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Rise of GPU Computing

• Popularity of graphical OS in late 80s 
created a market for a new compute 
device
• 2D display accelerators offered hardware-

assisted bitmap operations

• Silicon Graphics popularized use of 3D 
graphics
• Released OpenGL as a programming 

interface to its hardware

• Popularity of first-person games in 
mid-90s was the final push for 
graphics accelerators
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Need for GPU Computing Support

• Many real-world applications are 
compute-intensive and data-
parallel
• They need to process a lot of data, 

mostly floating-point operations

• Example
• Real-time high-definition graphics 

applications such as your favorite 
video games

• Iterative kernels which update 
elements according to some fixed 
pattern called a stencil

CS 610, IIT Kanpur Swarnendu Biswas



Rise of GPU Computing

• Researchers tricked GPUs to perform non-rendering computations

• Programming initial GPU devices for other purposes was very 
convoluted
• Programming model was very restrictive

• Limited input colors and texture units, writes to arbitrary locations, floating-
point computations

• This spurred the need for a generic highly-parallel computational 
device with high computational power and memory bandwidth
• CPUs are more complex devices catering to a wider audience
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Enter NVIDIA and CUDA

• NVIDIA released GeForce 8800 GTX in 2006 with CUDA architecture
• General-purpose ALU and instruction set for general-purpose computation

• IEEE compliance for single-precision floating-point arithmetic

• Allowed arbitrary reads and writes to shared memory

• Introduced CUDA C and the toolchain for ease of development with 
the CUDA architecture

CS 610, IIT Kanpur Swarnendu Biswas



Rise of GPU Computing

• GPUs are now used in different applications
• Game effects, computational science simulations, image processing and 

machine learning, linear algebra

• Several GPU vendors like NVIDIA, AMD, Intel, QualComm, and ARM
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GPU Architecture
Philosophy and design goals
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An Analytical Model-based Analysis

Simple cache model where threads 
do not share data and there is infinite 
off-chip memory bandwidth

Large cache shared 
among few threads

Working set no longer 
fits in the cache

Hides long off-chip 
latency
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Key Insights in GPU Architecture

• GPUs are suited for compute-intensive data-parallel applications
• The same program is executed for each data element

• Less complex control flow

• Multi-core chip
• SIMD execution within a single core (many ALUs performing the same 

instruction)

• Multi-threaded execution on a single core (multiple threads executed 
concurrently by a core)
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Key Insights in GPU Architecture

• Much more transistors or real-estate is devoted to computation 
rather than data caching and control flow
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Key Insights in GPU Architecture

• GPUs do not reduce latency, they aim to hide latency

• The focus is on overall computing throughput rather than on the 
speed of an individual core
• High arithmetic intensity to hide latency of memory accesses

• Large number of schedulable units
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Floating-Point Operations per Second for the CPU 
and GPU
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CPU, GPU and MIC Hardware Characteristics over Time

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/


Memory Bandwidth for CPU and GPU
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Xeon 8180M Titan V
Cores 28 5120 (+ 640)
Active threads 2 per core 32 per core
Frequency 2.5 (3.8) GHz 1.2 (1.45) GHz
Peak performance (SP) 4.1 TFlop/s 13.8 TFlop/s
Peak mem. bandwidth 119 GB/s 653 GB/s
Maximum power 205 W 250 W
Launch price $13,000 $3000

Release dates
Xeon: Q3’17
Titan V: Q4’17

High-end CPU-GPU Comparison
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Compare GPU to CPU Architecture

• CPUs aim to reduce memory latency with increasingly large and 
complex memory hierarchy

• Disadvantages
• The Intel I7-920 processor has some 8 MB of internal L3 cache, almost 30% of 

the size of the chip 

• Larger cache structures increases the physical size of the processor

• Implies more expensive manufacturing costs and increases likelihood of 
manufacturing defects

• Effect of larger, progressively more inefficient caches ultimately 
results in higher costs to the end user
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Advantages of a GPU 

• Performance of Xeon 8180M and 
Titan V (based on peak values)
• 3.4X operations executed per second 

compared to the CPU

• Main memory bandwidth
• 5.5X bytes transferred per second 

compared to the CPU

• Cost- and energy-efficiency
• 15X as much performance per dollar
• 2.8X as much performance per watt

• GPU’s higher performance and 
energy efficiency are due to 
different allocation of chip area
• High degree of SIMD parallelism, 

simple in-order cores, less 
control/sync. logic, less 
cache/scratchpad capacity

• SIMD is more energy-efficient than 
MIMD since a single instruction can 
launch many data operations

• Simpler pipeline with no support for 
restartable instructions and precise 
exceptions
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From FLOPS to FLOPS/Watt

• Exploiting hardware specialization can improve energy efficiency

• Moving to vector hardware, such as that found in GPUs, may yield up 
to 10X gain in efficiency by eliminating overheads of instruction 
processing
• For example, Apple A8 application processor devotes more die area to its 

integrated GPU than to central processor unit (CPU) cores

• Most energy-efficient supercomputers are now based on GPUs 
instead of only-CPUs
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GPU Disadvantages

• Clearly, we should be using GPUs ALL the time?

• GPUs can only execute some types of code fast
• SIMD parallelism is not well suited for all algorithms

• Need lots of data parallelism, data reuse, & regularity

• GPUs are harder to program and tune than CPUs because of their 
architecture
• Fewer tools and libraries exist
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Role of CPUs 

• CPU is responsible for initiating computation on the GPU and 
transferring data to and from the GPU 

• Beginning and end of the computation typically require access to 
input/output (I/O) devices 

• There are ongoing efforts to develop APIs providing I/O services 
directly on the GPU
• GPUs are not standalone yet, assumes the existence of a CPU
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CPUs vs GPUs

CPUs

• Designed for running a small number 
of potentially complex tasks
• Tasks may be unconnected
• Suitable to run system software like the 

OS and applications

• Small number of registers per core 
private to a task 
• Context switch between tasks is 

expensive in terms of time
• Register set must be saved to memory 

and the next one restored from memory 

GPUs

• Designed for running large number of 
simple tasks
• Suitable for data-parallelism

• Have a single set of registers but with 
multiple banks 
• A context switch involves setting a bank 

selector to switch in and out the current 
set of registers 

• Orders of magnitude faster than having 
to save to RAM
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GPU Architecture
• GPUs consist of Streaming Multiprocessors (SMs)

• NVIDIA calls these streaming multiprocessors and AMD calls them compute 
units

• SMs contain Streaming Processors (SPs) or Processing Elements (PEs)
• Each core contains one or more ALUs and FPUs

• GPU can be thought of as a multi-multicore (manycore) system

Global Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Adapted from NVIDIA
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A Generic Modern GPU Architecture
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Ampere Architecture
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Ampere Architecture
• GA102 GPU includes 28.3 billion transistors with a die size of 628.4 mm2 
• A full GA102 GPU includes 7 Graphics Processing Clusters (GPCs), 42 (7*6) 

Texture Processing Clusters (TPCs), and 84 (7*12) Streaming 
Multiprocessors (SMs) 
• Each SM in GA10x GPUs contain 128 CUDA Cores for a total of 84*128=10752 CUDA 

cores
• Each SM has 256 (4*16384*32 bits) KB register file
• 84 RT Cores, and 336 Tensor Cores, 168 FP64 units (two per SM)

• Includes PCIe Gen4 providing up to up to 16 Gigatransfers/second bit rate 
• The memory subsystem consists of twelve 32-bit memory controllers (384-

bit total) 
• 512 KB of L2 cache is paired with each 32-bit memory controller, for a total 

of 6144 KB
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NVIDIA GPU Microarchitecture Release Year Remarks

Tesla 2006 Unified shader model

Fermi 2010 Improved double precision performance, support for FMA

Kepler 2012 Focused on energy efficiency, shuffle instructions, dynamic 
parallelism

Maxwell 2014 Focused on energy efficiency, larger L2 cache

Pascal 2016 Unified memory, half-precision floating-point

Volta 2017 Features tensor cores for deep learning workloads

Turing 2018 Features tensor cores for deep learning workloads and 
real-time ray tracing. Gaming version of Volta.

Ampere 2020 New generation tensor and ray-tracing cores

Hopper 2022 Faster memory subsystem, improves FP32 throughput

Lovelace 2022 Greater clock frequency

Blackwell
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Compute Capability

• When programming with CUDA, it is very important to be aware of 
the differences among different versions of hardware

• In CUDA, compute capability refers to architecture features
• For example, number of registers and cores, cache and memory size, 

supported arithmetic instructions

• For example, compute capability 1.x devices have 16KB local memory 
per thread, and 2.x and 3.x devices have 512KB local memory per 
thread

CUDA: Version features and specifications
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Discrete and Integrated GPUs

Discrete Integrated

CPU 
memory

GPU 
memory

CPU GPU

PCIe bus

Memory

CPU GPU

Cache
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Discrete and Integrated GPUs

Discrete

• More performant, consumes 
more energy

• Cost of PCIe transfers influences
the granularity of offloading and 
the performance

Integrated

• Less performant because of 
energy considerations

• CPU and GPU share physical 
memory (DRAM or LLC) and can 
avoid the cost of data transfers 
over a PCIe bus

CS 610, IIT Kanpur Swarnendu Biswas



CUDA Programming
Programming API for NVIDIA GPUs
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CUDA Philosophy

Computationally intensive 

• The time spent on computation significantly exceeds the time 
spent on transferring data to and from GPU memory 

Massively parallel

• The computations can be broken down into hundreds or 
thousands of independent units of work 

Single Instruction Multiple Thread (SIMT) philosophy 
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CUDA Programming Model

• Allows fine-grained data parallelism and thread parallelism nested 
within coarse-grained data parallelism and task parallelism

1. Partition the problem into coarse sub-problems that can be solved 
independently

2. Assign each sub-problem to a “block” of threads to be solved in parallel

3. Each sub-problem is also decomposed into finer work items that are solved 
in parallel by all threads within the “block”
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Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

}

$ nvcc hello-world.cu

$./a.out

$

CS 610, IIT Kanpur Swarnendu Biswas



Hello World with CUDA

#include <stdio.h>
#include <cuda.h>

__global__ void hwkernel() {
printf(“Hello world!\n”);

}

int main() {
hwkernel<<<1, 1>>>();
cudaDeviceSynchronize();

}

$ nvcc hello-world.cu

$./a.out
Hello world!

$

Program returns immediately after launching the 
kernel. To prevent program to finish before kernel is 
completed, we call cudaDeviceSynchronize().
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Hello World with CUDA

#include <stdio.h>
#include <cuda.h>

__global__ void hwkernel() {
printf(“Hello world!\n”);

}

int main() {
hwkernel<<<1, 32>>>();
cudaThreadSynchronize();

}

$ nvcc hello-world.cu

$./a.out
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
…
…
$
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Function Declarations in CUDA

Executed on Callable from

__device__ float deviceFunc() Device Device

__global__ void kernelFunc() Device Host*

__host__ float hostFunc() Host Host

• __global__ define a kernel function, must return void
• __device__ functions can have return values
• __host__ is default, and can be omitted
• Prepending __host__ __device__ causes the system to compile separate host and device 

versions of the function

CS 610, IIT Kanpur Swarnendu Biswas

*A kernel function can also be called from the device if dynamic parallelism is enabled.



Dynamic Parallelism

• It is possible to launch kernels from other kernels 

• Calling __global__ functions from the device is referred to as 
dynamic parallelism
• Requires CUDA devices of compute capability 3.5 and CUDA 5.0 or higher
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Execution Model

Host
(serial execution)

Device
(Parallel execution)

Parallel kernel on device

Parallel kernel on device

Serial code on host

Serial code on host
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Simple Processing Flow

PCI Bus
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1. Load input data into CPU memory 
(e.g., fread/rand)



Simple Processing Flow

PCI Bus
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2. Copy input data from CPU memory to 

GPU memory
cudaMemcpy(..., 
cudaMemcpyHostToDevice)



Simple Processing Flow

PCI Bus
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2. Copy input data from CPU memory to 

GPU memory

3. Load GPU program and execute,

caching data on chip for performance



Simple Processing Flow

2. Copy input data from CPU memory to 

GPU memory

3. Load GPU program and execute,

caching data on chip for performance

4. Copy results from GPU memory to 

CPU memory
cudaMemcpy(..., 
cudaMemcpyDeviceToHost)

PCI Bus
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Simple Processing Flow

PCI Bus
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5. Use results on CPU



Vector Addition Example

__global__ void VecAdd(float* A, float* B,
float* C, int N) {

int i = blockDim.x * blockIdx.x +
threadIdx.x;

if (i < N)
C[i] = A[i] + B[i];

}

int main() {
…
float* h_A = (float*)malloc(size);
float* h_B = (float*)malloc(size);
float* h_C = (float*)malloc(size);

float* d_A;
cudaMalloc(&d_A, size);
float* d_B;
cudaMalloc(&d_B, size);
float* d_C;
cudaMalloc(&d_C, size);

// Copy vectors from host memory to
// device memory
cudaMemcpy(d_A, h_A, size,

cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size,

cudaMemcpyHostToDevice);
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Vector Addition Example

// Invoke kernel

int threadsPerBlock = 256;

int blocksPerGrid = N/threadsPerBlock
;

VecAdd<<<blocksPerGrid, threadsPerBlo
ck>>>(d_A, d_B, d_C, N);

// Copy result from device memory to

// host memory

cudaMemcpy(h_C, d_C, size,

cudaMemcpyDeviceToHost);

…

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

…

}
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CUDA Extensions for C/C++

• Kernel launch
• Calling functions on GPU

• Memory management
• GPU memory allocation, copying data to/from GPU

• Declaration qualifiers
• __device__, __shared, __local, __global__, __host__

• Special instructions
• Barriers, fences, etc.

• Keywords
• threadIdx, blockIdx, blockDim
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C++11 Support from CUDA 7.5+ 

Supported Features

• auto

• lambdas

• constexpr

• rvalue references

• range-based for loops

Unsupported Features

• Standard library
• You cannot use std::cout in device 

code
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Kernels
• Special functions that a CPU can 

call to execute on the GPU
• Executed N times in parallel by N 

different CUDA threads

• Cannot return a value

• Each thread will execute 
VecAdd()

• Each thread has a unique thread 
ID that is accessible within the 
kernel through the built-in 
threadIdx variable

// Kernel definition

__global__ void VecAdd(float* A, 
float* B, float* C) {

int i = threadIdx.x;

…

}

int main() {

…

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

}
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Kernels

• GPU spawns m blocks with n threads (i.e., m*n threads total) that run 
a copy of the same function

• CPU can continue processing while GPU runs kernel

• Kernel call returns when all threads have terminated

kernel1<<<X,Y>>>(...); // kernel starts execution, CPU continues to next statement
kernel2<<<X,Y>>>(...); // kernel2 placed in queue, will start after kernel1 finishes, 

// CPU continues
cudaMemcpy(...); // CPU blocks until memory is copied, memory copy starts after all 

// preceding CUDA calls finish

KernelName<<<m, n>>>(arg1, arg2, ...)
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Thread Hierarchy 

• A kernel executes in parallel 
across a set of parallel threads

• All threads that are generated by 
a kernel launch are collectively 
called a grid 

• Threads are organized in thread 
blocks, and blocks are organized 
in to grids
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Thread Hierarchy 

• A thread block is a set of 
concurrently executing threads 
that can cooperate among 
themselves through barrier 
synchronization and shared 
memory

• A grid is an array of thread blocks 
that execute the same kernel
• Read inputs to and write results to 

global memory
• Synchronize between dependent 

kernel calls
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Dimension and Index Variables

Dimension

• gridDim specifies the number 
of blocks in the grid

• blockDim specifies the number 
of threads in each block

Index

• blockIdx gives the index of the 
block in the grid

• threadIdx gives the index of 
the thread within the block

Type is dim3
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Thread Hierarchy

• threadIdx is a 3-component vector 
• Thread index can be 1D, 2D, or 3D

• Thread blocks as a result can be 1D, 2D, or 3D

• How to find out the relation between thread ids and threadIdx?
• 1D: tid = threadIdx.x

• 2D block of size (Dx, Dy): thread ID of a thread of index (x, y) is (x + 
yDx)

• 3D block of size (Dx, Dy, Dz): thread ID of a thread of index (x, y, z) is 
(x + yDx + zDxDy)
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Thread Hierarchy

• Threads in a block reside on the 
same core, max 1024 threads in a 
block

• Thread blocks are organized into 
1D, 2D, or 3D grids 
• Also called cooperative thread array
• Grid dimension is given by gridDim

variable

• Identify block within a grid with the 
blockIdx variable
• Block dimension is given by 
blockDim variable
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Finding Thread IDs i is local to 
each thread
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Determining Block Dimensions

• Assume a block with a maximum of 1024 allowed threads

Variable blockDim Valid/Invalid

(512,1,1) ✓

(8, 16, 4) ✓

(32, 16, 2) ✓

(32, 32, 32) 
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Find Device Information
int count;

cudaError_t err = 

cudaGetDeviceCount(&count);

if (err != cudaSuccess) {

cerr << cudaGetErrorString(err) << endl;

}

cudaDeviceProp Props;

for (int i = 0; i < count; i++) {

err = cudaGetDeviceProperties(&Props, i);

}

Device number: 3

Device name: GeForce GTX 1080 Ti

Integrated or discrete GPU? discrete

Clock rate: 1544 MHz

Compute capability: 6.1

Number of SMs: 28

Total number of CUDA cores: 3584

Max threads per SM: 2048

Max threads per block: 1024

Warp size: 32

Max grid size (i.e., max number of blocks): [2147483647,65535,65535]

Max block dimension: [1024,1024,64]

Total global memory: 11172 MB

Shared memory per SM: 96 KB

32-bit registers per SM: 65536

Shared mem per block: 48 KB

Registers per block: 65536

Total const mem: 64 KB

L2 cache size: 2816 KB
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Device Management

• Application can query and select GPUs 
• cudaGetDeviceCount(int *count) 
• cudaSetDevice(int device) 
• cudaGetDevice(int *device) 
• cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple host threads can share a device 

• A single host thread can manage multiple devices 
• cudaSetDevice(i) to select current device 

• cudaMemcpy(…) for peer-to-peer copies 

CS 610, IIT Kanpur Swarnendu Biswas



Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int i = threadIdx.y;

int j = threadIdx.x;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}
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Execution Configuration

• Assume data is of length N, and say the kernel execution 
configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads 

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type
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Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int j = blockIdx.x * blockDim.x + threadIdx.x;

int i = blockIdx.y * blockDim.y + threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}
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Execution Configuration Uses Integer 
Arithmetic
• Assume data is of length N, and say the kernel execution 

configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads 

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type

• Now assume N = 65 So now 
what?
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Execution Configuration Uses Integer 
Arithmetic
• Ensure that the grid covers the array length 

• One strategy is to change the number of blocks from N/TPB to 
(N+TPB-1)/TPB to ensure rounding up

• This means that a thread index can exceed the maximum array index

• Many examples use a control statement in the kernel to check for 
such corner cases
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What should be numBlocks?

const int Nx = 11; // not a multiple of threadsPerBlock.x

const int Ny = 5; // not a multiple of threadsPerBlock.y

//////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(x, y, z);

// assume A, B, C are allocated Nx x Ny float arrays

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
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What should be numBlocks?

const int Nx = 11; // not a multiple of threadsPerBlock.x

const int Ny = 5; // not a multiple of threadsPerBlock.y

//////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks((Nx+threadsPerBlock.x‐1)/threadsPerBlock.x,

(Ny+threadsPerBlock.y‐1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
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Example
__global__ void matrixAdd(float* A,

float* B, float* C) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

// Guard against out of bounds array access

if (i < N && j < N)

C[i+N*j] = A[i+N*j] + B[i+N*j];

}
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Matrix Multiplication Example

int main() {

int SIZE = N * N;

cudaError_t status;

float *hostA, *hostB, *hostC;

hostA = (float*)malloc(SIZE * sizeof(
float));

hostB = (float*)malloc(SIZE * sizeof(
float));

hostC = (float*)malloc(SIZE * sizeof(
float));

float *deviceA, *deviceB, *deviceC;

status = cudaMalloc((void**)&deviceA,
SIZE * sizeof(float));

if (status != cudaSuccess) {

cerr << cudaGetErrorString(status)
<< endl;

}

status = cudaMalloc((void**)&deviceB,
SIZE * sizeof(float));

status = cudaMalloc((void**)&deviceC,
SIZE * sizeof(float));
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Matrix Multiplication Example

status = cudaMemcpy(deviceA, hostA, S
IZE * sizeof(float), cudaMemcpyHostToDe
vice);

status = cudaMemcpy(deviceB, hostB, S
IZE * sizeof(float), cudaMemcpyHostToDe
vice);

dim3 blocksPerGrid(1, 1);

dim3 threadsPerBlock(N, N);

matmulKernel<<<blocksPerGrid, threads
PerBlock>>>(deviceA, deviceB, deviceC);

cudaMemcpy(hostC, deviceC, SIZE * siz
eof(float), cudaMemcpyDeviceToHost);

…

cudaFree(deviceA);

cudaFree(deviceB);

cudaFree(deviceC);

free(hostA);

free(hostB);

…

}
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Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (i < N && j < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[i * N + k] * B[k * N + j];

}

}

C[i * N + j] = tmp;

}
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Choosing Optimal Execution Configuration

• The number of thread blocks in a grid is usually dictated by the size of 
the data being processed or the number of processors in the system
• It is okay to have a much greater number of threads

• No fixed rule, needs exploration and experimentation

• Choose number of threads in a block to be some multiple of 32
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Timing a CUDA Kernel
float memsettime;

cudaEvent_t start, stop;

// initialize CUDA timer

cudaEventCreate(&start);  cudaEventCreate(&stop);

cudaEventRecord(start,0);

// CUDA Kernel

…

cudaEventRecord(stop,0); // stop CUDA timer

cudaEventSynchronize(stop);

cudaEventElapsedTime(&memsettime,start,stop); // in milliseconds

std::cout << “Kernel execution time: “ << memsettime << “\n”;

cudaEventDestroy(start);

cudaEventDestroy(stop); 
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Reporting Errors

• All CUDA API calls return an error code (cudaError_t) 
• Error in the API call itself  or error in an earlier asynchronous operation (e.g. 

kernel) 

• Get the error code for the last error
cudaError_t cudaGetLastError(void)

• Get a string to describe the error: 
char *cudaGetErrorString(cudaError_t)
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Mapping Blocks and Threads

• A GPU executes one or more kernel grids

• When a CUDA kernel is launched, the thread blocks are enumerated 
and distributed to SMs
• Potentially >1 block per SM

• An SM executes one or more thread blocks
• Each GPU has a limit on the number of blocks that can be assigned to each 

SM 

• For example, a CUDA device may allow up to eight blocks to be assigned to 
each SM

• Multiple thread blocks can execute concurrently on one SM
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Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution 
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated 
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism
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Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution 
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated 
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism

CUDA runtime can execute blocks in any order
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Scheduling Blocks

• Number of threads that can be simultaneously tracked and scheduled 
is bounded
• Requires resources for an SM to maintain block and thread indices and their 

execution status

• Up to 2048 threads can be assigned to each SM on recent CUDA 
devices
• For example, 8 blocks of 256 threads, or 4 blocks of 512 threads

• Assume a CUDA device with 28 SMs 
• Each SM can accommodate up to 2048 threads 
• The device can have up to 57344 threads simultaneously residing in the 

device for execution 
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Block Scalability

• Hardware can assign blocks to SMs in any order
• A kernel with enough blocks scales across GPUs

• Not all blocks may be resident at the same time

GPU with 2 SMs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU with 4 SMs

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

Adapted from NVIDIA
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Scalability of GPU Architecture

A multithreaded program is 
partitioned into blocks of threads 
that execute independently from 
each other.

A GPU with more multiprocessors 
will automatically execute the 
program in less time than a GPU 
with fewer multiprocessors.
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Thread Warps

• Conceptually, threads in a block can execute in any order

• Sharing a control unit among compute units reduce hardware 
complexity, cost, and power consumption

• A set of consecutive threads (currently 32) that execute in SIMD 
fashion is called a warp
• These are called wavefront (with 64 threads) on AMD

• Warps are scheduling units in an SM
• Part of the implementation in NVIDIA, not the programming model
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Thread Warps

• All threads in a warp run in lockstep
• Warps share an instruction stream
• Same instruction is fetched for all threads 

in a warp during the instruction fetch 
cycle
• Prior to Volta, warps used a single shared 

program counter

• In the execution phase, each thread will 
either execute the instruction or will 
execute nothing

• Individual threads in a warp have their 
own instruction address counter and 
register state
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Thread Warps

• Warp threads are fully synchronized 
• There is an implicit barrier after each step/instruction

• If 3 blocks are assigned to an SM and each block has 256 threads, 
how many warps are there in an SM?
• Each Block is divided into 256/32 = 8 warps

• There are 8 * 3 = 24 warps
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Thread Divergence

• If some threads take the if branch and other threads take the else
branch, they cannot operate in lockstep
• Some threads must wait for the others to execute, renders code at that point 

to be serial rather than parallel

• The programming model does not prevent thread divergence
• Divergence occurs only within a warp, so it is a performance problem at the 

warp level
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Thread Divergence
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CUDA Thread Execution Model | 3D Game Engine Programming (3dgep.com)

https://www.3dgep.com/cuda-thread-execution-model/


Scheduling Thread Warps

• Each SM launches warps of threads, and executes warps on a 
timesharing basis
• Timesharing is implemented in hardware, not software

• SM schedules and executes warps that are ready to run
• Warps run for fixed-length time slices like processes

• Warps whose next instruction has its operands ready for consumption are 
eligible for execution

• Selection of ready warps for execution does not introduce any idle time into 
the execution timeline, called zero-overhead scheduling

• If more than one warp is ready for execution, a priority mechanism is used to 
select one for execution 
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Scheduling Thread Warps

• Suppose an instruction executed by a warp has to wait for the result 
of a previously initiated long-latency operation
• The warp is not selected for execution, another warp that is not waiting for 

results is selected for execution

• Goal is to have enough threads and warps around to utilize hardware 
in spite of long-latency operations
• GPU hardware will likely find a warp to execute at any point in time

• Hides latency of long operations with work from other threads, called latency 
tolerance or latency hiding
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Scheduling Thread Warps

• Thread blocks execute on an SM, thread instructions execute on a 
core

• CUDA virtualizes the physical hardware
• Thread is a virtualized scalar processor (registers, PC, state)

• Block is a virtualized multiprocessor (threads, shared memory)

• As warps and thread blocks complete, resources are freed

CS 610, IIT Kanpur Swarnendu Biswas



Question

• Assume that a CUDA device allows up to 8 blocks and 1024 threads 
per SM, whichever becomes a limitation first
• It allows up to 512 threads in each block 

• Say for the matrix-matrix multiplication kernel, should we use 8x8, 
16x16, or 32x32 thread blocks?

CS 610, IIT Kanpur Swarnendu Biswas



SIMT Architecture

• GPUs employ SIMD hardware to exploit the data-level parallelism
• In SIMD, you program with the vector width in mind

• In vectorization, users program the SIMD hardware directly, or uses auto-
vectorization or intrinsics

• SIMT can be thought of as SIMD with multithreading
• Software analog compared to the hardware perspective of SIMD

• For e.g., we rarely need to know the number of cores with CUDA
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SIMT Architecture

• CUDA also features a MIMD-like programming model
• Launch large number of threads
• Each thread can have its own execution path and access arbitrary memory 

locations

• This execution model is called single-instruction multiple-thread 
(SIMT)

• Two levels of parallelism
• Independent grids (i.e., kernels) or concurrent thread blocks represent 

coarse-grained data parallelism or task parallelism
• Concurrent threads/warps represent fine-grained data parallelism or thread 

parallelism
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SIMD vs SPMD

SIMD

• Processing units are executing 
the same instruction at any 
instant

SPMD

• Parallel processing units execute 
the same program on multiple 
parts of the data 

• All the processing units may not 
execute the same instruction at 
the same time

CS 610, IIT Kanpur Swarnendu Biswas



Memory Hierarchy 
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Memory Access Efficiency

• Compute to global memory access ratio
• Number of floating-point operations performed for each access to global 

memory 

• Assume a GPU device with 1 TB/s global memory bandwidth and 
peak single-precision performance of 12 TFLOPS
• What is the performance we expect with an access ratio of 1?

• We can do 1000/4 GFLOPS, which is only ~2% of the peak performance

for (int i = 0; i < N; i++)
tmp += A[i*N+K]*B[k*N+j];
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Memory Hierarchy in CUDA
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Variable Type Qualifiers in CUDA

Memory Scope Lifetime

int localVar Register Thread Kernel

__device__ __local__ int localVar Local Thread Kernel

__device__ __shared__ int 
sharedVar

Shared Block Kernel

__device__ int globalVar Global Grid Application

__device__ __constant__ int
constVar

Constant Grid Application

• __device__ is optional when used with __local__, __shared__, or  __constant__
• Automatic variables without any qualifier reside in a register

• Except arrays that reside in local memory
• Pointers can only point to memory allocated or declared in global memory
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Memory Organization

• Host and device maintain their own separate memory spaces
• A variable in CPU memory may not be accessed directly in a GPU kernel

• It is programmer's responsibility to keep them in sync
• A programmer needs to maintain copies of variables
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Registers

• 64K 32-bit registers per SM 
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread (compute capability 3.5+)

• If a code uses the maximum number of registers per thread (255) and 
an SM has 64K registers, then the SM can support a maximum of 256 
threads

• If we use the maximum allowable number of threads per SM (2048), 
then each thread can use at most 32 registers per thread
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Registers

• 64K 32-bit registers per SM 
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread (compute capability 3.5+)

• If a code uses the maximum number of registers per thread (255) and 
an SM has 64K registers, then the SM can support a maximum of 256 
threads

• If we use the maximum allowable number of threads per SM (2048), 
then each thread can use at most 32 registers per thread

What if each thread uses 33 registers?
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Registers

• If we use the maximum allowable number of threads per SM (2048), 
then each thread can use at most 32 registers per thread

• What if each thread uses 33 registers?
• Fewer threads => fewer warps

• There is a big difference between “fat” threads which use lots of 
registers, and “thin” threads that require very few!
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Shared Memory

• Shared memory aims to bridge the gap in memory speed and access 
• Also called scratchpad memory

• Usually 16-64KB of storage that can be accessed efficiently by all threads in a 
block

• Primary mechanism in CUDA for efficiently supporting thread 
cooperation

• Each SM contains a single shared memory 
• Resides adjacent to an SM, on-chip

• The space is shared among all blocks running on that SM
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Shared Memory

• Variable in shared memory is 
allocated using the __shared__
specifier
• Faster than global memory

• Can be accessed only by threads 
within a block

• Amount of shared memory per 
block limits occupancy

• Say an SM with 4 thread blocks 
has 16 KB of shared memory

__shared__ float min[256];

__shared__ float max[256];

__shared__ float avg[256];

__shared__ float stdev[256];
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Registers vs Shared Memory

Registers

• Faster than shared memory

• Private to a thread

Shared Memory

• On-chip memory space, requires 
load/store operations

• Visible to all threads in a block
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Global Variables

• Variable lock can be accessed 
by both kernels
• Resides in global memory space

• Can be both read and modified by 
all threads

__device__ int lock=0;

__global__ void kernel1(...) {

// Kernel code

}

__global__ void kernel2(...) {

// Kernel code 

}
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Global Memory

• On-device memory accessed via 32, 64, or 128 B transactions

• A warp executes an instruction that accesses global memory
• The addresses are coalesced into transactions 

• Number of transactions depend on the access size and distribution of 
memory addresses

• More transactions mean less throughput
• For example, if 32 B transaction is needed for a thread’s 4 B access, throughput is 

essentially 1/8th
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Constant Memory

• Used for data that will not change during kernel execution
• Constant memory is 64KB

• Constant memory is cached
• Each SM has a read-only constant cache that is shared by all cores in the SM 

• Used to speed up reads from the constant memory space which resides in 
device memory

• Read from constant memory incurs a memory latency on a miss
• Otherwise, it is a read from constant cache, which is almost as fast as registers
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Constant Variables

• Constant variables cannot be modified by kernels
• Reside in constant memory 

• Accessible from all threads within a grid

• They are defined with global scope within the kernel using the prefix 
__constant__ 

• Host code can access via cudaMemcpyToSymbol() and 
cudaMemcpyFromSymbol()
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Local Memory

• Local memory is off-chip memory 
• More like thread-local global memory, so it requires memory transactions and 

consumes bandwidth

• Automatic variables are placed in local memory
• Arrays for which it is not known whether indices are constant quantities

• Large structures or arrays that consume too much register space

• In case of register spilling

• Inspect PTX assembly code (compile with –ptx)
• Check for ld.local and st.local mnemonic
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Device Memory Management

• Global device memory can be allocated with cudaMalloc()

• Freed by cudaFree()

• Data transfer between host and device is with cudaMemcpy()

• Initialize memory with cudaMemset()

• There are asynchronous versions
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GPU Caches

• GPUs have L1 and L2 data caches on devices with CC 2.x and higher
• Texture and constant cache are available on all devices

• L1 cache is write-through, and per SM
• Shared memory is partitioned out of unified data cache and its size can be 

configured, remaining portion is the L1 cache

• Can be configured as 48 KB of shared memory and 16 KB of L1 cache, or 16 KB 
of shared memory and 48 KB of L1 cache, or 32 KB each

• L1 caches are 16-48 KB

• L2 cache is shared by all SMs

• L1 cache lines are 128 B wide in Fermi onward, while L2 lines are 32 B
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CPU Caches vs GPU caches

CPU

• Data is automatically moved by 
hardware between caches
• Association between threads and 

cache does not have to be 
exposed to programming model

• Caches are generally coherent

GPU

• Data movement must be 
orchestrated by programmer
• Association between threads and 

storage is exposed to 
programming model

• L1 cache is not coherent, L2 
cache is coherent
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CUDA Compilation
Binary compatibility of GPU applications is not guaranteed across different 
generations
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How NVCC works?

• Nvcc is a driver program based 
on LLVM
• Compiles and links all input files

• Requires a general-purpose C/C++ 
host compiler
• Uses gcc and g++ by default on Linux 

platforms

• nvcc --version

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
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NVCC Details

Important Options Description

-std 
{c++03|c++11|c++14
}

Select a particular C++ 
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the 
virtual GPU 
architecture

-code CODE Specify the name of the 
GPU to assemble and 
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp, 

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly 

.cubin CUDA device binary code for a 
single GPU architecture

.fatbin CUDA fat binary file that may 
contain multiple PTX and CUBIN 
files

.a, .so, 

.lib
…

NVIDIA. CUDA Compiler Driver NVCC. v11.1.
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CUDA Compilation Trajectory

• Conceptually, the flow is as follows
• Input program is preprocessed for device compilation

• It is compiled to a CUDA binary (.cubin) and/or PTX (Parallel Thread 
Execution) intermediate code which are encoded in a fatbinary

• Input program is processed for compilation of the host code
• CUDA-specific C++ constructs are transformed to standard C++ code

• Synthesized host code and the embedded fatbinary are linked together to 
generate the executable
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CUDA Compilation 
Trajectory

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

• A compiled CUDA device binary 
includes
• Program text (instructions)

• Information about the resources 
required
• N threads per block

• X bytes of local data per thread

• M bytes of shared space per block
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NVCC Details

Important Options Description

-std 
{c++03|c++11|c++14
}

Select a particular C++ 
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the 
virtual GPU 
architecture

-code CODE Specify the name of the 
GPU to assemble and 
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp, 

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly 

.cubin CUDA device binary code for a 
single GPU architecture

.fatbin CUDA fat binary file that may 
contain multiple PTX and CUBIN 
files

.a, .so, 

.lib
…

NVIDIA. CUDA Compiler Driver NVCC. v11.8.

nvcc –arch=compute_30 –code=sm_52 hello-world.cu  

nvcc –arch=compute_30 –code=sm_30,sm_52 hello-world.cu
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Two-Staged Compilation with nvcc
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NVIDIA. CUDA Compiler Driver NVCC. v11.8.

JIT 
compilation

• nvcc –arch=compute_50 –code=compute_50 hello-world.cu
• nvcc –arch=compute_50 –code=compute_50,sm_50,sm_52 hello-world.cu



Synchronization in CUDA
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Race Conditions and Data Races

• A race condition occurs when program behavior depends upon 
relative timing of two (or more) event sequences

• Execute: *c += sum;
• Read value at address c

• Add sum to value

• Write result to address c

• There can be intra-warp, inter-warp, and inter-block races
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Be Careful to Avoid Race Conditions!

Thread 0, Block 0

• Read value at address c

• Add sum to value

• Write result to address c

Thread 3, Block 7

• Read value at address c

• Add sum to value

• Write result to address c

ti
m

e
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Synchronization Constructs in CUDA

1. __syncThreads() synchronizes threads within a block

2. cudaDeviceSynchronize() synchronizes all threads in a grid
• There are other variants 

3. Atomic operations prevent conflicts associated with multiple 
threads concurrently accessing a variable

• Atomic operations on both global memory and shared memory variables

• For e.g., float atomicAdd(float* addr, float amount)
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__syncthreads()

• A __syncthreads() statement must be executed by all threads in a 
block

• __syncthreads() is in an if statement
• Either all threads in the block execute the path that includes the 
__syncthreads() or none of them does

• __syncthreads() statement is in each path of an if-then-else
statement
• Either all threads in a block execute the __syncthreads() on the then path 

or all of them execute the else path 

• The two __syncthreads() are different barrier synchronization points
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Synchronization Between Grids

• For threads from different grids, 
system ensures writes from 
kernel happen before reads from 
subsequent grid launches
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Atomic Operations

• Perform read-modify-write (RMW) atomic operations on data residing 
in global or shared memory 
• atomicAdd(), atomicSub(), atomicMin(), atomicMax(), 
atomicInc(), atomicDec(), atomicExch(), atomicCAS()

• Predictable result when simultaneous access to memory required
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Concurrency and CUDA Streams
Overlap host and device computation with data transfers
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Classic Copy-then-Execute Model

1. cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

2. kernel1<<<1,N>>>(d_a);

3. cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

• Data transfer on line 1 is blocking or synchronous
• Host thread cannot launch the kernel until the copy is done

• Kernel launch is asynchronous
• Data transfer on line 3 cannot begin due to the device-side ordering (i.e., until 

the kernel completes)
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Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

kernel1<<<1,N>>>(d_a);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

kernel1<<<1,N>>>(d_a);

h_func(h_b);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

Host gets 
work done
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Goal is to Utilize GPU Hardware

• Overlap kernel execution with memory copy between host and device

• Overlap execution of multiple kernels if there are enough resources

• Depends on whether the GPU architecture supports overlapped 
execution 
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CUDA Streams

• Sequence of operations that execute on the device in the order in 
which they were issued by the host
• Operations across streams can interleave and run concurrently

• All GPU device operations run in a stream
• The default “null” stream is used if no custom stream is specified, the default 

stream is synchronizing

• No operation in the default stream will begin until all previously issued 
operations in any stream have completed

• An operation in the default stream must complete before any other operation 
in any stream will begin 
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Using a Non-default Stream
• Manipulate non-default streams from the host

• Issue a data transfer to a non-default stream

• Specifying a stream during kernel launch is optional
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kernel1<<<blocks, threads, bytes>>>(); // default/NULL stream
kernel2<<<blocks, threads, bytes, stream1>>>();

cudaStream_t stream1;
cudaError_t result;
result = cudaStreamCreate(&stream1);
result = cudaStreamDestroy(stream1);

result = cudaMemcpyAsync(d_a, a, N,
cudaMemcpyHostToDevice, stream1);

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/



Non-Default Streams

• Operations in a non-default 
stream are non-blocking with host

• Use cudaDeviceSynchronize()
• Blocks host until all previously issued 

operations on the device have 
completed

• Cheaper alternatives
• cudaStreamSynchronize(), 
cudaEventSynchronize(), …

cudaStream_t stream1;

cudaError_t res;

res = cudaStreamCreate(&stream1);

res = cudaMemcpyAsync(d_a, a, N, 
cudaMemcpyHostToDevice, stream1);

increment<<<1,N,0,stream1>>>(d_a);

// Block the host thread

cudaStreamSynchronize(stream1);

res = cudaStreamDestroy(&stream1);
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Why Use CUDA Streams?

• Memory copy and kernel execution can be overlapped if they occur in 
different, non-default streams
• Most recent GPUs are capable of “concurrent copy and execution”, can be 

queried from the deviceOverlap/asyncEngineCount field of the 
cudaDeviceProp struct

• Individual kernels can overlap if there are enough resources on the 
GPU
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Overlapping Kernel Execution and Data 
Transfers
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for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;

cudaMemcpyAsync(&d_a[offset], &h_a[offset], streamBytes, 
cudaMemcpyHostToDevice, stream[i]);

kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

cudaMemcpyAsync(&h_a[offset], &d_a[offset], streamBytes,
cudaMemcpyDeviceToHost, stream[i]);

}

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/



Overlapping Kernel Execution and Data 
Transfers
for (int i = 0; i < nStreams; ++i) {

int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &h_a[offset], streamBytes, 

cudaMemcpyHostToDevice, stream[i]);
}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&h_a[offset], &d_a[offset], streamBytes, 

cudaMemcpyDeviceToHost, stream[i]);
}

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/CS 610, IIT Kanpur Swarnendu Biswas
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Concurrent Host Execution

• Asynchronous functions are nonblocking
• kernel launches

• memory copies from host to device of a memory block of 64 KB or less;

• memory copies performed by functions that are suffixed with Async
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Streams and Concurrency in CUDA 7+

• Prior to CUDA 7, all host threads shared the default stream 
• Implied synchronization

• CUDA 7+ provides an option to have a per-host-thread default stream
• Commands issued to the default stream by different host threads can run 

concurrently

• Commands in the default stream may run concurrently with commands in 
non-default streams
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Multi-Stream Example: Legacy Behavior
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for (int i = 0; i < num_streams; i++) {
cudaStreamCreate(&streams[i]);

cudaMalloc(&data[i], N * sizeof(float));

// launch one worker kernel per stream
kernel<<<1, 64, 0, streams[i]>>>(data[i], N);

// launch a dummy kernel on the default stream
kernel<<<1, 1>>>(0, 0);

}



Multi-Stream Example: Per-Thread Default 
Stream
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nvcc --default-stream per-thread <file.cu> 



Performance Bottlenecks with 
CUDA
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Differences between Host and Device

Host

• Limited amount of concurrent 
threads

• Context switches of threads are 
heavyweight

• Designed to minimize latency

Device

• Massive number of concurrently 
active threads

• Context switches are lightweight
• Resources stay allocated to a 

thread till it completes

• Designed to maximize 
throughput
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Desired Application Characteristics for Device 
Execution
• Large data-parallel computation

• Complex computation kernel to justify the data movement costs
• Think of matrix addition versus matrix multiplication

• Keep data on the device to avoid repeated transfers
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Key Ideas for Performance

• Try and reduce resource consumption

• Exploit SIMT, reduce thread divergence in a warp

• Strive for good locality, use tiling to exploit shared memory
• Improve throughput by reducing global memory traffic

• Copy blocks of data from global memory to shared memory and operate on 
them (e.g., matrix multiplication kernel)

• Memory access optimization
• Global memory: memory coalescing

• Shared memory: avoid bank conflicts
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What can we say about this code?

__global__ void dkernel(float *vector, int vectorsize) {

int id = blockIdx.x * blockDim.x + threadIdx.x;

switch (id) {

case 0: vector[id] = 0; break;

case 1: vector[id] = vector[id] * 10; break;

case 2: vector[id] = vector[id - 2]; break;

case 3: vector[id] = vector[id + 3]; break;

…

case 31: vector[id] = vector[id] * 9; break;

} 

}
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Deal with Thread Divergence

• Thread divergence renders execution sequential
• SIMD hardware takes multiple passes through the divergent paths

• Condition evaluating to different truth values is not bad

• Branch granularity is a whole multiple of warp size; all threads in any given 
warp follow the same path

• Conditions evaluating to different truth-values for threads in a warp is 
bad

• Creates two different control paths for threads in a block; branch granularity < 
warp size; threads 0 and 1 follow different path than the rest of the threads in 
the first warp

if (threadIdx.x > 2) {}

if (threadIdx.x / WARP_SIZE > 2) {}
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Parallel Memory Architecture

• In a parallel machine, many threads 
access memory

• Memory is divided into banks to 
achieve high bandwidth
• Each bank can service one address per 

cycle

• A memory can service as many 
simultaneous accesses as it has banks

• Multiple simultaneous accesses to a 
bank result in a bank conflict
• Conflicting accesses are serialized
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Example of Bank Addressing

• No bank conflicts
• Linear addressing, stride=1

• No bank conflicts
• Random permutation
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Example of Bank Addressing

• 2-way Bank Conflicts
• Linear addressing, stride = 2

• 8-way Bank Conflicts
• Linear addressing, stride = 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8
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Shared Memory Bank Conflicts

• Shared memory is as fast as registers if there are no bank conflicts

• Fast case
• If all threads of a warp access different banks, there is no bank conflict
• If all threads of a warp access the identical address, there is no bank conflict 

(broadcast)

• Slow case
• Bank Conflict: multiple threads in the same half-warp access (?) the same bank
• Must serialize the accesses
• Cost = max # of simultaneous accesses to a single bank

• Give low priority to fix low-degree bank conflicts since resolving it will 
increase instructions
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Memory Coalescing
• Coalesced memory access

• A warp of threads access adjacent data in a cache line 

• In the best case, this results in one memory transaction (best bandwidth)

• Uncoalesced memory access
• A warp of threads access scattered data all in different cache lines

• This may result in 32 different memory transactions (poor bandwidth)
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Matrix Transpose
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__global__ void transposeNaive(float *odata, const float *idata) {
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
odata[x*width + (y+j)] = idata[(y+j)*width + x];

}

__global__ void copy(float *odata, const float *idata) {
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
odata[(y+j)*width + x] = idata[(y+j)*width + x];

}

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc

reads from idata are coalesced, 
but writes to odata have a stride 
of 1024



Optimizing Matrix Transpose
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https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc

__global__ void transposeCoalesced(float *odata, const float *idata) {
__shared__ float tile[TILE_DIM][TILE_DIM];

int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];

__syncthreads();

x = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset
y = blockIdx.x * TILE_DIM + threadIdx.y;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];

}



Optimizing Matrix Transpose
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https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc

__global__ void transposeCoalesced(float *odata, const float *idata) {
__shared__ float tile[TILE_DIM][TILE_DIM];

int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];

__syncthreads();

x = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset
y = blockIdx.x * TILE_DIM + threadIdx.y;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];

}

$ ./bin/cuda-matrix-transpose-nvidia

Device : Quadro RTX 5000
Matrix size: 1024 1024, Block size: 64 8, Tile size: 64 64
dimGrid: 16 16 1. dimBlock: 64 8 1

Routine Bandwidth (GB/s)
copy 288.31

shared memory copy 196.17
naive transpose 124.92

coalesced transpose 131.81
conflict-free transpose 145.65

__shared__ float tile[TILE_DIM][TILE_DIM+1];



Implement a Reduction Kernel in CUDA
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Reduction Kernel
__shared__ float partialSum[];
partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];
__syncthreads();

unsigned int t = threadIdx.x;
for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

__syncthreads();
}

CS 610, IIT Kanpur Swarnendu Biswas

only even threads 
are active

Is this kernel 
enough?



Sequence of Optimizations on the Reduction 
Kernel
i. basic implementation with modulo operator

ii. strided access starting with each thread accessing two 
adjacent locations

iii. strided access with reversed loop index

iv. halve the number of threads

v. unroll the last few loop iterations and avoid synchronization

vi. …

vii. …
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Mark Harris. Optimizing Parallel Reduction in CUDA.

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf


Reduction Kernel
__shared__ float partialSum[];

partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];

__syncthreads();

unsigned int t = threadIdx.x; 

for (unsigned int stride = blockDim.x/2; stride >= 1; stride /= 2) {

if (t < stride) 

partialSum[t] += partialSum[t+stride]; 

__syncthreads();

} 
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Execution of the Revised Kernel
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Last five iterations 
still have divergence



Avoid Divergence in Last Few Iterations
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for (unsigned int stride = blockDim.x/2; stride > 32; stride /= 2) {

if (t < stride)

partialSum[t] += partialSum[t+stride];

__syncthreads();

}

if (tid < 32) {

partialSum[tid] += partialSum[tid+32];

partialSum[tid] += partialSum[tid+16];

partialSum[tid] += partialSum[tid+8];

partialSum[tid] += partialSum[tid+4];

partialSum[tid] += partialSum[tid+2];

partialSum[tid] += partialSum[tid+1];

}

Mark Harris. Optimizing Parallel Reduction in CUDA.

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf


Avoid Divergence in Last Few Iterations
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for (unsigned int stride = blockDim.x/2; stride > 32; stride /= 2) {

if (t < stride)

partialSum[t] += partialSum[t+stride];

__syncthreads();

}

if (tid < 32) {

partialSum[tid] += partialSum[tid+32];

partialSum[tid] += partialSum[tid+16];

partialSum[tid] += partialSum[tid+8];

partialSum[tid] += partialSum[tid+4];

partialSum[tid] += partialSum[tid+2];

partialSum[tid] += partialSum[tid+1];

}

Mark Harris. Optimizing Parallel Reduction in CUDA.

$ ./a.out
Host reduction: 2048 Reduction1: 2048 Reduction2: 
2048 Reduction3: 2048 Reduction4: 2048
Kernel1 time (ms): 0.02048 // interleaved w/ modulo
Kernel2 time (ms): 0.00819 // interleaved, even threads
Kernel3 time (ms): 0.00614 // sequential
Kernel4 time (ms): 0.00544 // sequential w/ unrolling

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf


Memory Access Patterns in 2D Arrays
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A B



Memory Access Patterns in C 2D Arrays
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Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (row < N && col < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[row * N + k] * B[k * N + col];

}

}

C[row * N + col] = tmp;

}

Coalesced

Thread 1

Thread 2

Not coalesced
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Optimizing Global Memory Accesses

• Try to ensure that memory requests 
from a warp can be coalesced
• Using optimizations like tiling to make use 

of the faster shared memory

• Stride-one access across threads in a warp 
is good

• Use structure of arrays rather than array of 
structures

Md

W
I D

T
H

WIDTH

Coalesced

Thread 1

Thread 2

Not coalesced
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Efficient Data Management
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Data Transfer Between CPU and GPU

• DMA (Direct Memory Access) hardware is 
used by cudaMemcpy()
• DMA is a hardware unit specialized to 

transfer bytes between physical memory 
address spaces

• Uses system interconnect, typically PCIe in 
today's systems
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Efficient Host-Device Data Transfer

https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod14DataXfer/Mod14DataXfer.pdf


Challenges with Virtual Memory

• Virtual memory support complicates data transfer
• Pages in virtual address space are mapped into and out of the physical 

memory
• The presence of a data (i.e., page) in the physical memory is checked 

during address translation

• cudaMemcpy() copies data as one or more DMA transfers
• Address is translated and page presence is checked for the entire source and 

destination regions at the beginning of each DMA transfer

• The OS could accidentally page-out the data that is being accessed by 
a DMA and page-in another virtual page into the same physical 
location
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Pinned Memory

• Pinned memory are virtual memory pages that are specially marked 
so that they cannot be paged out
• Also called Page Locked Memory, Locked Pages, etc.

• CPU memory that serves as the source or destination of a DMA 
transfer must be allocated as pinned memory

• If the source or destination of cudaMemcpy() in the host is 
not pinned, it needs to be first copied to a pinned memory leading to 
extra overhead
• cudaMemcpy() is faster if the host memory source or destination is allocated 

in pinned memory since no extra copy is needed
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Pinned Memory
• Allocate and free pinned memory with cudaHostAlloc() and 
cudaFreeHost()
• Use the option cudaHostAllocDefault

• Pinned memory is a limited resource – over-subscription can have 
serious consequences
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Efficient Host-Device Data Transfer

https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod14DataXfer/Mod14DataXfer.pdf


cudaMemCpy() with malloc()
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$ nvprof ./bin/cuda-vector-addition
==1472722== NVPROF is profiling process 1472722, command: ./bin/cuda-vector-
addition
Time taken (ms): h2d: 251.084 Kernel: 8.40627 d2h: 113.932
Type  Time(%)      Time     Calls       Avg Min       Max  Name
GPU activities:   80.42%  501.62ms         2  250.81ms 250.79ms  250.84ms  [CUDA 
memcpy HtoD]

18.24%  113.77ms         1  113.77ms 113.77ms 113.77ms [CUDA 
memcpy DtoH]

1.34%  8.3746ms         1  8.3746ms 8.3746ms 8.3746ms
vecAdd(float const *, float const *, float*, int)

API calls:   67.15%  616.00ms         3  205.33ms  113.92ms  251.05ms  
cudaMemcpy

31.25%  286.69ms         3  95.562ms  919.48us  284.85ms  
cudaMalloc

0.92%  8.4529ms         3  2.8176ms  2.7130us  8.3720ms  
cudaEventSynchronize

0.65%  5.9759ms         3  1.9920ms  987.27us  2.9258ms



cudaMemCpy() with 
cudaHostAlloc(Default)
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$ nvprof ./bin/cuda-vector-addition-hostalloc-default 
==1472614== NVPROF is profiling process 1472614, command: ./bin/cuda-vector-
addition-hostalloc-default
Time taken (ms): h2d: 87.2246 Kernel: 8.42 d2h: 81.3472
Type  Time(%)      Time     Calls       Avg Min       Max  Name
GPU activities:   66.04%  174.40ms         2  87.201ms 87.190ms  87.212ms  [CUDA 
memcpy HtoD]

30.79%  81.328ms         1  81.328ms 81.328ms 81.328ms [CUDA 
memcpy DtoH]

3.17%  8.3739ms         1  8.3739ms 8.3739ms 8.3739ms
vecAdd(float const *, float const *, float*, int)

API calls:   68.72%  1.70102s         3  567.01ms  453.20ms  787.02ms  
cudaHostAlloc

20.23%  500.75ms         3  166.92ms  155.30ms  181.85ms  
cudaFreeHost

10.33%  255.79ms         3  85.263ms  81.344ms  87.244ms  
cudaMemcpy

0.34%  8.3757ms         3  2.7919ms  3.3700us  8.3687ms



Zero-Copy Memory (i)

• Zero copy memory is pinned 
memory that is mapped into the 
device address space
• Both host and device have fine-

grained direct access
• Can leverage host memory when 

there is insufficient device memory
• Avoids explicit data transfers 

between host and device
• Should be used for occasional 

accesses when the data is read-only 
or the GPU memory is really scarce
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Improving GPU Memory Oversubscription Performance | NVIDIA Technical Blog

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/


Zero-Copy Memory (ii)

• Speed is limited by the interconnect (PCIe or NVLink) and it is not 
possible to take advantage of data locality

• Pinned memory does not imply zero-copy memory (GPU may not be 
able to access it)

• Unified virtual addressing (UVA) enables zero-copy memory
• Provides a single virtual memory address space for all memory in the system, 

enables pointers to be accessed from GPU code
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cudaMemCpy() with 
cudaHostAlloc(Mapped)
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$ nvprof ./bin/cuda-vector-addition-hostalloc-mapped 
==1472835== NVPROF is profiling process 1472835, command: ./bin/cuda-vector-
addition-hostalloc-mapped
Time taken (ms): kernel: 10.9529
==1472835== Profiling application: ./bin/cuda-vector-addition-hostalloc-mapped
==1472835== Profiling result:

Type  Time(%)      Time     Calls       Avg Min       Max  Name
GPU activities:  100.00%  10.914ms 1  10.914ms  10.914ms 10.914ms
vecAdd(float*, float*, float*, int)

API calls:   67.19%  278.63ms         1  278.63ms  278.63ms 278.63ms
cudaSetDeviceFlags

20.90%  86.674ms         3  28.891ms  28.629ms  29.043ms  
cudaHostAlloc

9.20%  38.156ms         3  12.719ms  12.374ms  13.003ms  
cudaFreeHost

2.63%  10.909ms         1  10.909ms  10.909ms 10.909ms
cudaEventSynchronize

0.04%  149.57us       101  1.4800us     165ns  68.497us



Managed Memory (i)

• Unified Virtual Memory (UVM) provides a 
single memory space accessible by all GPUs 
and CPUs in the system

• Use cudaMallocManaged() to allocate 
data in unified memory 
• Returns a pointer that can be accessed from 

both host and device code

• Or use __managed__ keyword in the global 
scope
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Unified Memory in CUDA 6 | NVIDIA Technical Blog
An Even Easier Introduction to CUDA | NVIDIA Technical Blog
Unified Memory for CUDA Beginners | NVIDIA Technical Blog

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Managed Memory (ii)
• UVM features have been evolving 

starting from CUDA 6+
• 6.x: use a single pointer in both CPU 

functions and GPU kernels

• 8.x: added 49-bit virtual addressing and 
on-demand page migration

• CUDA runtime automatically 
migrates data allocated in Unified 
Memory between host and device, 
different from UVA
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Improving GPU Memory Oversubscription Performance | NVIDIA Technical Blog

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/


On-demand Paging
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1 2

3 4

Data allocated in CPU memory GPU touches unallocated page, triggers page fault

Page fault handler allocates page in GPU mem, 
copies contents 

If GPU modifies page contents, invalidate CPU 
copy. Next CPU access will cause data to be copied 
back from GPU mem.

Advanced CUDA programming: asynchronous execution, memory models, unified memory

http://www.irisa.fr/alf/downloads/collange/cours/hpca2020_gpu_2.pdf


cudaMemCpy() with cudaMallocManaged()
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$ nvprof ./bin/cuda-vector-addition-managed 
==1472948== NVPROF is profiling process 1472948, command: ./bin/cuda-vector-addition-managed
Time taken (ms): kernel: 906.52
Type  Time(%)      Time     Calls       Avg Min       Max  Name
GPU activities:  100.00%  906.36ms 1  906.36ms  906.36ms 906.36ms vecAdd(float 

const *, float const *, float*, int)
API calls:   63.76%  906.30ms         1  906.30ms  906.30ms 906.30ms

cudaEventSynchronize
21.24%  301.91ms         3  100.64ms  16.895us  301.84ms  cudaFree
0.02%  247.87us         1  247.87us  247.87us 247.87us

==1472948== Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"

Count  Avg Size  Min Size  Max Size  Total Size  Total Time  Name
56858  54.592KB  4.0000KB 0.9961MB  2.960228GB 357.1731ms  Host To Device
6142  170.71KB  4.0000KB  0.9961MB  0.999939GB 87.60043ms  Device To Host
4872 - - - - 839.8422ms  Gpu page fault groups

Total CPU Page faults: 12288



cudaMemCpy() with cudaMallocManaged()
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$ nvprof --print-gpu-trace ./bin/cuda-vector-addition-managed 2>&1 | tee output.txt
==1474233== Profiling application: ./bin/cuda-vector-addition-managed
==1474233== Profiling result:

Start  Duration            Grid Size      Block Size     Regs*    SSMem*    DSMem*           Device   Context    
Stream        Unified Memory  Virtual Address  Name
492.94ms         - - - - - - - -
- PC 0x9119d76f   0x7fab02000000  [Unified Memory CPU page faults]
493.05ms         - - - - - - - -
- PC 0x9119d76f   0x7fab02010000  [Unified Memory CPU page faults]
493.14ms         - - - - - - - -
- PC 0x9119d76f   0x7fab02020000  [Unified Memory CPU page faults]
493.28ms         - - - - - - - -
- PC 0x9119d76f   0x7fab02040000  [Unified Memory CPU page faults]
494.01ms         - - - - - - - -
- PC 0x9119d76f   0x7fab02080000  [Unified Memory CPU page faults]
4.72717s         - - - - - - - -
- PC 0x9119d76f   0x7faac1f00000  [Unified Memory CPU page faults]
………
5.96964s  847.69ms        (1048576 1 1)       (256 1 1)        16        0B        0B Quadro RTX 5000         1         
7                     - - vecAdd(float const *, float const *, float*, int) [117]
5.96964s  979.83us                    - - - - - Quadro RTX 5000         -
- 11   0x7fab02000000  [Unified Memory GPU page faults]
5.97056s  10.432us                    - - - - - Quadro RTX 5000         -
- 100.000000KB   0x7fab02000000  [Unified Memory Memcpy HtoD]
5.97057s  4.3840us                    - - - - - Quadro RTX 5000         -
- 28.000000KB   0x7fab02019000  [Unified Memory Memcpy HtoD]
………



Unified Virtual Memory (UVM)

• On pre-Pascal GPUs, cudaMallocManaged()
allocated managed space on the device that 
was active at the time of the call

• Pascal onward, cudaMallocManaged() does
not immediately allocate physical memory
• Pages and page table entries (PTEs) are not created 

until the first access by the GPU or the CPU

• Hardware supports page faulting and 
migration
• The GPU stalls the accessor threads when they 

access absent pages 

• The Page Migration Engine migrates pages to the 
device before resuming the threads
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J. Jung et al. Overlapping Host-to-Device Copy and Computation using Hidden Unified Memory. PPoPP’20.



Pre-Pascal Behavior of cudaMallocManaged()
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__global__ void add(int n, float* x, float* y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}
int main(void) {
int N = 1 << 20;
float *x, *y;
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; i < N; i++) {

x[i] = 1.0f; y[i] = 2.0f;
}
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize();
…

}

Unified Memory for CUDA Beginners | NVIDIA Technical Blog

x and y are allocated on GPU memory, 
driver sets up page table entries 

Page fault on CPU, x and y are 
copied to CPU memory

Lacked support for page faults, so all data 
is copied to GPU before kernel launch

Moves data back to CPU memory

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Pre-Pascal Behavior of cudaMallocManaged()
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__global__ void add(int n, float* x, float* y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}
int main(void) {
int N = 1 << 20;
float *x, *y;
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; i < N; i++) {

x[i] = 1.0f; y[i] = 2.0f;
}
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize();
…

}

Unified Memory for CUDA Beginners | NVIDIA Technical Blog

x and y are allocated on GPU memory, 
driver sets up page table entries 

Page fault on CPU, x and y are 
copied to CPU memory

Lacked support for page faults, so all data 
is copied to GPU before kernel launch

Moves data back to CPU memory

No concurrent access

No on-demand migration to GPU

No oversubscription

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Behavior of cudaMallocManaged() for Pascal+
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__global__ void add(int n, float* x, float* y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}
int main(void) {
int N = 1 << 20;
float *x, *y;
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; i < N; i++) {

x[i] = 1.0f; y[i] = 2.0f;
}
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize();
…

}

Unified Memory for CUDA Beginners | NVIDIA Technical Blog

Physical memory for x and y are not immediately 
allocated,  allocated only on first access or prefetch

Page fault on CPU, x and y are 
allocated on CPU memory

Supports page faults, so no data 
migration overhead before kernel launch

Page migration cost is now part of the kernel 
execution time

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Profiling with nvprof on Turing GPU
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==1459082== NVPROF is profiling process 1459082, command: ./bin/cuda-add-grid
…
Type  Time(%)      Time     Calls       Avg       Min       Max  Name
GPU activities:  100.00%  4.0563ms 1  4.0563ms  4.0563ms 4.0563ms add(int, float*, 

float*)
API calls:   98.37%  310.90ms         2  155.45ms  46.172us  310.86ms  cudaMallocManaged

1.28%  4.0568ms         1  4.0568ms  4.0568ms 4.0568ms
cudaDeviceSynchronize

0.27%  853.93us         2  426.97us  411.16us  442.77us  cudaFree
0.05%  148.86us       101  1.4730us     165ns  66.807us  

cuDeviceGetAttribute
0.01%  44.596us         1  44.596us  44.596us 44.596us cuDeviceGetName
0.01%  43.138us         1  43.138us  43.138us 43.138us cudaLaunchKernel
0.00%  9.0230us         1  9.0230us  9.0230us 9.0230us

cuDeviceGetPCIBusId
…
==1459082== Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"

Count  Avg Size  Min Size  Max Size  Total Size  Total Time  Name
93  88.086KB  4.0000KB  992.00KB  8.000000MB  849.3010us  Host To Device
24  170.67KB  4.0000KB  0.9961MB  4.000000MB  342.6530us  Device To Host
12 - - - - 4.268824ms  Gpu page fault groups

Total CPU Page faults: 36

How to reduce 
overheads?



Page Migration: High-Level Mechanism 
• Assume a Pascal+ GPU accesses a page is not present in the local GPU 

memory

• Address translation for the faulting page generates a fault message and 
locks the TLBs for the corresponding SM
• On some architectures, two SMs share a TLB, so both are locked

• Locking implies outstanding translations can proceed but new translations will be 
stalled until all faults are resolved

• GPU can generate many faults concurrently for the same page

• UVM driver processes the faults, remove duplicates, updates mappings and 
transfers the data 

• Fault handling adds significant overhead to streaming performance of UVM
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Maximizing Unified Memory Performance in CUDA | NVIDIA Technical Blog

https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/


Reduce Page Migration Overhead (i)
• Initialize data on the device
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Unified Memory for CUDA Beginners | NVIDIA Technical Blog

__global__ void init(int n, float *x, float *y) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride) {

x[i] = 1.0f;
y[i] = 2.0f;

}
}

==1460828== NVPROF is profiling process 1460828, command: ./bin/cuda-add-grid-init
==1460828== Profiling result:

Type  Time(%)      Time     Calls       Avg       Min       Max  Name
GPU activities:   97.93%  1.6654ms 1  1.6654ms  1.6654ms 1.6654ms init(int, float*, 

float*)
2.07%  35.263us 1  35.263us  35.263us 35.263us add(int, float*, 

float*)
API calls:   99.19%  299.71ms         2  149.86ms  33.526us  299.68ms  cudaMallocManaged

==1460828== Unified Memory profiling result:
Count  Avg Size  Min Size  Max Size  Total Size  Total Time  Name

24  170.67KB  4.0000KB  0.9961MB  4.000000MB  341.6910us  Device To Host
11 - - - - 1.644405ms  Gpu page fault groups

Total CPU Page faults: 12

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Reduce Page Migration Overhead (ii)
• Use warm-up iterations or take the 

average of kernel multiple runs

• Prefetch data on the GPU with 
cudaMemPrefetchAsync()
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int device = -1;
cudaGetDevice(&device);
cudaMemPrefetchAsync(x, N*sizeof(float), 

device, NULL);
cudaMemPrefetchAsync(y, N*sizeof(float), 

device, NULL);

==1461431== NVPROF is profiling process 1461431, command: ./bin/cuda-add-grid-prefetch
Type  Time(%)      Time     Calls       Avg       Min       Max  Name
GPU activities:  100.00%  29.600us 1  29.600us  29.600us 29.600us add(int, float*, 

float*)
API calls:   99.19%  301.89ms         2  150.94ms  38.488us  301.85ms  cudaMallocManaged

0.34%  1.0467ms         1  1.0467ms  1.0467ms 1.0467ms
cudaDeviceSynchronize

0.21%  638.19us         2  319.09us  304.82us  333.37us  cudaFree
0.17%  504.87us         2  252.43us  188.92us  315.95us  

cudaMemPrefetchAsync
==1461431== Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"

Count  Avg Size  Min Size  Max Size  Total Size  Total Time  Name
4  2.0000MB  2.0000MB 2.0000MB 8.000000MB  710.9370us  Host To Device

24  170.67KB  4.0000KB  0.9961MB  4.000000MB  341.5960us  Device To Host
Total CPU Page faults: 36

No GPU 
page faults



Explicit Memory Hints in UVM

• Advise runtime on expected memory access behaviors

• Possible hints: 
• cudaMemAdviseSetReadMostly: Specify read duplication 

• cudaMemAdviseSetPreferredLocation: Suggest best location 

• cudaMemAdviseSetAccessedBy: Suggest mapping

• Hints do not trigger data movement by themselves 
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cudaMemAdvise(ptr, count, hint, device)

CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf


cudaMemAdviseSetReadMostly

• Data will usually be read-only 

• UM system will make a “local” copy of the data for each processor 
that touches it 

• If a processor writes to it, this invalidates all copies except the one 
written 
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CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf


cudaMemAdviseSetPreferredLocation

• Suggests which processor is the best location for the data 

• Does not automatically cause migration 

• Data will be migrated to the preferred processor on-demand (or if 
prefetched) 

• If possible, data mappings will be provided when other processors 
touch it 

• If mapping is not possible, data is migrated 
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CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf


cudaMemAdviseSetAccessedBy

• Does not cause movement or affect location of data 

• Indicated processor receives a mapping to the data 

• If the data is migrated, mapping is updated 

• Objective: provide access without incurring page faults 
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CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf


Hardware Prefetching

• Providing user hints can be complicated and error-prone

• Hardware can implement different prefetch policies: (i) random, (ii) 
sequential, or (iii) locality-aware
• E.g., “random” prefetches a random 4KB page from the 2MB large page 

boundary along with the 4KB faulting page

• Nvidia implements a locality-aware tree-based neighborhood 
prefetcher GeForce GTX 1080ti (reverse engineered*) 
• Migrate multiples of 64KB basic blocks contiguous in the virtual address space 

grouped in a single transfer

• All pages being prefetched are local to the current faulty pages and are within 
2MB large page boundary
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*D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.



Nvidia’s Tree-based Neighborhood Prefetcher
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D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.

• Allocation with cudaMallocManaged() is 
logically divided into 2MB large pages

• The 2MB pages are further divided into logical 
64KB basic blocks to create a full binary tree

• If the user-specified allocation request is not a 
multiple of 2MB, the remainder allocation is 
rounded up to the next 2𝑖∗ 64KB
• If the requests are for 4MB and 192KB, 

then two 2MB trees and 1 256KB trees 
are created



Effectiveness of Prefetching without 
Oversubscription
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D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.



Note about UVM

• Primary goal for UVM is to improve programmer 
productivity
• Code is less verbose, makes it easy to work with nested 

data structures (think of C++ classes with dynamically 
allocated attributes)

• UVM kernels may have poorer performance 
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struct dataElem {
int prop1;
int prop2;
char *name;

}

Unified Memory in CUDA 6 | NVIDIA Technical Blog

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/


Note about UVM

• UVM provides a coherent view of a single virtual address space 
between CPUs and GPUs with automatic data migration via demand 
paging
• Allows GPUs to access a page that resides in the CPU memory as if it were in 

the GPU memory 

• Allows applications to run without worrying about the device memory 
capacity

• Negative is the substantial cost of address translation overhead and 
demand paging
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Handing GPU Page Faults
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H. Kim et al. Batch-Aware Unified Memory Management in GPUs for Irregular Workloads. ASPLOS’20.

• When a GPU tries to access a physical memory page that is not currently resident in device 
memory, a page fault is raised and GPU runtime migrates the requested page to the GPU 
memory

• Page fault handling is expensive because it requires long latency communications between the 
CPU and GPU over the PCIe bus
• The GPU runtime processes a group of page faults together to amortize overhead



Memory Access Divergence

• An SIMD memory instruction cannot complete until data for all threads are 
available
• Problematic for irregular applications with little scope for coalescing
• Execution of one instruction requires multiple cache accesses when accesses fall on 

distinct cache lines and multiple virtual-to-physical address translations when 
accesses fall on distinct pages

• Negative impact from divergence can impact address translation more than 
cache access
• Irregular memory accesses can lead from 1 to warp size (32/64) address translation 

requests, most will miss in the TLB
• A page table walk on a TLB miss can take up to four memory accesses, for a total of 

128-256 memory accesses per instruction
• GPUs employ physical caches which makes address translation the bottleneck
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Address Translation Request
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S. Shin et al. Scheduling Page Table Walks for Irregular GPU Applications. ISCA’18.

• IOMMU is a hardware component on the CPU that 
services address translation requests for accesses to 
the DRAM by any accelerator (e.g., GPU)

• IOMMU supports multiple page table walkers (e.g., 8-
16) to concurrently service multiple page table walk 
requests (TLB misses)

• IOMMU employs small page walk caches (PWC) for 
the first three levels of the page tables

• GPU multiprocessors (compute units) share a private 
L1 TLB across SIMD units

• The GPU’s L1 TLBs are backed by a larger L2 TLB that is 
shared across all the CUs in the GPU 



Address Translation Request
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S. Shin et al. Scheduling Page Table Walks for Irregular GPU Applications. ISCA’18.

i. An address translation request is generated by a SIMD 
load/store instruction 

ii. A hardware coalescer merges multiple requests to the same 
page generated by the same SIMD instruction

iii. The coalesced translation request looks up the GPU’s L1 TLB 
and then the GPU’s shared L2

iv. On a miss in the GPU’s L2 TLB, the request is sent to the 
IOMMU

v. At the IOMMU, the request looks up the IOMMU’s TLBs
vi. On a miss, the request queues up as a page walk request in 

the IOMMU buffer
vii. When an IOMMU’s page table walker becomes free, it selects 

a pending request from the IOMMU buffer in some order
viii. The page table walker first performs a PWC lookup and then 

completes the walk of the page table, generating one to four 
memory accesses

ix. On finishing a walk, the desired translation is returned to the 
TLBs and ultimately to the GPU SIMD unit that requested it



Memory Oversubscription

• UVM support allows GPUs to oversubscribe memory

• At oversubscription, a memory page is first evicted from GPU memory 
to system memory, followed by transfer of requested memory from 
CPU to GPU
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Prefetching with Memory Oversubscription

• Aggressive prefetching under memory constraint can be counter-
productive, may cause displacement of heavily-accessed pages

• CUDA drivers implement LRU 4KB page replacement policy

• Penalty of faults are greater under oversubscription 
• Threads need to be stalled for writing back pages along with the latency to 

migrate new pages

• An option is to disable prefetching on oversubscription
• Active area of research
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