CS 610: Loop Transformations

Swarnendu Biswas

Semester 2023-24-I CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Enhancing Program Performance

Possible ideas

- Adequate fine-grained parallelism
 - Multiple pipelined functional units in each core
 - Exploit vector instruction sets (SSE, AVX, AVX-512)
- Adequate parallelism for SMP-type systems
 - Keep multiple asynchronous processors busy with work
- Minimize cost of memory accesses

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

- Code restructuring optimizations
- Prefetching optimizations
- Data layout optimizations
- Code layout optimizations

Loop Optimizations

- Loops are one of most commonly used constructs in HPC program
- Compiler performs many loop optimization techniques automatically
 - In some cases, source code modifications can enhance optimizer's ability to transform code

Reordering Transformations

- A reordering transformation does not add or remove statements from a loop nest
 - Only reorders the execution of the statements that are already in the loop

Do not add or remove any new dependences

Reordering Transformations

- A reordering transformation does not add or remove statements from a loop nest
 - Only reorders the execution of the statements that are already in the loop

A reordering transformation is valid if it preserves all existing dependences in the loop

Iteration Reordering and Parallelization

- A transformation that reorders the iterations of a level-k loop, without making any other changes, is valid if the loop carries no dependence
- Each iteration of a loop may be executed in parallel if it carries no dependences

Data Dependence Graph and Parallelization

- If the Data Dependence Graph (DDG) is acyclic, then vectorization of the program is possible and is straightforward
- Otherwise, try to transform the DDG to an acyclic graph

Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops

System Setup

- Setup: vector or superscalar architectures
- Focus is mostly on parallelizing the inner loops
- We will see optimizations for coarse-grained parallelism later

Loop Interchange (Loop Permutation)

- Switch the nesting order of loops in a **perfect** loop nest
- Can increase parallelism, can improve spatial locality

```
DO I = 1, N
DO J = 1, M
S A(I,J+1) = A(I,J) + B
ENDDO
ENDDO
```

 Dependence is now carried by the outer loop, inner loop can be vectorized

Example of Loop Interchange

```
do i = 1, n
    do j = 1, n
        C(i, j) = C(i-1,j+1)
        enddo
enddo
```


Swarnendu Biswas

Validity of Loop Interchange

- 1. Construct direction vectors for all possible dependences in the loop to form a direction matrix
 - Identical direction vectors are represented by a single row in the matrix
- 2. Compute direction vectors after permutation
- 3. Permutation of the loops in a perfect nest is legal iff there are no "-" direction as the leftmost non-"0" direction in any direction vector

Validity of Loop Interchange

- Loop interchange is valid for a 2D loop nest if none of the dependence vectors has any negative components
- Interchange is legal: (1,1), (2,1), (0,1), (3,0)
- Interchange is not legal: (1,-1), (3,-2)

```
DO J = 1, M

DO I = 1, N

A(I,J+1) = A(I+1,J) + B

ENDDO

ENDDO
```

Validity of Loop Permutation

- Generalization to higher-dimensional loops: Permute all dependence vectors exactly the same way as the intended loop permutation
- If any permuted vector is lexicographically negative, permutation is illegal
- Example: $d_1 = (1, -1, 1)$ and $d_2 = (0, 2, -1)$
 - $ijk \rightarrow jik$? $(1,-1,1) \rightarrow (-1,1,1)$: illegal
 - $ijk \rightarrow kij? (0,2,-1) \rightarrow (-1,0,2)$: illegal
 - $ijk \rightarrow ikj? (0,2,-1) \rightarrow (0,-1,2)$: illegal
 - No valid permutation: j cannot be outermost loop (-1 component in d_1), and k cannot be outermost loop (-1 component in d_2)
- A loop nest is **fully** permutable if any permutation transformation to the loop nest is legal

Benefits from Loop Permutation

```
for (i=0; i<n; i++)
for (j=0; j<n; j++)
for (k=0; k<n; k++)
        C[i][j] += A[i][k]*B[k][j];</pre>
```

Stride	ikj	kij	jik	ijk	jki	kji
C[i][j]	1	1	0	0	n	n
A[i][k]	0	0	1	1	n	n
B[k][j]	1	1	n	n	0	0

Understanding Loop Interchange

Pros	Cons
 Goal is to improve locality of reference or allow vectorization 	 Need to be careful about the iteration order, order of array accesses, and data involved

Does Loop Interchange/Permutation Always Help?

```
do i = 1, 10000
    do j = 1, 1000
        a[i] = a[i] + b[j,i] * c[i]
        end do
    end do
```

- Type and benefit from loop interchange depends on the target machine, the data structures accessed, memory layout and stride patterns
- Optimization choices for the snippet on the right: vectorize J and K, parallelize K with threads, and vectorize I assuming column-major layout

Loop Shifting

- In a perfect loop nest, if loops at level i, i + 1, ..., i + n carry no dependence, i.e., all dependences are carried by loops at level less than i or greater than i + n, then it is always legal to shift these loops inside of loop i + n + 1.
- These loops will not carry any dependences in their new position.

Loop Shift for Matrix Multiply

Scalar Expansion

	DO I = 1, N
S1	T = A(I)
S2	A(I) = B(I)
S3	B(I) = T
	ENDDO

Scalar Expansion

	DO I = 1 , N
S1	T(I) = A(I)
S2	A(I) = B(I)
S3	B(I) = T(I)
	ENDDO
	T = T(N)

Eliminates dependences that arise from reuse of memory locations at the cost of extra memory

Scalar Expansion

```
DO I = 1, N
                                    T(0) = T
 T = T + A(I) + A(I-1)
                                    DO I = 1, N
 A(I) = T
                                       T(I) = T(I-1) + A(I) + A(I-1)
ENDDO
                                      A(I) = T(I)
                                     ENDDO
                                    T = T(N)
             Can we parallelize the I loop?
             Check the dependence graph.
```

Understanding Scalar Expansion

Limits of Scalar Expansion

	DO I = 1, 100
S1	T = A(I) + B(I)
S2	C(I) = T + T
S3	T = D(I) - B(I)
S4	A(I+1) = T * T
	ENDDO

	DO I = 1, 100
S1	T(I) = A(I) + B(I)
S2	C(I) = T(I) + T(I)
S3	T(I) = D(I) - B(I)
S4	A(I+1) = T(I) * T(I)
	ENDDO
	Can we vectorize this loop nest? Check the dependence graph.

Scalar Renaming

	DO I = 1, 100			DO I = 1, 100
S1	T = A(I) + B(I)		S1	T1 = A(I) + B(I)
S2	C(I) = T + T		S2	C(I) = T1 + T1
S 3	T = D(I) - B(I)		S 3	T2 = D(I) - B(I)
S4	A(I+1) = T * T		S4	A(I+1) = T2 * T2
	ENDDO			ENDDO
			1	T = T2
		Can w	ve vec	torize this
			op nes	t as is?

Allow Vectorization with Statement Interchange

Array Renaming

	DO I =	1, 100
S1	A(I)	= A(I-1) + X
S2	Y(I)	= A(I) + Z
S3	A(I)	= B(I) + C
	ENDDO	

	DO I = 1, 100
S1	A(I) = A(I-1) + X
S2	Y(I) = \$A(I) + Z
S 3	A(I) = B(I) + C
	ENDDO

Array renaming requires sophisticated analysis

Swarnendu Biswas

Node Splitting

	DO I = 1, 100
S0	X(I) = X(I+1)
S1	A(I) = \$X(I) + X(I)
S2	X(I+1) = B(I) + 10
	ENDDO

Index-Set Splitting

DO I = 1, 100 A(I+20) = A(I) + B ENDDO

An index-set splitting transformation subdivides the loop into different iteration ranges

Loop Peeling

- Splits any problematic iterations (could be first, middle, or last few) from the loop body
- Change from a loop-carried dependence to loop-independent dependence
- Transformed loop carries no dependence, can be parallelized
- Peeled iterations execute in the original order, transformation is always legal to perform

DO I = 1, N A(I) = A(I) + A(1) ENDDO

$$A(1) = A(1) + A(1)$$

DO I = 2, N
 $A(I) = A(I) + A(1)$
ENDDO

Loop splitting

Loop Splitting

assume N is divisible by 2 M = N/2DO I = 1, M-1A(I) = A(N/2) + B(I)ENDDO A(M) = A(N/2) + B(I)DO I = M+1, N A(I) = A(N/2) + B(I)ENDDO

Section-Based Splitting

DO J = 1, N/2S1 B(J,I) = A(J,I) + CDO J = 1, N/2A(J,I+1) = B(J,I) + DDO J = N/2+1, N A(J,I+1) = B(J,I) + D

Swarnendu Biswas

Enabling Vectorization with Section-Based Splitting

DO $I = 1, N$	DO $I = 1, N$
DO J = 1, $N/2$	DO J = N/2+1, N
S1 $B(J,I) = A(J,I) + C$	S3 $A(J,I+1) = B(J,I) + D$
ENDDO	ENDDO
DO J = 1.N/2	DO $I = 1, N$
S2 $A(1 T+1) = B(1 T) + D$	DO $J = 1, N/2$
	S1 $B(J,I) = A(J,I) + C$
$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	ENDDO
DU J = N/2+1, N	DO J = 1, $N/2$
S3 $A(J,I+1) = B(J,I) + D$	S2 $A(J,I+1) = B(J,I) + D$
ENDDO	ENDDO
ENDDO	ENDDO

Enabling Vectorization with Section-Based Splitting

Loop Skewing

DO I = 1, N DO J = 1, N A(I,J) = A(I-1,J) + A(I,J-1)ENDDO ENDDO Which loops carry dependences?

S

Loop skewing skews the execution of the inner loop relative to the outer loop by adding the index of the outer loop times a skewing factor f to the bounds of the inner loop and subtracting the same value from all the uses of the inner loop index.

Understanding Loop Skewing

- Reshapes the iteration space to find possible parallelism
- Preserves lexicographic order of the dependences, is always legal
- Allows for loop interchange in future

- Cons
- Resulting iteration space can be trapezoidal
- Irregular loops are not very amenable for vectorization
- Need to be careful about load imbalance

Loop Unrolling (Loop Unwinding)

- Reduce number of iterations of loops
- Add statement(s) to do work of missing iterations
- JIT compilers try to perform unrolling at run-time

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    y[i] = y[i] + a[i][j]*x[j];
  }
}</pre>
```

Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++) {
 for (j=0; j<m; j++) {
 loop-body(i,j);</pre>

}

for (i=0; i<2*n; i+=2) {
 for (j=0; j<m; j++) {
 loop-body(i,j)
 }</pre>

for (j=0; j<m; j++) {
 loop-body(i+1,j)</pre>

for (i=0; i<2*n; i+=2) {
 for (j=0; j<m; j++) {
 loop-body(i,j)
 loop-body(i+1,j)</pre>

2-way outer unroll does not increase operation-level parallelism in the inner loop

Is Unroll and Jam Legal?

DO I = 1, N DO J = 1, M A(I,J) = A(I-1,J+1)+C ENDDO ENDDO

Validity Condition for Loop Unroll/Jam

- Complete unroll/jam of a loop is equivalent to a loop permutation that moves that loop innermost, without changing order of other loops
- If such a loop permutation is valid, unroll/jam of the loop is valid
- Example: 4D loop ijkl; $d_1 = (1,-1,0,2), d_2 = (1,1,-2,-1)$
 - $i: d_1 \rightarrow (-1,0,2,1) \Longrightarrow$ invalid to unroll/jam
 - $j: d_1 \rightarrow (1,0,2,-1); d2 \rightarrow (1,-2,-1,1) \Longrightarrow$ valid to unroll/jam
 - k: $d_1 \rightarrow (1,-1,2,\mathbf{0})$; d2 -> (1,1,-1,-2) \Longrightarrow valid to unroll/jam
 - $l: d_1$ and d_2 are unchanged; innermost loop always unrollable

Understanding Loop Unrolling

• Allows other optimizations like reuse

of temporaries across iterations

Pros	Cons
 Small loop bodies are problematic, reduces control overhead of loops 	 Increases the executable size Increases register usage
 Increases operation-level parallelism in loop body 	 May prevent function inlining

Loop Tiling (Loop Blocking)

- Improve data reuse by chunking the data in to smaller tiles (blocks)
 - All the required blocks are supposed to fit in the cache
- Performs strip mining in multiple array dimensions
- Tries to exploit spatial and temporal locality of data

```
for (i = 0; i < N; i++) {
    ...
}</pre>
```

MVM with 2x2 Blocking

```
int i, j, n = 100;
int a[100][100], b[100], c[100];
for (i=0; i<n; i++) {</pre>
 c[i] = 0;
 for (j=0; j<n; j++) {</pre>
    c[i] = c[i] + a[i][j] * b[j];
 }
```

```
int i, j, x, y, n = 100;
int a[100][100], b[100], c[100];
for (i=0; i<n; i+=2) {</pre>
  c[i] = 0;
  c[i + 1] = 0;
  for (j=0; j<n; j+=2) {</pre>
    for (x=i; x<min(i+2,n); x++) {</pre>
      for (y=j; y<min(j+2,n); y++)</pre>
        c[x] = c[x] + a[x][y] * b[y];
    }
```

Loop nest optimization

Loop Tiling

- Determining the tile size
 - Requires accurate estimate of array accesses and the cache size of the target machine
 - Loop nest order also influences performance
 - Difficult theoretical problem, usually heuristics are applied
 - Cache-oblivious algorithms make efficient use of cache without explicit blocking

Validity Condition for Loop Tiling

- A band of loops is fully permutable if all permutations of the loops in that band are legal
- A contiguous band of loops can be tiled if they are fully permutable
- Example: d = (1,2,-3)
 - Tiling all three loops ijk is not valid, since the permutation kij is invalid
 - 2D tiling of band ij is valid
 - 2D tiling of band jk is valid

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
loop_body(i,j,k)</pre>
```

```
for (it = 0; it < n; it+=T)
for (jt = 0; tj < n; j+=T)
for (i = it; i < it+T; i++)
for (j = jt; j < jt+T; j++)
for (k = 0; k < n; k++)
loop_body(i,j,k)</pre>
```

Creating Coarse-Grained Parallelism

Focus is on parallelism of outer loops

Find Work For Threads

- Setup
 - Symmetric multiprocessors with shared memory
 - Threads are running on each core and are coordinating execution with occasional synchronization
 - A basic synchronization element is a barrier
 - A barrier in a program forces all processes to reach a certain point before execution continues
- Challenge: Balance the granularity of parallelism with communication overheads

Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly load balancing across the processors

- Running everything on one processor achieves minimal communication and synchronization overhead
- Very fine-grained parallelism achieves good load balance, but benefits may be outweighed by frequent communication and synchronization

Challenges in Coarse-Grained Parallelism

Few Ideas to Try

- Single loop
 - Carries a dependence ⇒ Try transformations (e.g., loop distribution and scalar expansion) to eliminate the loop-carried dependence
 - Decide on the granularity of the new parallel loop
- Perfect loop nests
 - Try loop interchange to see if the dependence level can be changed

Privatization

- Privatization is similar in flavor to scalar expansion
- Temporaries can be made local to each iteration

	DO I = 1,N
S1	T = A(I)
S2	A(I) = B(I)
S3	B(I) = T
	ENDDO

PARALLEL DO I = 1,N PRIVATE t S1 t = A(I)S2 A(I) = B(I)S3 B(I) = tENDDO

Privatization

- A scalar variable x in a loop L is **privatizable** if every path from the entry of L to a use of x in the loop passes through a definition of x
 - No use of the variable is upward exposed, i.e., the use never reads a value that was assigned outside the loop
 - No use of the variable is from an assignment in an earlier iteration
- Computing upward-exposed variables from a block x

$$up(x) = use(x) \cup (\neg def(x) \cap \bigcup_{y \in succ(x)} up(y))$$

• Computing privatizable variables for a loop body B where b_0 is the entry block

$$private(B) = \neg up(b_0) \cap (\bigcup_{y \in B} def(y))$$

Privatization

- If all dependences carried by a loop involve a privatizable variable, then loop can be parallelized by making the variables private
- Preferred compared to scalar expansion
 - Less memory requirement
 - Scalar expansion may suffer from false sharing
- However, there can be situations where scalar expansion works but privatization does not

Comparing Privatization and Scalar Expansion

CS 610, IIT Kanpur

Swarnendu Biswas

Loop Distribution (Loop Fission)

DO I = 1, 100
DO J = 1, 100
S1
$$A(I,J) = B(I,J) + C(I,J)$$

S2 $D(I,J)^{\delta} = A(I,J-1) * 2.0$
ENDDO
ENDDO

DO I = 1, 100DO J = 1, 100A(I,J) = B(I,J) + C(I,J)S1 ENDDO DO J = 1, 100D(I,J) = A(I,J-1) * 2.0S2 ENDDO ENDDO **Eliminates loop-carried** dependences

Validity Condition for Loop Distribution

- Sufficient (but not necessary) condition: A loop with two statements can be distributed if there are no dependences from any instance of the later statement to any instance of the earlier one
 - Generalizes to more statements

For I = 1, N
S1
$$A(I) = B(I) + C(I)$$

S2 $E(I) = A(I+1) * D(I)$
EndFor

Performing Loop Distribution

Steps

- i. Build the DDG
- ii. Identify strongly-connected components (SCCs) in the DDG
- iii. Make each SCC a separate loop
- iv. Arrange the new loops in a topological order of the DDG

```
FOR I = 1, N

S1: A[I] = A[I] + B[I-1]

S2: B[I] = C[I-1] + X

S3: C[I] = B[I] + Y

S4: D[I] = C[I] + D[I-1]
```


 δ_∞

Understanding Loop Distribution

Pros	Cons
 Execute source of a dependence before the sink 	 Can increase the synchronization required between dependence points
 Reduces the memory footprint of the original loop for both data and code 	

• Improves opportunities for vectorization

Loop Alignment

• Unlike loop distribution, realign the loop to compute and use the values in the same iteration

Can Loop Alignment Eliminate All Carried Dependences?

DO i = 1, N+1 if i > 1 S1 B(i) = A(i-1) + D if i < N+1 S2 A(i) = B(i) + C ENDDO

Loop Fusion (Loop Jamming)

DO I = 1, N
S1
$$A(I) = B(I) + 1$$

S2 $C(I) = A(I) + C(I-1)$
S3 $D(I) = A(I) + X$
ENDDO
Loop-carried
dependence

.1 DO I = 1, N

$$A(I) = B(I) + 1$$

ENDDO
2 DO I 1 N

.2 DO I = 1, N

$$C(I) = A(I) + C(I-1)$$

ENDDO

L

Loop Fusion (Loop Jamming)

```
L1 DO I = 1, N
     A(I) = B(I) + 1
    ENDDO
L2 DO I = 1, N
     C(I) = A(I) + C(I-1)
   ENDDO
L3 DO I = 1, N
     D(I) = A(I) + X
    ENDDO
```

```
L13 PARALLEL DO I = 1, N

A(I) = B(I) + 1

D(I) = A(I) + X

ENDDO

L2 DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO
```

Validity Condition for Loop Fusion

- Consider a loop-independent dependence between statements in two different loops (i.e., from S1 to S2)
- A dependence is fusion-preventing if fusing the two loops causes the dependence to be carried by the combined loop in the reverse direction (from S2 to S1)

Understanding Loop Fusion

Pros	Cons
 Reduce overhead of loops May improve temporal locality 	 May decrease data locality in the fused loop
DO I = 1, N S1 $A(I) = B(I) + C$ ENDDO DO I = 1, N S2 $D(I) = A(I-1) + E$ ENDDO	DO I = 1, N S1 $A(I) = B(I) + C$ S2 $D(I) = A(I-1) + E$ ENDDO $^{\circ}$ Yes

Loop Interchange

Loop Interchange

DO I = 1, N DO J = 1, M A(I+1,J) = A(I,J) + B(I,J) ENDDO ENDDO DO J = 1, M DO I = 1, N A(I+1,J) = A(I,J) + B(I,J) ENDDO ENDDO PARALLEL DO J = 1, M

Dependence-free loops should move to the outermost level DO I = 1, N A(I+1,J) = A(I,J) + B(I,J) ENDDO END PARALLEL DO

Loop Interchange

Vectorization	Coarse-grained Parallelism
 Move dependence-free loops to	 Move dependence-free loops to
innermost level	outermost level

Condition for Loop Interchange

• In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only "0" entries

```
DO I = 1, N

DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)

ENDDO

ENDDO
```

Code Generation Strategy

- 1. Continue till there are no more columns to move
 - Choose a loop from the direction matrix that has all "0" entries in the column
 - Move it to the outermost position
 - Eliminate the column from the direction matrix
- 2. Pick loop with **most "+" entries**, move to the next outermost position
 - Generate a sequential loop
 - Eliminate the column
 - Eliminate any rows that represent dependences carried by this loop
- 3. Repeat from Step 1
Code Generation Example

```
DO I = 1, N
  DO J = 1, M
    DO K = 1, L
      A(I+1,J,K) = A(I,J,K) + X1
      B(I,J,K+1) = B(I,J,K) + X2
      C(I+1, J+1, K+1) = C(I, J, K) + X3
    ENDDO
  ENDDO
ENDDO
```

What is the direction matrix? Can we permute the loops?

Code Generation Example

```
DO I = 1, N
  DO J = 1, M
    DO K = 1, L
      A(I+1,J,K) = A(I,J,K) + X1
      B(I,J,K+1) = B(I,J,K) + X2
      C(I+1, J+1, K+1) = C(I, J, K) + X3
    ENDDO
  ENDDO
ENDDO
```


How can we parallelize this loop?

Loop Reversal

DO I = 2, N+1
DO J = 2, $M+1$
DO K = 1, L
A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
ENDDO
ENDDO
ENDDO
DO I = 2, N+1
DO J = 2, $M+1$
DO K = L, 1, -1
A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
ENDDO
ENDDO
ENDDO

0	+	-
+	0	-

0	+	+
+	0	+

Loop Reversal

- When the iteration space of a loop is reversed, the direction of dependences within that reversed iteration space are also reversed
 - A "+" dependence becomes a "-" dependence, and vice versa
- We cannot perform loop reversal if the loop carries a dependence

Perform Interchange after Loop Reversal

Which Transformations are Most Important?

- Selecting the best loops for parallelization is a NP-complete problem
- Flow dependences are difficult to remove
 - Try to reorder statements as in loop peeling, loop distribution
- Techniques like scalar expansion, privatization can be useful
 - Loops often use scalars for temporary values

	+	+	0	0
	+	0	+	0
	+	0	0	+
	0	+	0	0
	0	0	+	0
	0 ₈	0	0	+
Carries most				
dependences!??				

Unimodular Transformations

Challenges in Applying Transformations

- We have discussed transformations (legality and benefits) in isolation
- Compilers need to apply compound transformations (e.g., loop interchange followed by reversal)
- It is challenging to decide on the desired transformations and their order of application
 - Choice and order is sensitive to the program input, a priori order does not work

Unimodular Transformations

- A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g., $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$)
- Few loop transformations can be modelled as matrix transformations involving unimodular matrices
 - Loop interchange maps iteration (*i*, *j*) to iteration (*j*, *i*)

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} j \\ i \end{bmatrix}$$

 Given the transformation T is linear, the transformed dependence is given by Td where d is the dependence vector in the original iteration space

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} d_2 \\ d_1 \end{bmatrix}$$

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS'91.

Unimodular Transformations

- The transformation matrix for **loop reversal** of the outer loop I in a 2D loop nest is $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- The transformation matrix for **loop skewing** of a 2D loop nest (i, j) is the identity matrix T with $T_{j,i}$ equal to f, where we skew loop j with respect to loop i by a factor f

Example of Loop Skewing

Original	Skewed
<pre>FOR I=1,5 FOR J=1,5 A(I,J) = A(I-1,J) + A(I,J-1)</pre>	<pre>FOR I=1,5 FOR j=I+1,I+5 A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)</pre>
Dependences $D = \{(1,0), (0,1)\}$	\mathbf{T}

Transformation matrix $T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

Dependences $D' = TD = \{(1,1), (0,1)\}$

Representing Compound Transformations

for I = 1, N for J = 1, N $A[I,J] = A[I-1,J+1] + C \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Loop interchange is illegal since

Let us try loop interchange followed by loop reversal. The transformation matrix T is $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. for J = N, 1for I = 1, N A[I,J] = A[I-1,J+1] + CApplying *T* to the loop nest is legal since $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Challenges for Real-World Compilers

- Conditional execution
- Symbolic loop bounds
- Indirect memory accesses

...

References

- R. Allen and K. Kennedy Optimizing Compilers for Multicore Architectures, Chapters 5-6.
- S. Midkiff Automatic Parallelization: An Overview of Fundamental Compiler Techniques.
- P. Sadayappan and A. Sukumaran Rajam CS 5441: Parallel Computing, Ohio State University.
- M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS'91.