

L1  DO I = 1, N

A(I) = B(I) + 1

ENDDO

L2  DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO

L3  DO I = 1, N

D(I) = A(I) + X

ENDDO
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loop-carried 
dependence



Loop Fusion (Loop Jamming)

L1  DO I = 1, N

A(I) = B(I) + 1

ENDDO

L2  DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO

L3  DO I = 1, N

D(I) = A(I) + X

ENDDO

L13 PARALLEL DO I = 1, N

A(I) = B(I) + 1

D(I) = A(I) + X

ENDDO

L2  DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO
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Validity Condition for Loop Fusion

• Consider a loop-independent dependence between statements in 
two different loops (i.e., from S1 to S2) 

• A dependence is fusion-preventing if fusing the two loops causes the 
dependence to be carried by the combined loop in the reverse 
direction (from S2 to S1)
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DO I = 1, N

S1    A(I) = B(I) + C

ENDDO

DO I = 1, N

S2    D(I) = A(I+1) + E

ENDDO

DO I = 1, N

S1    A(I) = B(I) + C

S2    D(I) = A(I+1) + E

ENDDO No
Loop independent 
flow dependence

Backward loop-carried 
anti dependence



Understanding Loop Fusion

Pros

• Reduce overhead of loops

• May improve temporal locality

Cons

• May decrease data locality in the 
fused loop
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DO I = 1, N

S1    A(I) = B(I) + C

ENDDO

DO I = 1, N

S2    D(I) = A(I-1) + E

ENDDO

DO I = 1, N

S1    A(I) = B(I) + C

S2    D(I) = A(I-1) + E

ENDDO

Yes



Loop Interchange

DO I = 1, N

DO J = 1, M

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO
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Loop I carries 
a dependence

Parallelizing J is good for vectorization, but not 
for coarse-grained parallelism



Loop Interchange

DO I = 1, N

DO J = 1, M

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO

DO J = 1, M

DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO
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PARALLEL DO J = 1, M

DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

END PARALLEL DO

Dependence-free loops 
should move to the 

outermost level



Loop Interchange

Vectorization

• Move dependence-free loops to 
innermost level

Coarse-grained Parallelism

• Move dependence-free loops to 
outermost level

CS 610, IIT Kanpur Swarnendu Biswas



Condition for Loop Interchange

• In a perfect loop nest, a loop can be parallelized at the outermost 
level if and only if the column of the direction matrix for that nest 
contains only “0” entries
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DO I = 1, N

DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)

ENDDO

ENDDO



Code Generation Strategy

1. Continue till there are no more columns to move
• Choose a loop from the direction matrix that has all “0” entries in the column

• Move it to the outermost position

• Eliminate the column from the direction matrix

2. Pick loop with most “+” entries, move to the next outermost 
position
• Generate a sequential loop

• Eliminate the column

• Eliminate any rows that represent dependences carried by this loop

3. Repeat from Step 1
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Code Generation Example

DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

ENDDO

ENDDO
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What is the direction matrix? Can 
we permute the loops?



DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

ENDDO

ENDDO

Code Generation Example
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+ 0 0

0 0 +

+ + +

Since there are no columns with all 
“0” entries, none of the loops can be 
parallelized at the outermost level



Generated Code

DO I = 1, N

PARALLEL DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

END PARALLEL DO

ENDDO
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How did we 
pick loop J?



How can we parallelize this loop?

DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO
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0 + -

+ 0 -

No single loop carries all the dependences, 
so we can only parallelize loop K



Loop Reversal
DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO

DO I = 2, N+1

DO J = 2, M+1

DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO
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0 + -

+ 0 -

0 + +

+ 0 +



Loop Reversal

• When the iteration space of a loop is reversed, the direction of 
dependences within that reversed iteration space are also 
reversed 
• A “+" dependence becomes a “-" dependence, and vice versa

• We cannot perform loop reversal if the loop carries a 
dependence
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Perform Interchange after Loop Reversal

DO K = L, 1, -1

DO I = 2, N+1

DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO
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+ 0 +

+ + 0
Parallelize 

loops I and J

Increases options for performing other 
optimizations



Which Transformations are Most Important?

• Selecting the best loops for parallelization 
is a NP-complete problem

• Flow dependences are difficult to remove 
• Try to reorder statements as in loop peeling, 

loop distribution

• Techniques like scalar expansion, 
privatization can be useful
• Loops often use scalars for temporary values
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+ + 0 0

+ 0 + 0

+ 0 0 +

0 + 0 0

0 0 + 0

0 0 0 +

Carries most 
dependences!??



Unimodular Transformations
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Challenges in Applying Transformations

• We have discussed transformations (legality and benefits) in isolation

• Compilers need to apply compound transformations (e.g., loop 
interchange followed by reversal)

• It is challenging to decide on the desired transformations and their 
order of application
• Choice and order is sensitive to the program input, a priori order does not 

work
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Unimodular Transformations
• A unimodular matrix is a square integer matrix having determinant 1 

or -1 (e.g., 1 1
1 0

)

• Few loop transformations can be modelled as matrix transformations 
involving unimodular matrices
• Loop interchange maps iteration (𝑖, 𝑗) to iteration (𝑗, 𝑖)

• Given the transformation 𝑇 is linear, the transformed dependence is given by 
𝑇𝒅 where 𝒅 is the dependence vector in the original iteration space
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0 1
1 0

𝑖
𝑗
=

𝑗
𝑖

0 1
1 0

𝑑1
𝑑2

=
𝑑2
𝑑1

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS’91.



Unimodular Transformations

• The transformation matrix for loop reversal of the outer loop I in a 

2D loop nest is −1 0
0 1

• The transformation matrix for loop skewing of a 2D loop nest (𝑖, 𝑗) is 
the identity matrix 𝑇 with 𝑇𝑗,𝑖 equal to 𝑓, where we skew loop 𝑗 with 
respect to loop 𝑖 by a factor 𝑓
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Example of Loop Skewing

Original Skewed
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FOR I=1,5
FOR J=1,5

A(I,J) = A(I-1,J) + A(I,J-1)

Transformation matrix 𝑇 =
1 0

1 1

FOR I=1,5
FOR j=I+1,I+5

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

Dependences 𝐷 = {(1,0), (0,1)}

Dependences 𝐷′ = 𝑇𝐷 = { 1,1 , 0,1 }



Representing Compound Transformations
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for I = 1, N
for J = 1, N

A[I,J] = A[I-1,J+1] + C

Loop interchange is illegal since 
0 1
1 0

1
−1

=
−1
1

Let us try loop interchange followed by loop reversal. The 

transformation matrix 𝑇 is 
−1 0
0 1

0 1
1 0

=
0 −1
1 0

.

Applying 𝑇 to the loop nest is legal since 
0 −1
1 0

1
−1

=
1
1

.

for J = N, 1
for I = 1, N

A[I,J] = A[I-1,J+1] + C



Challenges for Real-World Compilers

• Conditional execution

• Symbolic loop bounds

• Indirect memory accesses

• … 
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