
CS 610: GPU Programming
with CUDA
Swarnendu Biswas

Semester 2023-24-I
CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Rise of GPU Computing

• Popularity of graphical OS in late 80s
created a market for a new compute
device
• 2D display accelerators offered hardware-

assisted bitmap operations

• Silicon Graphics popularized use of 3D
graphics
• Released OpenGL as a programming

interface to its hardware

• Popularity of first-person games in
mid-90s was the final push for
graphics accelerators

CS 610, IIT Kanpur Swarnendu Biswas

Need for GPU Computing Support

• Many real-world applications are
compute-intensive and data-
parallel
• They need to process a lot of data,

mostly floating-point operations

• Example
• Real-time high-definition graphics

applications such as your favorite
video games

• Iterative kernels which update
elements according to some fixed
pattern called a stencil

CS 610, IIT Kanpur Swarnendu Biswas

Rise of GPU Computing

• Researchers tricked GPUs to perform non-rendering computations

• Programming initial GPU devices for other purposes was very
convoluted
• Programming model was very restrictive

• Limited input colors and texture units, writes to arbitrary locations, floating-
point computations

• This spurred the need for a generic highly-parallel computational
device with high computational power and memory bandwidth
• CPUs are more complex devices catering to a wider audience

CS 610, IIT Kanpur Swarnendu Biswas

Enter NVIDIA and CUDA

• NVIDIA released GeForce 8800 GTX in 2006 with CUDA architecture
• General-purpose ALU and instruction set for general-purpose computation

• IEEE compliance for single-precision floating-point arithmetic

• Allowed arbitrary reads and writes to shared memory

• Introduced CUDA C and the toolchain for ease of development with
the CUDA architecture

CS 610, IIT Kanpur Swarnendu Biswas

Rise of GPU Computing

• GPUs are now used in different applications
• Game effects, computational science simulations, image processing and

machine learning, linear algebra

• Several GPU vendors like NVIDIA, AMD, Intel, QualComm, and ARM

CS 610, IIT Kanpur Swarnendu Biswas

GPU Architecture
Philosophy and design goals

CS 610, IIT Kanpur Swarnendu Biswas

An Analytical Model-based Analysis

Simple cache model where threads
do not share data and there is infinite
off-chip memory bandwidth

Large cache shared
among few threads

Working set no longer
fits in the cache

Hides long off-chip
latency

CS 610, IIT Kanpur Swarnendu Biswas

multithreading
with GPUsmulticore

CPUs

Key Insights in GPU Architecture

• GPUs are suited for compute-intensive data-parallel applications
• The same program is executed for each data element

• Less complex control flow

• Multi-core chip
• SIMD execution within a single core (many ALUs performing the same

instruction)

• Multi-threaded execution on a single core (multiple threads executed
concurrently by a core)

CS 610, IIT Kanpur Swarnendu Biswas

Key Insights in GPU Architecture

• Much more transistors or real-estate is devoted to computation
rather than data caching and control flow

CS 610, IIT Kanpur Swarnendu Biswas

NVIDIA CUDA C++ Programming Guide

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

Key Insights in GPU Architecture

• GPUs do not reduce latency, they aim to hide latency

• The focus is on overall computing throughput rather than on the
speed of an individual core
• High arithmetic intensity to hide latency of memory accesses

• Large number of schedulable units

CS 610, IIT Kanpur Swarnendu Biswas

Floating-Point Operations per Second for the CPU
and GPU

CS 610, IIT Kanpur Swarnendu Biswas

CPU, GPU and MIC Hardware Characteristics over Time

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Memory Bandwidth for CPU and GPU

CS 610, IIT Kanpur Swarnendu Biswas

CPU, GPU and MIC Hardware Characteristics over Time

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Xeon 8180M Titan V
Cores 28 5120 (+ 640)
Active threads 2 per core 32 per core
Frequency 2.5 (3.8) GHz 1.2 (1.45) GHz
Peak performance (SP) 4.1 TFlop/s 13.8 TFlop/s
Peak mem. bandwidth 119 GB/s 653 GB/s
Maximum power 205 W 250 W
Launch price $13,000 $3000

Release dates
Xeon: Q3’17
Titan V: Q4’17

High-end CPU-GPU Comparison

CS 610, IIT Kanpur Swarnendu Biswas

Compare GPU to CPU Architecture

• CPUs aim to reduce memory latency with increasingly large and
complex memory hierarchy

• Disadvantages
• The Intel I7-920 processor has some 8 MB of internal L3 cache, almost 30% of

the size of the chip

• Larger cache structures increases the physical size of the processor

• Implies more expensive manufacturing costs and increases likelihood of
manufacturing defects

• Effect of larger, progressively more inefficient caches ultimately
results in higher costs to the end user

CS 610, IIT Kanpur Swarnendu Biswas

Advantages of a GPU

• Performance of Xeon 8180M and
Titan V (based on peak values)
• 3.4X operations executed per second

compared to the CPU

• Main memory bandwidth
• 5.5X bytes transferred per second

compared to the CPU

• Cost- and energy-efficiency
• 15X as much performance per dollar
• 2.8X as much performance per watt

• GPU’s higher performance and
energy efficiency are due to
different allocation of chip area
• High degree of SIMD parallelism,

simple in-order cores, less
control/sync. logic, less
cache/scratchpad capacity

• SIMD is more energy-efficient than
MIMD since a single instruction can
launch many data operations

• Simpler pipeline with no support for
restartable instructions and precise
exceptions

CS 610, IIT Kanpur Swarnendu Biswas

From FLOPS to FLOPS/Watt

• Exploiting hardware specialization can improve energy efficiency

• Moving to vector hardware, such as that found in GPUs, may yield up
to 10X gain in efficiency by eliminating overheads of instruction
processing
• For example, Apple A8 application processor devotes more die area to its

integrated GPU than to central processor unit (CPU) cores

• Most energy-efficient supercomputers are now based on GPUs
instead of only-CPUs

CS 610, IIT Kanpur Swarnendu Biswas

GPU Disadvantages

• Clearly, we should be using GPUs ALL the time?

• GPUs can only execute some types of code fast
• SIMD parallelism is not well suited for all algorithms

• Need lots of data parallelism, data reuse, & regularity

• GPUs are harder to program and tune than CPUs because of their
architecture
• Fewer tools and libraries exist

CS 610, IIT Kanpur Swarnendu Biswas

Role of CPUs

• CPU is responsible for initiating computation on the GPU and
transferring data to and from the GPU

• Beginning and end of the computation typically require access to
input/output (I/O) devices

• There are ongoing efforts to develop APIs providing I/O services
directly on the GPU
• GPUs are not standalone yet, assumes the existence of a CPU

CS 610, IIT Kanpur Swarnendu Biswas

CPUs vs GPUs

CPUs

• Designed for running a small number
of potentially complex tasks
• Tasks may be unconnected
• Suitable to run system software like the

OS and applications

• Small number of registers per core
private to a task
• Context switch between tasks is

expensive in terms of time
• Register set must be saved to memory

and the next one restored from memory

GPUs

• Designed for running large number of
simple tasks
• Suitable for data-parallelism

• Have a single set of registers but with
multiple banks
• A context switch involves setting a bank

selector to switch in and out the current
set of registers

• Orders of magnitude faster than having
to save to RAM

CS 610, IIT Kanpur Swarnendu Biswas

GPU Architecture
• GPUs consist of Streaming Multiprocessors (SMs)

• NVIDIA calls these streaming multiprocessors and AMD calls them compute
units

• SMs contain Streaming Processors (SPs) or Processing Elements (PEs)
• Each core contains one or more ALUs and FPUs

• GPU can be thought of as a multi-multicore (manycore) system

Global Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Adapted from NVIDIA

CS 610, IIT Kanpur Swarnendu Biswas

A Generic Modern GPU Architecture

CS 610, IIT Kanpur Swarnendu Biswas

Ampere Architecture

CS 610, IIT Kanpur Swarnendu Biswas

NVIDIA Ampere GA102 GPU Architecture

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

Ampere Architecture
• GA102 GPU includes 28.3 billion transistors with a die size of 628.4 mm2
• A full GA102 GPU includes 7 Graphics Processing Clusters (GPCs), 42 (7*6)

Texture Processing Clusters (TPCs), and 84 (7*12) Streaming
Multiprocessors (SMs)
• Each SM in GA10x GPUs contain 128 CUDA Cores for a total of 84*128=10752 CUDA

cores
• Each SM has 256 (4*16384*32 bits) KB register file
• 84 RT Cores, and 336 Tensor Cores, 168 FP64 units (two per SM)

• Includes PCIe Gen4 providing up to up to 16 Gigatransfers/second bit rate
• The memory subsystem consists of twelve 32-bit memory controllers (384-

bit total)
• 512 KB of L2 cache is paired with each 32-bit memory controller, for a total

of 6144 KB

CS 610, IIT Kanpur Swarnendu Biswas

NVIDIA Ampere GA102 GPU Architecture

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf

NVIDIA GPU Microarchitecture Release Year Remarks

Tesla 2006 Unified shader model

Fermi 2010 Improved double precision performance, support for FMA

Kepler 2012 Focused on energy efficiency, shuffle instructions, dynamic
parallelism

Maxwell 2014 Focused on energy efficiency, larger L2 cache

Pascal 2016 Unified memory, half-precision floating-point

Volta 2017 Features tensor cores for deep learning workloads

Turing 2018 Features tensor cores for deep learning workloads and
real-time ray tracing. Gaming version of Volta.

Ampere 2020 New generation tensor and ray-tracing cores

Hopper 2022 Faster memory subsystem, improves FP32 throughput

Lovelace 2022 Greater clock frequency

Blackwell

CS 610, IIT Kanpur Swarnendu Biswas

Compute Capability

• When programming with CUDA, it is very important to be aware of
the differences among different versions of hardware

• In CUDA, compute capability refers to architecture features
• For example, number of registers and cores, cache and memory size,

supported arithmetic instructions

• For example, compute capability 1.x devices have 16KB local memory
per thread, and 2.x and 3.x devices have 512KB local memory per
thread

CUDA: Version features and specifications

CS 610, IIT Kanpur Swarnendu Biswas

https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications

Discrete and Integrated GPUs

Discrete Integrated

CPU
memory

GPU
memory

CPU GPU

PCIe bus

Memory

CPU GPU

Cache

CS 610, IIT Kanpur Swarnendu Biswas

Discrete and Integrated GPUs

Discrete

• More performant, consumes
more energy

• Cost of PCIe transfers influences
the granularity of offloading and
the performance

Integrated

• Less performant because of
energy considerations

• CPU and GPU share physical
memory (DRAM or LLC) and can
avoid the cost of data transfers
over a PCIe bus

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Programming
Programming API for NVIDIA GPUs

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Philosophy

Computationally intensive

• The time spent on computation significantly exceeds the time
spent on transferring data to and from GPU memory

Massively parallel

• The computations can be broken down into hundreds or
thousands of independent units of work

Single Instruction Multiple Thread (SIMT) philosophy

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Programming Model

• Allows fine-grained data parallelism and thread parallelism nested
within coarse-grained data parallelism and task parallelism

1. Partition the problem into coarse sub-problems that can be solved
independently

2. Assign each sub-problem to a “block” of threads to be solved in parallel

3. Each sub-problem is also decomposed into finer work items that are solved
in parallel by all threads within the “block”

CS 610, IIT Kanpur Swarnendu Biswas

Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

}

$ nvcc hello-world.cu

$./a.out

$

CS 610, IIT Kanpur Swarnendu Biswas

Hello World with CUDA

#include <stdio.h>
#include <cuda.h>

__global__ void hwkernel() {
printf(“Hello world!\n”);

}

int main() {
hwkernel<<<1, 1>>>();
cudaDeviceSynchronize();

}

$ nvcc hello-world.cu

$./a.out
Hello world!

$

Program returns immediately after launching the
kernel. To prevent program to finish before kernel is
completed, we call cudaDeviceSynchronize().

CS 610, IIT Kanpur Swarnendu Biswas

Hello World with CUDA

#include <stdio.h>
#include <cuda.h>

__global__ void hwkernel() {
printf(“Hello world!\n”);

}

int main() {
hwkernel<<<1, 32>>>();
cudaThreadSynchronize();

}

$ nvcc hello-world.cu

$./a.out
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
…
…
$

CS 610, IIT Kanpur Swarnendu Biswas

Function Declarations in CUDA

Executed on Callable from

__device__ float deviceFunc() Device Device

__global__ void kernelFunc() Device Host*

__host__ float hostFunc() Host Host

• __global__ define a kernel function, must return void
• __device__ functions can have return values
• __host__ is default, and can be omitted
• Prepending __host__ __device__ causes the system to compile separate host and device

versions of the function

CS 610, IIT Kanpur Swarnendu Biswas

*A kernel function can also be called from the device if dynamic parallelism is enabled.

Dynamic Parallelism

• It is possible to launch kernels from other kernels

• Calling __global__ functions from the device is referred to as
dynamic parallelism
• Requires CUDA devices of compute capability 3.5 and CUDA 5.0 or higher

CS 610, IIT Kanpur Swarnendu Biswas

Execution Model

Host
(serial execution)

Device
(Parallel execution)

Parallel kernel on device

Parallel kernel on device

Serial code on host

Serial code on host

CS 610, IIT Kanpur Swarnendu Biswas

Simple Processing Flow

PCI Bus

CS 610, IIT Kanpur Swarnendu Biswas

1. Load input data into CPU memory
(e.g., fread/rand)

Simple Processing Flow

PCI Bus

CS 610, IIT Kanpur Swarnendu Biswas

2. Copy input data from CPU memory to

GPU memory
cudaMemcpy(...,
cudaMemcpyHostToDevice)

Simple Processing Flow

PCI Bus

CS 610, IIT Kanpur Swarnendu Biswas

2. Copy input data from CPU memory to

GPU memory

3. Load GPU program and execute,

caching data on chip for performance

Simple Processing Flow

2. Copy input data from CPU memory to

GPU memory

3. Load GPU program and execute,

caching data on chip for performance

4. Copy results from GPU memory to

CPU memory
cudaMemcpy(...,
cudaMemcpyDeviceToHost)

PCI Bus

CS 610, IIT Kanpur Swarnendu Biswas

Simple Processing Flow

PCI Bus

CS 610, IIT Kanpur Swarnendu Biswas

5. Use results on CPU

Vector Addition Example

__global__ void VecAdd(float* A, float* B,
float* C, int N) {

int i = blockDim.x * blockIdx.x +
threadIdx.x;

if (i < N)
C[i] = A[i] + B[i];

}

int main() {
…
float* h_A = (float*)malloc(size);
float* h_B = (float*)malloc(size);
float* h_C = (float*)malloc(size);

float* d_A;
cudaMalloc(&d_A, size);
float* d_B;
cudaMalloc(&d_B, size);
float* d_C;
cudaMalloc(&d_C, size);

// Copy vectors from host memory to
// device memory
cudaMemcpy(d_A, h_A, size,

cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size,

cudaMemcpyHostToDevice);

CS 610, IIT Kanpur Swarnendu Biswas

Vector Addition Example

// Invoke kernel

int threadsPerBlock = 256;

int blocksPerGrid = N/threadsPerBlock
;

VecAdd<<<blocksPerGrid, threadsPerBlo
ck>>>(d_A, d_B, d_C, N);

// Copy result from device memory to

// host memory

cudaMemcpy(h_C, d_C, size,

cudaMemcpyDeviceToHost);

…

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

…

}

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Extensions for C/C++

• Kernel launch
• Calling functions on GPU

• Memory management
• GPU memory allocation, copying data to/from GPU

• Declaration qualifiers
• __device__, __shared, __local, __global__, __host__

• Special instructions
• Barriers, fences, etc.

• Keywords
• threadIdx, blockIdx, blockDim

CS 610, IIT Kanpur Swarnendu Biswas

C++11 Support from CUDA 7.5+

Supported Features

• auto

• lambdas

• constexpr

• rvalue references

• range-based for loops

Unsupported Features

• Standard library
• You cannot use std::cout in device

code

CS 610, IIT Kanpur Swarnendu Biswas

Kernels
• Special functions that a CPU can

call to execute on the GPU
• Executed N times in parallel by N

different CUDA threads

• Cannot return a value

• Each thread will execute
VecAdd()

• Each thread has a unique thread
ID that is accessible within the
kernel through the built-in
threadIdx variable

// Kernel definition

__global__ void VecAdd(float* A,
float* B, float* C) {

int i = threadIdx.x;

…

}

int main() {

…

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

}

CS 610, IIT Kanpur Swarnendu Biswas

Kernels

• GPU spawns m blocks with n threads (i.e., m*n threads total) that run
a copy of the same function

• CPU can continue processing while GPU runs kernel

• Kernel call returns when all threads have terminated

kernel1<<<X,Y>>>(...); // kernel starts execution, CPU continues to next statement
kernel2<<<X,Y>>>(...); // kernel2 placed in queue, will start after kernel1 finishes,

// CPU continues
cudaMemcpy(...); // CPU blocks until memory is copied, memory copy starts after all

// preceding CUDA calls finish

KernelName<<<m, n>>>(arg1, arg2, ...)

CS 610, IIT Kanpur Swarnendu Biswas

Thread Hierarchy

• A kernel executes in parallel
across a set of parallel threads

• All threads that are generated by
a kernel launch are collectively
called a grid

• Threads are organized in thread
blocks, and blocks are organized
in to grids

CS 610, IIT Kanpur Swarnendu Biswas

Thread Hierarchy

• A thread block is a set of
concurrently executing threads
that can cooperate among
themselves through barrier
synchronization and shared
memory

• A grid is an array of thread blocks
that execute the same kernel
• Read inputs to and write results to

global memory
• Synchronize between dependent

kernel calls

CS 610, IIT Kanpur Swarnendu Biswas

Dimension and Index Variables

Dimension

• gridDim specifies the number
of blocks in the grid

• blockDim specifies the number
of threads in each block

Index

• blockIdx gives the index of the
block in the grid

• threadIdx gives the index of
the thread within the block

Type is dim3

CS 610, IIT Kanpur Swarnendu Biswas

Thread Hierarchy

• threadIdx is a 3-component vector
• Thread index can be 1D, 2D, or 3D

• Thread blocks as a result can be 1D, 2D, or 3D

• How to find out the relation between thread ids and threadIdx?
• 1D: tid = threadIdx.x

• 2D block of size (Dx, Dy): thread ID of a thread of index (x, y) is (x +
yDx)

• 3D block of size (Dx, Dy, Dz): thread ID of a thread of index (x, y, z) is
(x + yDx + zDxDy)

CS 610, IIT Kanpur Swarnendu Biswas

Thread Hierarchy

• Threads in a block reside on the
same core, max 1024 threads in a
block

• Thread blocks are organized into
1D, 2D, or 3D grids
• Also called cooperative thread array
• Grid dimension is given by gridDim

variable

• Identify block within a grid with the
blockIdx variable
• Block dimension is given by
blockDim variable

CS 610, IIT Kanpur Swarnendu Biswas

Finding Thread IDs i is local to
each thread

CS 610, IIT Kanpur Swarnendu Biswas

Determining Block Dimensions

• Assume a block with a maximum of 1024 allowed threads

Variable blockDim Valid/Invalid

(512,1,1) ✓

(8, 16, 4) ✓

(32, 16, 2) ✓

(32, 32, 32)

CS 610, IIT Kanpur Swarnendu Biswas

Find Device Information
int count;

cudaError_t err =

cudaGetDeviceCount(&count);

if (err != cudaSuccess) {

cerr << cudaGetErrorString(err) << endl;

}

cudaDeviceProp Props;

for (int i = 0; i < count; i++) {

err = cudaGetDeviceProperties(&Props, i);

}

Device number: 3

Device name: GeForce GTX 1080 Ti

Integrated or discrete GPU? discrete

Clock rate: 1544 MHz

Compute capability: 6.1

Number of SMs: 28

Total number of CUDA cores: 3584

Max threads per SM: 2048

Max threads per block: 1024

Warp size: 32

Max grid size (i.e., max number of blocks): [2147483647,65535,65535]

Max block dimension: [1024,1024,64]

Total global memory: 11172 MB

Shared memory per SM: 96 KB

32-bit registers per SM: 65536

Shared mem per block: 48 KB

Registers per block: 65536

Total const mem: 64 KB

L2 cache size: 2816 KB

CS 610, IIT Kanpur Swarnendu Biswas

Device Management

• Application can query and select GPUs
• cudaGetDeviceCount(int *count)
• cudaSetDevice(int device)
• cudaGetDevice(int *device)
• cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple host threads can share a device

• A single host thread can manage multiple devices
• cudaSetDevice(i) to select current device

• cudaMemcpy(…) for peer-to-peer copies

CS 610, IIT Kanpur Swarnendu Biswas

Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int i = threadIdx.y;

int j = threadIdx.x;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}

CS 610, IIT Kanpur Swarnendu Biswas

Type dim3 is not
required if 1D layout

Execution Configuration

• Assume data is of length N, and say the kernel execution
configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type

CS 610, IIT Kanpur Swarnendu Biswas

Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int j = blockIdx.x * blockDim.x + threadIdx.x;

int i = blockIdx.y * blockDim.y + threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}

CS 610, IIT Kanpur Swarnendu Biswas

Execution Configuration Uses Integer
Arithmetic
• Assume data is of length N, and say the kernel execution

configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type

• Now assume N = 65 So now
what?

CS 610, IIT Kanpur Swarnendu Biswas

Execution Configuration Uses Integer
Arithmetic
• Ensure that the grid covers the array length

• One strategy is to change the number of blocks from N/TPB to
(N+TPB-1)/TPB to ensure rounding up

• This means that a thread index can exceed the maximum array index

• Many examples use a control statement in the kernel to check for
such corner cases

CS 610, IIT Kanpur Swarnendu Biswas

What should be numBlocks?

const int Nx = 11; // not a multiple of threadsPerBlock.x

const int Ny = 5; // not a multiple of threadsPerBlock.y

//

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(x, y, z);

// assume A, B, C are allocated Nx x Ny float arrays

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CS 610, IIT Kanpur Swarnendu Biswas

What should be numBlocks?

const int Nx = 11; // not a multiple of threadsPerBlock.x

const int Ny = 5; // not a multiple of threadsPerBlock.y

//

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks((Nx+threadsPerBlock.x‐1)/threadsPerBlock.x,

(Ny+threadsPerBlock.y‐1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CS 610, IIT Kanpur Swarnendu Biswas

Example
__global__ void matrixAdd(float* A,

float* B, float* C) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

// Guard against out of bounds array access

if (i < N && j < N)

C[i+N*j] = A[i+N*j] + B[i+N*j];

}

CS 610, IIT Kanpur Swarnendu Biswas

Matrix Multiplication Example

int main() {

int SIZE = N * N;

cudaError_t status;

float *hostA, *hostB, *hostC;

hostA = (float*)malloc(SIZE * sizeof(
float));

hostB = (float*)malloc(SIZE * sizeof(
float));

hostC = (float*)malloc(SIZE * sizeof(
float));

float *deviceA, *deviceB, *deviceC;

status = cudaMalloc((void**)&deviceA,
SIZE * sizeof(float));

if (status != cudaSuccess) {

cerr << cudaGetErrorString(status)
<< endl;

}

status = cudaMalloc((void**)&deviceB,
SIZE * sizeof(float));

status = cudaMalloc((void**)&deviceC,
SIZE * sizeof(float));

CS 610, IIT Kanpur Swarnendu Biswas

Matrix Multiplication Example

status = cudaMemcpy(deviceA, hostA, S
IZE * sizeof(float), cudaMemcpyHostToDe
vice);

status = cudaMemcpy(deviceB, hostB, S
IZE * sizeof(float), cudaMemcpyHostToDe
vice);

dim3 blocksPerGrid(1, 1);

dim3 threadsPerBlock(N, N);

matmulKernel<<<blocksPerGrid, threads
PerBlock>>>(deviceA, deviceB, deviceC);

cudaMemcpy(hostC, deviceC, SIZE * siz
eof(float), cudaMemcpyDeviceToHost);

…

cudaFree(deviceA);

cudaFree(deviceB);

cudaFree(deviceC);

free(hostA);

free(hostB);

…

}

CS 610, IIT Kanpur Swarnendu Biswas

Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (i < N && j < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[i * N + k] * B[k * N + j];

}

}

C[i * N + j] = tmp;

}

CS 610, IIT Kanpur Swarnendu Biswas

Choosing Optimal Execution Configuration

• The number of thread blocks in a grid is usually dictated by the size of
the data being processed or the number of processors in the system
• It is okay to have a much greater number of threads

• No fixed rule, needs exploration and experimentation

• Choose number of threads in a block to be some multiple of 32

CS 610, IIT Kanpur Swarnendu Biswas

Timing a CUDA Kernel
float memsettime;

cudaEvent_t start, stop;

// initialize CUDA timer

cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start,0);

// CUDA Kernel

…

cudaEventRecord(stop,0); // stop CUDA timer

cudaEventSynchronize(stop);

cudaEventElapsedTime(&memsettime,start,stop); // in milliseconds

std::cout << “Kernel execution time: “ << memsettime << “\n”;

cudaEventDestroy(start);

cudaEventDestroy(stop);

CS 610, IIT Kanpur Swarnendu Biswas

Reporting Errors

• All CUDA API calls return an error code (cudaError_t)
• Error in the API call itself or error in an earlier asynchronous operation (e.g.

kernel)

• Get the error code for the last error
cudaError_t cudaGetLastError(void)

• Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

CS 610, IIT Kanpur Swarnendu Biswas

Mapping Blocks and Threads

• A GPU executes one or more kernel grids

• When a CUDA kernel is launched, the thread blocks are enumerated
and distributed to SMs
• Potentially >1 block per SM

• An SM executes one or more thread blocks
• Each GPU has a limit on the number of blocks that can be assigned to each

SM

• For example, a CUDA device may allow up to eight blocks to be assigned to
each SM

• Multiple thread blocks can execute concurrently on one SM

CS 610, IIT Kanpur Swarnendu Biswas

Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism

CS 610, IIT Kanpur Swarnendu Biswas

Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism

CUDA runtime can execute blocks in any order

CS 610, IIT Kanpur Swarnendu Biswas

Scheduling Blocks

• Number of threads that can be simultaneously tracked and scheduled
is bounded
• Requires resources for an SM to maintain block and thread indices and their

execution status

• Up to 2048 threads can be assigned to each SM on recent CUDA
devices
• For example, 8 blocks of 256 threads, or 4 blocks of 512 threads

• Assume a CUDA device with 28 SMs
• Each SM can accommodate up to 2048 threads
• The device can have up to 57344 threads simultaneously residing in the

device for execution

CS 610, IIT Kanpur Swarnendu Biswas

Block Scalability

• Hardware can assign blocks to SMs in any order
• A kernel with enough blocks scales across GPUs

• Not all blocks may be resident at the same time

GPU with 2 SMs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU with 4 SMs

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

Adapted from NVIDIA

CS 610, IIT Kanpur Swarnendu Biswas

Scalability of GPU Architecture

A multithreaded program is
partitioned into blocks of threads
that execute independently from
each other.

A GPU with more multiprocessors
will automatically execute the
program in less time than a GPU
with fewer multiprocessors.

CS 610, IIT Kanpur Swarnendu Biswas

Thread Warps

• Conceptually, threads in a block can execute in any order

• Sharing a control unit among compute units reduce hardware
complexity, cost, and power consumption

• A set of consecutive threads (currently 32) that execute in SIMD
fashion is called a warp
• These are called wavefront (with 64 threads) on AMD

• Warps are scheduling units in an SM
• Part of the implementation in NVIDIA, not the programming model

CS 610, IIT Kanpur Swarnendu Biswas

Thread Warps

• All threads in a warp run in lockstep
• Warps share an instruction stream
• Same instruction is fetched for all threads

in a warp during the instruction fetch
cycle
• Prior to Volta, warps used a single shared

program counter

• In the execution phase, each thread will
either execute the instruction or will
execute nothing

• Individual threads in a warp have their
own instruction address counter and
register state

CS 610, IIT Kanpur Swarnendu Biswas

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Thread Warps

• Warp threads are fully synchronized
• There is an implicit barrier after each step/instruction

• If 3 blocks are assigned to an SM and each block has 256 threads,
how many warps are there in an SM?
• Each Block is divided into 256/32 = 8 warps

• There are 8 * 3 = 24 warps

CS 610, IIT Kanpur Swarnendu Biswas

Thread Divergence

• If some threads take the if branch and other threads take the else
branch, they cannot operate in lockstep
• Some threads must wait for the others to execute, renders code at that point

to be serial rather than parallel

• The programming model does not prevent thread divergence
• Divergence occurs only within a warp, so it is a performance problem at the

warp level

CS 610, IIT Kanpur Swarnendu Biswas

Thread Divergence

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Thread Execution Model | 3D Game Engine Programming (3dgep.com)

https://www.3dgep.com/cuda-thread-execution-model/

Scheduling Thread Warps

• Each SM launches warps of threads, and executes warps on a
timesharing basis
• Timesharing is implemented in hardware, not software

• SM schedules and executes warps that are ready to run
• Warps run for fixed-length time slices like processes

• Warps whose next instruction has its operands ready for consumption are
eligible for execution

• Selection of ready warps for execution does not introduce any idle time into
the execution timeline, called zero-overhead scheduling

• If more than one warp is ready for execution, a priority mechanism is used to
select one for execution

CS 610, IIT Kanpur Swarnendu Biswas

Scheduling Thread Warps

• Suppose an instruction executed by a warp has to wait for the result
of a previously initiated long-latency operation
• The warp is not selected for execution, another warp that is not waiting for

results is selected for execution

• Goal is to have enough threads and warps around to utilize hardware
in spite of long-latency operations
• GPU hardware will likely find a warp to execute at any point in time

• Hides latency of long operations with work from other threads, called latency
tolerance or latency hiding

CS 610, IIT Kanpur Swarnendu Biswas

Scheduling Thread Warps

• Thread blocks execute on an SM, thread instructions execute on a
core

• CUDA virtualizes the physical hardware
• Thread is a virtualized scalar processor (registers, PC, state)

• Block is a virtualized multiprocessor (threads, shared memory)

• As warps and thread blocks complete, resources are freed

CS 610, IIT Kanpur Swarnendu Biswas

Question

• Assume that a CUDA device allows up to 8 blocks and 1024 threads
per SM, whichever becomes a limitation first
• It allows up to 512 threads in each block

• Say for the matrix-matrix multiplication kernel, should we use 8x8,
16x16, or 32x32 thread blocks?

CS 610, IIT Kanpur Swarnendu Biswas

SIMT Architecture

• GPUs employ SIMD hardware to exploit the data-level parallelism
• In SIMD, you program with the vector width in mind

• In vectorization, users program the SIMD hardware directly, or uses auto-
vectorization or intrinsics

• SIMT can be thought of as SIMD with multithreading
• Software analog compared to the hardware perspective of SIMD

• For e.g., we rarely need to know the number of cores with CUDA

CS 610, IIT Kanpur Swarnendu Biswas

SIMT Architecture

• CUDA also features a MIMD-like programming model
• Launch large number of threads
• Each thread can have its own execution path and access arbitrary memory

locations

• This execution model is called single-instruction multiple-thread
(SIMT)

• Two levels of parallelism
• Independent grids (i.e., kernels) or concurrent thread blocks represent

coarse-grained data parallelism or task parallelism
• Concurrent threads/warps represent fine-grained data parallelism or thread

parallelism

CS 610, IIT Kanpur Swarnendu Biswas

SIMD vs SPMD

SIMD

• Processing units are executing
the same instruction at any
instant

SPMD

• Parallel processing units execute
the same program on multiple
parts of the data

• All the processing units may not
execute the same instruction at
the same time

CS 610, IIT Kanpur Swarnendu Biswas

Memory Hierarchy

CS 610, IIT Kanpur Swarnendu Biswas

Memory Access Efficiency

• Compute to global memory access ratio
• Number of floating-point operations performed for each access to global

memory

• Assume a GPU device with 1 TB/s global memory bandwidth and
peak single-precision performance of 12 TFLOPS
• What is the performance we expect with an access ratio of 1?

• We can do 1000/4 GFLOPS, which is only ~2% of the peak performance

for (int i = 0; i < N; i++)
tmp += A[i*N+K]*B[k*N+j];

CS 610, IIT Kanpur Swarnendu Biswas

Memory Hierarchy in CUDA

CS 610, IIT Kanpur Swarnendu Biswas

Variable Type Qualifiers in CUDA

Memory Scope Lifetime

int localVar Register Thread Kernel

__device__ __local__ int localVar Local Thread Kernel

__device__ __shared__ int
sharedVar

Shared Block Kernel

__device__ int globalVar Global Grid Application

__device__ __constant__ int
constVar

Constant Grid Application

• __device__ is optional when used with __local__, __shared__, or __constant__
• Automatic variables without any qualifier reside in a register

• Except arrays that reside in local memory
• Pointers can only point to memory allocated or declared in global memory

CS 610, IIT Kanpur Swarnendu Biswas

Memory Organization

• Host and device maintain their own separate memory spaces
• A variable in CPU memory may not be accessed directly in a GPU kernel

• It is programmer's responsibility to keep them in sync
• A programmer needs to maintain copies of variables

CS 610, IIT Kanpur Swarnendu Biswas

Registers

• 64K 32-bit registers per SM
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread (compute capability 3.5+)

• If a code uses the maximum number of registers per thread (255) and
an SM has 64K registers, then the SM can support a maximum of 256
threads

• If we use the maximum allowable number of threads per SM (2048),
then each thread can use at most 32 registers per thread

CS 610, IIT Kanpur Swarnendu Biswas

Registers

• 64K 32-bit registers per SM
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread (compute capability 3.5+)

• If a code uses the maximum number of registers per thread (255) and
an SM has 64K registers, then the SM can support a maximum of 256
threads

• If we use the maximum allowable number of threads per SM (2048),
then each thread can use at most 32 registers per thread

What if each thread uses 33 registers?

CS 610, IIT Kanpur Swarnendu Biswas

Registers

• If we use the maximum allowable number of threads per SM (2048),
then each thread can use at most 32 registers per thread

• What if each thread uses 33 registers?
• Fewer threads => fewer warps

• There is a big difference between “fat” threads which use lots of
registers, and “thin” threads that require very few!

CS 610, IIT Kanpur Swarnendu Biswas

Shared Memory

• Shared memory aims to bridge the gap in memory speed and access
• Also called scratchpad memory

• Usually 16-64KB of storage that can be accessed efficiently by all threads in a
block

• Primary mechanism in CUDA for efficiently supporting thread
cooperation

• Each SM contains a single shared memory
• Resides adjacent to an SM, on-chip

• The space is shared among all blocks running on that SM

CS 610, IIT Kanpur Swarnendu Biswas

Shared Memory

• Variable in shared memory is
allocated using the __shared__
specifier
• Faster than global memory

• Can be accessed only by threads
within a block

• Amount of shared memory per
block limits occupancy

• Say an SM with 4 thread blocks
has 16 KB of shared memory

__shared__ float min[256];

__shared__ float max[256];

__shared__ float avg[256];

__shared__ float stdev[256];

CS 610, IIT Kanpur Swarnendu Biswas

Registers vs Shared Memory

Registers

• Faster than shared memory

• Private to a thread

Shared Memory

• On-chip memory space, requires
load/store operations

• Visible to all threads in a block

CS 610, IIT Kanpur Swarnendu Biswas

Global Variables

• Variable lock can be accessed
by both kernels
• Resides in global memory space

• Can be both read and modified by
all threads

__device__ int lock=0;

__global__ void kernel1(...) {

// Kernel code

}

__global__ void kernel2(...) {

// Kernel code

}

CS 610, IIT Kanpur Swarnendu Biswas

Global Memory

• On-device memory accessed via 32, 64, or 128 B transactions

• A warp executes an instruction that accesses global memory
• The addresses are coalesced into transactions

• Number of transactions depend on the access size and distribution of
memory addresses

• More transactions mean less throughput
• For example, if 32 B transaction is needed for a thread’s 4 B access, throughput is

essentially 1/8th

CS 610, IIT Kanpur Swarnendu Biswas

Constant Memory

• Used for data that will not change during kernel execution
• Constant memory is 64KB

• Constant memory is cached
• Each SM has a read-only constant cache that is shared by all cores in the SM

• Used to speed up reads from the constant memory space which resides in
device memory

• Read from constant memory incurs a memory latency on a miss
• Otherwise, it is a read from constant cache, which is almost as fast as registers

CS 610, IIT Kanpur Swarnendu Biswas

Constant Variables

• Constant variables cannot be modified by kernels
• Reside in constant memory

• Accessible from all threads within a grid

• They are defined with global scope within the kernel using the prefix
__constant__

• Host code can access via cudaMemcpyToSymbol() and
cudaMemcpyFromSymbol()

CS 610, IIT Kanpur Swarnendu Biswas

Local Memory

• Local memory is off-chip memory
• More like thread-local global memory, so it requires memory transactions and

consumes bandwidth

• Automatic variables are placed in local memory
• Arrays for which it is not known whether indices are constant quantities

• Large structures or arrays that consume too much register space

• In case of register spilling

• Inspect PTX assembly code (compile with –ptx)
• Check for ld.local and st.local mnemonic

CS 610, IIT Kanpur Swarnendu Biswas

Device Memory Management

• Global device memory can be allocated with cudaMalloc()

• Freed by cudaFree()

• Data transfer between host and device is with cudaMemcpy()

• Initialize memory with cudaMemset()

• There are asynchronous versions

CS 610, IIT Kanpur Swarnendu Biswas

GPU Caches

• GPUs have L1 and L2 data caches on devices with CC 2.x and higher
• Texture and constant cache are available on all devices

• L1 cache is write-through, and per SM
• Shared memory is partitioned out of unified data cache and its size can be

configured, remaining portion is the L1 cache

• Can be configured as 48 KB of shared memory and 16 KB of L1 cache, or 16 KB
of shared memory and 48 KB of L1 cache, or 32 KB each

• L1 caches are 16-48 KB

• L2 cache is shared by all SMs

• L1 cache lines are 128 B wide in Fermi onward, while L2 lines are 32 B

CS 610, IIT Kanpur Swarnendu Biswas

CPU Caches vs GPU caches

CPU

• Data is automatically moved by
hardware between caches
• Association between threads and

cache does not have to be
exposed to programming model

• Caches are generally coherent

GPU

• Data movement must be
orchestrated by programmer
• Association between threads and

storage is exposed to
programming model

• L1 cache is not coherent, L2
cache is coherent

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Compilation
Binary compatibility of GPU applications is not guaranteed across different
generations

CS 610, IIT Kanpur Swarnendu Biswas

How NVCC works?

• Nvcc is a driver program based
on LLVM
• Compiles and links all input files

• Requires a general-purpose C/C++
host compiler
• Uses gcc and g++ by default on Linux

platforms

• nvcc --version

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

CS 610, IIT Kanpur Swarnendu Biswas

NVCC Details

Important Options Description

-std
{c++03|c++11|c++14
}

Select a particular C++
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the
virtual GPU
architecture

-code CODE Specify the name of the
GPU to assemble and
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp,

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly

.cubin CUDA device binary code for a
single GPU architecture

.fatbin CUDA fat binary file that may
contain multiple PTX and CUBIN
files

.a, .so,

.lib
…

NVIDIA. CUDA Compiler Driver NVCC. v11.1.

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Compilation Trajectory

• Conceptually, the flow is as follows
• Input program is preprocessed for device compilation

• It is compiled to a CUDA binary (.cubin) and/or PTX (Parallel Thread
Execution) intermediate code which are encoded in a fatbinary

• Input program is processed for compilation of the host code
• CUDA-specific C++ constructs are transformed to standard C++ code

• Synthesized host code and the embedded fatbinary are linked together to
generate the executable

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Compilation
Trajectory

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

• A compiled CUDA device binary
includes
• Program text (instructions)

• Information about the resources
required
• N threads per block

• X bytes of local data per thread

• M bytes of shared space per block

Swarnendu BiswasCS 610, IIT Kanpur

NVCC Details

Important Options Description

-std
{c++03|c++11|c++14
}

Select a particular C++
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the
virtual GPU
architecture

-code CODE Specify the name of the
GPU to assemble and
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp,

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly

.cubin CUDA device binary code for a
single GPU architecture

.fatbin CUDA fat binary file that may
contain multiple PTX and CUBIN
files

.a, .so,

.lib
…

NVIDIA. CUDA Compiler Driver NVCC. v11.8.

nvcc –arch=compute_30 –code=sm_52 hello-world.cu

nvcc –arch=compute_30 –code=sm_30,sm_52 hello-world.cu

CS 610, IIT Kanpur Swarnendu Biswas

Two-Staged Compilation with nvcc

CS 610, IIT Kanpur Swarnendu Biswas

NVIDIA. CUDA Compiler Driver NVCC. v11.8.

JIT
compilation

• nvcc –arch=compute_50 –code=compute_50 hello-world.cu
• nvcc –arch=compute_50 –code=compute_50,sm_50,sm_52 hello-world.cu

Synchronization in CUDA

CS 610, IIT Kanpur Swarnendu Biswas

Race Conditions and Data Races

• A race condition occurs when program behavior depends upon
relative timing of two (or more) event sequences

• Execute: *c += sum;
• Read value at address c

• Add sum to value

• Write result to address c

• There can be intra-warp, inter-warp, and inter-block races

CS 610, IIT Kanpur Swarnendu Biswas

Be Careful to Avoid Race Conditions!

Thread 0, Block 0

• Read value at address c

• Add sum to value

• Write result to address c

Thread 3, Block 7

• Read value at address c

• Add sum to value

• Write result to address c

ti
m

e

CS 610, IIT Kanpur Swarnendu Biswas

Synchronization Constructs in CUDA

1. __syncThreads() synchronizes threads within a block

2. cudaDeviceSynchronize() synchronizes all threads in a grid
• There are other variants

3. Atomic operations prevent conflicts associated with multiple
threads concurrently accessing a variable

• Atomic operations on both global memory and shared memory variables

• For e.g., float atomicAdd(float* addr, float amount)

CS 610, IIT Kanpur Swarnendu Biswas

__syncthreads()

• A __syncthreads() statement must be executed by all threads in a
block

• __syncthreads() is in an if statement
• Either all threads in the block execute the path that includes the
__syncthreads() or none of them does

• __syncthreads() statement is in each path of an if-then-else
statement
• Either all threads in a block execute the __syncthreads() on the then path

or all of them execute the else path

• The two __syncthreads() are different barrier synchronization points

CS 610, IIT Kanpur Swarnendu Biswas

Synchronization Between Grids

• For threads from different grids,
system ensures writes from
kernel happen before reads from
subsequent grid launches

CS 610, IIT Kanpur Swarnendu Biswas

Atomic Operations

• Perform read-modify-write (RMW) atomic operations on data residing
in global or shared memory
• atomicAdd(), atomicSub(), atomicMin(), atomicMax(),
atomicInc(), atomicDec(), atomicExch(), atomicCAS()

• Predictable result when simultaneous access to memory required

CS 610, IIT Kanpur Swarnendu Biswas

Concurrency and CUDA Streams
Overlap host and device computation with data transfers

CS 610, IIT Kanpur Swarnendu Biswas

Classic Copy-then-Execute Model

1. cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

2. kernel1<<<1,N>>>(d_a);

3. cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

• Data transfer on line 1 is blocking or synchronous
• Host thread cannot launch the kernel until the copy is done

• Kernel launch is asynchronous
• Data transfer on line 3 cannot begin due to the device-side ordering (i.e., until

the kernel completes)

CS 610, IIT Kanpur Swarnendu Biswas

Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

kernel1<<<1,N>>>(d_a);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

kernel1<<<1,N>>>(d_a);

h_func(h_b);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

Host gets
work done

CS 610, IIT Kanpur Swarnendu Biswas

Goal is to Utilize GPU Hardware

• Overlap kernel execution with memory copy between host and device

• Overlap execution of multiple kernels if there are enough resources

• Depends on whether the GPU architecture supports overlapped
execution

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Streams

• Sequence of operations that execute on the device in the order in
which they were issued by the host
• Operations across streams can interleave and run concurrently

• All GPU device operations run in a stream
• The default “null” stream is used if no custom stream is specified, the default

stream is synchronizing

• No operation in the default stream will begin until all previously issued
operations in any stream have completed

• An operation in the default stream must complete before any other operation
in any stream will begin

CS 610, IIT Kanpur Swarnendu Biswas

Using a Non-default Stream
• Manipulate non-default streams from the host

• Issue a data transfer to a non-default stream

• Specifying a stream during kernel launch is optional

CS 610, IIT Kanpur Swarnendu Biswas

kernel1<<<blocks, threads, bytes>>>(); // default/NULL stream
kernel2<<<blocks, threads, bytes, stream1>>>();

cudaStream_t stream1;
cudaError_t result;
result = cudaStreamCreate(&stream1);
result = cudaStreamDestroy(stream1);

result = cudaMemcpyAsync(d_a, a, N,
cudaMemcpyHostToDevice, stream1);

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/

Non-Default Streams

• Operations in a non-default
stream are non-blocking with host

• Use cudaDeviceSynchronize()
• Blocks host until all previously issued

operations on the device have
completed

• Cheaper alternatives
• cudaStreamSynchronize(),
cudaEventSynchronize(), …

cudaStream_t stream1;

cudaError_t res;

res = cudaStreamCreate(&stream1);

res = cudaMemcpyAsync(d_a, a, N,
cudaMemcpyHostToDevice, stream1);

increment<<<1,N,0,stream1>>>(d_a);

// Block the host thread

cudaStreamSynchronize(stream1);

res = cudaStreamDestroy(&stream1);

CS 610, IIT Kanpur Swarnendu Biswas

Why Use CUDA Streams?

• Memory copy and kernel execution can be overlapped if they occur in
different, non-default streams
• Most recent GPUs are capable of “concurrent copy and execution”, can be

queried from the deviceOverlap/asyncEngineCount field of the
cudaDeviceProp struct

• Individual kernels can overlap if there are enough resources on the
GPU

CS 610, IIT Kanpur Swarnendu Biswas

Overlapping Kernel Execution and Data
Transfers

CS 610, IIT Kanpur Swarnendu Biswas

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;

cudaMemcpyAsync(&d_a[offset], &h_a[offset], streamBytes,
cudaMemcpyHostToDevice, stream[i]);

kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

cudaMemcpyAsync(&h_a[offset], &d_a[offset], streamBytes,
cudaMemcpyDeviceToHost, stream[i]);

}

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/

Overlapping Kernel Execution and Data
Transfers
for (int i = 0; i < nStreams; ++i) {

int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &h_a[offset], streamBytes,

cudaMemcpyHostToDevice, stream[i]);
}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&h_a[offset], &d_a[offset], streamBytes,

cudaMemcpyDeviceToHost, stream[i]);
}

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/CS 610, IIT Kanpur Swarnendu Biswas

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/CS 610, IIT Kanpur Swarnendu Biswas

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/CS 610, IIT Kanpur Swarnendu Biswas

Concurrent Host Execution

• Asynchronous functions are nonblocking
• kernel launches

• memory copies from host to device of a memory block of 64 KB or less;

• memory copies performed by functions that are suffixed with Async

CS 610, IIT Kanpur Swarnendu Biswas

Streams and Concurrency in CUDA 7+

• Prior to CUDA 7, all host threads shared the default stream
• Implied synchronization

• CUDA 7+ provides an option to have a per-host-thread default stream
• Commands issued to the default stream by different host threads can run

concurrently

• Commands in the default stream may run concurrently with commands in
non-default streams

CS 610, IIT Kanpur Swarnendu Biswas

Multi-Stream Example: Legacy Behavior

CS 610, IIT Kanpur Swarnendu Biswas

for (int i = 0; i < num_streams; i++) {
cudaStreamCreate(&streams[i]);

cudaMalloc(&data[i], N * sizeof(float));

// launch one worker kernel per stream
kernel<<<1, 64, 0, streams[i]>>>(data[i], N);

// launch a dummy kernel on the default stream
kernel<<<1, 1>>>(0, 0);

}

Multi-Stream Example: Per-Thread Default
Stream

CS 610, IIT Kanpur Swarnendu Biswas

nvcc --default-stream per-thread <file.cu>

Performance Bottlenecks with
CUDA

CS 610, IIT Kanpur Swarnendu Biswas

Differences between Host and Device

Host

• Limited amount of concurrent
threads

• Context switches of threads are
heavyweight

• Designed to minimize latency

Device

• Massive number of concurrently
active threads

• Context switches are lightweight
• Resources stay allocated to a

thread till it completes

• Designed to maximize
throughput

CS 610, IIT Kanpur Swarnendu Biswas

Desired Application Characteristics for Device
Execution
• Large data-parallel computation

• Complex computation kernel to justify the data movement costs
• Think of matrix addition versus matrix multiplication

• Keep data on the device to avoid repeated transfers

CS 610, IIT Kanpur Swarnendu Biswas

Key Ideas for Performance

• Try and reduce resource consumption

• Exploit SIMT, reduce thread divergence in a warp

• Strive for good locality, use tiling to exploit shared memory
• Improve throughput by reducing global memory traffic

• Copy blocks of data from global memory to shared memory and operate on
them (e.g., matrix multiplication kernel)

• Memory access optimization
• Global memory: memory coalescing

• Shared memory: avoid bank conflicts

CS 610, IIT Kanpur Swarnendu Biswas

What can we say about this code?

__global__ void dkernel(float *vector, int vectorsize) {

int id = blockIdx.x * blockDim.x + threadIdx.x;

switch (id) {

case 0: vector[id] = 0; break;

case 1: vector[id] = vector[id] * 10; break;

case 2: vector[id] = vector[id - 2]; break;

case 3: vector[id] = vector[id + 3]; break;

…

case 31: vector[id] = vector[id] * 9; break;

}

}

CS 610, IIT Kanpur Swarnendu Biswas

Deal with Thread Divergence

• Thread divergence renders execution sequential
• SIMD hardware takes multiple passes through the divergent paths

• Condition evaluating to different truth values is not bad

• Branch granularity is a whole multiple of warp size; all threads in any given
warp follow the same path

• Conditions evaluating to different truth-values for threads in a warp is
bad

• Creates two different control paths for threads in a block; branch granularity <
warp size; threads 0 and 1 follow different path than the rest of the threads in
the first warp

if (threadIdx.x > 2) {}

if (threadIdx.x / WARP_SIZE > 2) {}

CS 610, IIT Kanpur Swarnendu Biswas

Parallel Memory Architecture

• In a parallel machine, many threads
access memory

• Memory is divided into banks to
achieve high bandwidth
• Each bank can service one address per

cycle

• A memory can service as many
simultaneous accesses as it has banks

• Multiple simultaneous accesses to a
bank result in a bank conflict
• Conflicting accesses are serialized

CS 610, IIT Kanpur Swarnendu Biswas

Example of Bank Addressing

• No bank conflicts
• Linear addressing, stride=1

• No bank conflicts
• Random permutation

CS 610, IIT Kanpur Swarnendu Biswas

Example of Bank Addressing

• 2-way Bank Conflicts
• Linear addressing, stride = 2

• 8-way Bank Conflicts
• Linear addressing, stride = 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

CS 610, IIT Kanpur Swarnendu Biswas

Shared Memory Bank Conflicts

• Shared memory is as fast as registers if there are no bank conflicts

• Fast case
• If all threads of a warp access different banks, there is no bank conflict
• If all threads of a warp access the identical address, there is no bank conflict

(broadcast)

• Slow case
• Bank Conflict: multiple threads in the same half-warp access (?) the same bank
• Must serialize the accesses
• Cost = max # of simultaneous accesses to a single bank

• Give low priority to fix low-degree bank conflicts since resolving it will
increase instructions

CS 610, IIT Kanpur Swarnendu Biswas

Memory Coalescing
• Coalesced memory access

• A warp of threads access adjacent data in a cache line

• In the best case, this results in one memory transaction (best bandwidth)

• Uncoalesced memory access
• A warp of threads access scattered data all in different cache lines

• This may result in 32 different memory transactions (poor bandwidth)

CS 610, IIT Kanpur Swarnendu Biswas

Matrix Transpose

CS 610, IIT Kanpur Swarnendu Biswas

__global__ void transposeNaive(float *odata, const float *idata) {
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
odata[x*width + (y+j)] = idata[(y+j)*width + x];

}

__global__ void copy(float *odata, const float *idata) {
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j+= BLOCK_ROWS)
odata[(y+j)*width + x] = idata[(y+j)*width + x];

}

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc

reads from idata are coalesced,
but writes to odata have a stride
of 1024

Optimizing Matrix Transpose

CS 610, IIT Kanpur Swarnendu Biswas

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc

__global__ void transposeCoalesced(float *odata, const float *idata) {
__shared__ float tile[TILE_DIM][TILE_DIM];

int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];

__syncthreads();

x = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset
y = blockIdx.x * TILE_DIM + threadIdx.y;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];

}

Optimizing Matrix Transpose

CS 610, IIT Kanpur Swarnendu Biswas

https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc

__global__ void transposeCoalesced(float *odata, const float *idata) {
__shared__ float tile[TILE_DIM][TILE_DIM];

int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];

__syncthreads();

x = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset
y = blockIdx.x * TILE_DIM + threadIdx.y;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];

}

$./bin/cuda-matrix-transpose-nvidia

Device : Quadro RTX 5000
Matrix size: 1024 1024, Block size: 64 8, Tile size: 64 64
dimGrid: 16 16 1. dimBlock: 64 8 1

Routine Bandwidth (GB/s)
copy 288.31

shared memory copy 196.17
naive transpose 124.92

coalesced transpose 131.81
conflict-free transpose 145.65

__shared__ float tile[TILE_DIM][TILE_DIM+1];

Implement a Reduction Kernel in CUDA

CS 610, IIT Kanpur Swarnendu Biswas

Reduction Kernel
__shared__ float partialSum[];
partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];
__syncthreads();

unsigned int t = threadIdx.x;
for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

__syncthreads();
}

CS 610, IIT Kanpur Swarnendu Biswas

only even threads
are active

Is this kernel
enough?

Sequence of Optimizations on the Reduction
Kernel
i. basic implementation with modulo operator

ii. strided access starting with each thread accessing two
adjacent locations

iii. strided access with reversed loop index

iv. halve the number of threads

v. unroll the last few loop iterations and avoid synchronization

vi. …

vii. …

CS 610, IIT Kanpur Swarnendu Biswas

Mark Harris. Optimizing Parallel Reduction in CUDA.

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Reduction Kernel
__shared__ float partialSum[];

partialSum[threadIdx.x] = X[blockIdx.x*blockDim.x+threadIdx.x];

__syncthreads();

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x/2; stride >= 1; stride /= 2) {

if (t < stride)

partialSum[t] += partialSum[t+stride];

__syncthreads();

}

CS 610, IIT Kanpur Swarnendu Biswas

Execution of the Revised Kernel

CS 610, IIT Kanpur Swarnendu Biswas

Last five iterations
still have divergence

Avoid Divergence in Last Few Iterations

CS 610, IIT Kanpur Swarnendu Biswas

for (unsigned int stride = blockDim.x/2; stride > 32; stride /= 2) {

if (t < stride)

partialSum[t] += partialSum[t+stride];

__syncthreads();

}

if (tid < 32) {

partialSum[tid] += partialSum[tid+32];

partialSum[tid] += partialSum[tid+16];

partialSum[tid] += partialSum[tid+8];

partialSum[tid] += partialSum[tid+4];

partialSum[tid] += partialSum[tid+2];

partialSum[tid] += partialSum[tid+1];

}

Mark Harris. Optimizing Parallel Reduction in CUDA.

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Avoid Divergence in Last Few Iterations

CS 610, IIT Kanpur Swarnendu Biswas

for (unsigned int stride = blockDim.x/2; stride > 32; stride /= 2) {

if (t < stride)

partialSum[t] += partialSum[t+stride];

__syncthreads();

}

if (tid < 32) {

partialSum[tid] += partialSum[tid+32];

partialSum[tid] += partialSum[tid+16];

partialSum[tid] += partialSum[tid+8];

partialSum[tid] += partialSum[tid+4];

partialSum[tid] += partialSum[tid+2];

partialSum[tid] += partialSum[tid+1];

}

Mark Harris. Optimizing Parallel Reduction in CUDA.

$./a.out
Host reduction: 2048 Reduction1: 2048 Reduction2:
2048 Reduction3: 2048 Reduction4: 2048
Kernel1 time (ms): 0.02048 // interleaved w/ modulo
Kernel2 time (ms): 0.00819 // interleaved, even threads
Kernel3 time (ms): 0.00614 // sequential
Kernel4 time (ms): 0.00544 // sequential w/ unrolling

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Memory Access Patterns in 2D Arrays

CS 610, IIT Kanpur Swarnendu Biswas

A B

Memory Access Patterns in C 2D Arrays

CS 610, IIT Kanpur Swarnendu Biswas

Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (row < N && col < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[row * N + k] * B[k * N + col];

}

}

C[row * N + col] = tmp;

}

Coalesced

Thread 1

Thread 2

Not coalesced

CS 610, IIT Kanpur Swarnendu Biswas

A

B

Optimizing Global Memory Accesses

• Try to ensure that memory requests
from a warp can be coalesced
• Using optimizations like tiling to make use

of the faster shared memory

• Stride-one access across threads in a warp
is good

• Use structure of arrays rather than array of
structures

Md

W
I D

T
H

WIDTH

Coalesced

Thread 1

Thread 2

Not coalesced

CS 610, IIT Kanpur Swarnendu Biswas

A

B

Efficient Data Management

CS 610, IIT Kanpur Swarnendu Biswas

Data Transfer Between CPU and GPU

• DMA (Direct Memory Access) hardware is
used by cudaMemcpy()
• DMA is a hardware unit specialized to

transfer bytes between physical memory
address spaces

• Uses system interconnect, typically PCIe in
today's systems

CS 610, IIT Kanpur Swarnendu Biswas

Efficient Host-Device Data Transfer

https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod14DataXfer/Mod14DataXfer.pdf

Challenges with Virtual Memory

• Virtual memory support complicates data transfer
• Pages in virtual address space are mapped into and out of the physical

memory
• The presence of a data (i.e., page) in the physical memory is checked

during address translation

• cudaMemcpy() copies data as one or more DMA transfers
• Address is translated and page presence is checked for the entire source and

destination regions at the beginning of each DMA transfer

• The OS could accidentally page-out the data that is being accessed by
a DMA and page-in another virtual page into the same physical
location

CS 610, IIT Kanpur Swarnendu Biswas

Pinned Memory

• Pinned memory are virtual memory pages that are specially marked
so that they cannot be paged out
• Also called Page Locked Memory, Locked Pages, etc.

• CPU memory that serves as the source or destination of a DMA
transfer must be allocated as pinned memory

• If the source or destination of cudaMemcpy() in the host is
not pinned, it needs to be first copied to a pinned memory leading to
extra overhead
• cudaMemcpy() is faster if the host memory source or destination is allocated

in pinned memory since no extra copy is needed

CS 610, IIT Kanpur Swarnendu Biswas

Pinned Memory
• Allocate and free pinned memory with cudaHostAlloc() and
cudaFreeHost()
• Use the option cudaHostAllocDefault

• Pinned memory is a limited resource – over-subscription can have
serious consequences

CS 610, IIT Kanpur Swarnendu Biswas

Efficient Host-Device Data Transfer

https://engineering.purdue.edu/~smidkiff/ece563/NVidiaGPUTeachingToolkit/Mod14DataXfer/Mod14DataXfer.pdf

cudaMemCpy() with malloc()

CS 610, IIT Kanpur Swarnendu Biswas

$ nvprof ./bin/cuda-vector-addition
==1472722== NVPROF is profiling process 1472722, command: ./bin/cuda-vector-
addition
Time taken (ms): h2d: 251.084 Kernel: 8.40627 d2h: 113.932
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 80.42% 501.62ms 2 250.81ms 250.79ms 250.84ms [CUDA
memcpy HtoD]

18.24% 113.77ms 1 113.77ms 113.77ms 113.77ms [CUDA
memcpy DtoH]

1.34% 8.3746ms 1 8.3746ms 8.3746ms 8.3746ms
vecAdd(float const *, float const *, float*, int)

API calls: 67.15% 616.00ms 3 205.33ms 113.92ms 251.05ms
cudaMemcpy

31.25% 286.69ms 3 95.562ms 919.48us 284.85ms
cudaMalloc

0.92% 8.4529ms 3 2.8176ms 2.7130us 8.3720ms
cudaEventSynchronize

0.65% 5.9759ms 3 1.9920ms 987.27us 2.9258ms

cudaMemCpy() with
cudaHostAlloc(Default)

CS 610, IIT Kanpur Swarnendu Biswas

$ nvprof ./bin/cuda-vector-addition-hostalloc-default
==1472614== NVPROF is profiling process 1472614, command: ./bin/cuda-vector-
addition-hostalloc-default
Time taken (ms): h2d: 87.2246 Kernel: 8.42 d2h: 81.3472
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 66.04% 174.40ms 2 87.201ms 87.190ms 87.212ms [CUDA
memcpy HtoD]

30.79% 81.328ms 1 81.328ms 81.328ms 81.328ms [CUDA
memcpy DtoH]

3.17% 8.3739ms 1 8.3739ms 8.3739ms 8.3739ms
vecAdd(float const *, float const *, float*, int)

API calls: 68.72% 1.70102s 3 567.01ms 453.20ms 787.02ms
cudaHostAlloc

20.23% 500.75ms 3 166.92ms 155.30ms 181.85ms
cudaFreeHost

10.33% 255.79ms 3 85.263ms 81.344ms 87.244ms
cudaMemcpy

0.34% 8.3757ms 3 2.7919ms 3.3700us 8.3687ms

Zero-Copy Memory (i)

• Zero copy memory is pinned
memory that is mapped into the
device address space
• Both host and device have fine-

grained direct access
• Can leverage host memory when

there is insufficient device memory
• Avoids explicit data transfers

between host and device
• Should be used for occasional

accesses when the data is read-only
or the GPU memory is really scarce

CS 610, IIT Kanpur Swarnendu Biswas

Improving GPU Memory Oversubscription Performance | NVIDIA Technical Blog

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/

Zero-Copy Memory (ii)

• Speed is limited by the interconnect (PCIe or NVLink) and it is not
possible to take advantage of data locality

• Pinned memory does not imply zero-copy memory (GPU may not be
able to access it)

• Unified virtual addressing (UVA) enables zero-copy memory
• Provides a single virtual memory address space for all memory in the system,

enables pointers to be accessed from GPU code

CS 610, IIT Kanpur Swarnendu Biswas

cudaMemCpy() with
cudaHostAlloc(Mapped)

CS 610, IIT Kanpur Swarnendu Biswas

$ nvprof ./bin/cuda-vector-addition-hostalloc-mapped
==1472835== NVPROF is profiling process 1472835, command: ./bin/cuda-vector-
addition-hostalloc-mapped
Time taken (ms): kernel: 10.9529
==1472835== Profiling application: ./bin/cuda-vector-addition-hostalloc-mapped
==1472835== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 100.00% 10.914ms 1 10.914ms 10.914ms 10.914ms
vecAdd(float*, float*, float*, int)

API calls: 67.19% 278.63ms 1 278.63ms 278.63ms 278.63ms
cudaSetDeviceFlags

20.90% 86.674ms 3 28.891ms 28.629ms 29.043ms
cudaHostAlloc

9.20% 38.156ms 3 12.719ms 12.374ms 13.003ms
cudaFreeHost

2.63% 10.909ms 1 10.909ms 10.909ms 10.909ms
cudaEventSynchronize

0.04% 149.57us 101 1.4800us 165ns 68.497us

Managed Memory (i)

• Unified Virtual Memory (UVM) provides a
single memory space accessible by all GPUs
and CPUs in the system

• Use cudaMallocManaged() to allocate
data in unified memory
• Returns a pointer that can be accessed from

both host and device code

• Or use __managed__ keyword in the global
scope

CS 610, IIT Kanpur Swarnendu Biswas

Unified Memory in CUDA 6 | NVIDIA Technical Blog
An Even Easier Introduction to CUDA | NVIDIA Technical Blog
Unified Memory for CUDA Beginners | NVIDIA Technical Blog

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Managed Memory (ii)
• UVM features have been evolving

starting from CUDA 6+
• 6.x: use a single pointer in both CPU

functions and GPU kernels

• 8.x: added 49-bit virtual addressing and
on-demand page migration

• CUDA runtime automatically
migrates data allocated in Unified
Memory between host and device,
different from UVA

CS 610, IIT Kanpur Swarnendu Biswas

Improving GPU Memory Oversubscription Performance | NVIDIA Technical Blog

https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/

On-demand Paging

CS 610, IIT Kanpur Swarnendu Biswas

1 2

3 4

Data allocated in CPU memory GPU touches unallocated page, triggers page fault

Page fault handler allocates page in GPU mem,
copies contents

If GPU modifies page contents, invalidate CPU
copy. Next CPU access will cause data to be copied
back from GPU mem.

Advanced CUDA programming: asynchronous execution, memory models, unified memory

http://www.irisa.fr/alf/downloads/collange/cours/hpca2020_gpu_2.pdf

cudaMemCpy() with cudaMallocManaged()

CS 610, IIT Kanpur Swarnendu Biswas

$ nvprof ./bin/cuda-vector-addition-managed
==1472948== NVPROF is profiling process 1472948, command: ./bin/cuda-vector-addition-managed
Time taken (ms): kernel: 906.52
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 100.00% 906.36ms 1 906.36ms 906.36ms 906.36ms vecAdd(float

const *, float const *, float*, int)
API calls: 63.76% 906.30ms 1 906.30ms 906.30ms 906.30ms

cudaEventSynchronize
21.24% 301.91ms 3 100.64ms 16.895us 301.84ms cudaFree
0.02% 247.87us 1 247.87us 247.87us 247.87us

==1472948== Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
56858 54.592KB 4.0000KB 0.9961MB 2.960228GB 357.1731ms Host To Device
6142 170.71KB 4.0000KB 0.9961MB 0.999939GB 87.60043ms Device To Host
4872 - - - - 839.8422ms Gpu page fault groups

Total CPU Page faults: 12288

cudaMemCpy() with cudaMallocManaged()

CS 610, IIT Kanpur Swarnendu Biswas

$ nvprof --print-gpu-trace ./bin/cuda-vector-addition-managed 2>&1 | tee output.txt
==1474233== Profiling application: ./bin/cuda-vector-addition-managed
==1474233== Profiling result:

Start Duration Grid Size Block Size Regs* SSMem* DSMem* Device Context
Stream Unified Memory Virtual Address Name
492.94ms - - - - - - - -
- PC 0x9119d76f 0x7fab02000000 [Unified Memory CPU page faults]
493.05ms - - - - - - - -
- PC 0x9119d76f 0x7fab02010000 [Unified Memory CPU page faults]
493.14ms - - - - - - - -
- PC 0x9119d76f 0x7fab02020000 [Unified Memory CPU page faults]
493.28ms - - - - - - - -
- PC 0x9119d76f 0x7fab02040000 [Unified Memory CPU page faults]
494.01ms - - - - - - - -
- PC 0x9119d76f 0x7fab02080000 [Unified Memory CPU page faults]
4.72717s - - - - - - - -
- PC 0x9119d76f 0x7faac1f00000 [Unified Memory CPU page faults]
………
5.96964s 847.69ms (1048576 1 1) (256 1 1) 16 0B 0B Quadro RTX 5000 1
7 - - vecAdd(float const *, float const *, float*, int) [117]
5.96964s 979.83us - - - - - Quadro RTX 5000 -
- 11 0x7fab02000000 [Unified Memory GPU page faults]
5.97056s 10.432us - - - - - Quadro RTX 5000 -
- 100.000000KB 0x7fab02000000 [Unified Memory Memcpy HtoD]
5.97057s 4.3840us - - - - - Quadro RTX 5000 -
- 28.000000KB 0x7fab02019000 [Unified Memory Memcpy HtoD]
………

Unified Virtual Memory (UVM)

• On pre-Pascal GPUs, cudaMallocManaged()
allocated managed space on the device that
was active at the time of the call

• Pascal onward, cudaMallocManaged() does
not immediately allocate physical memory
• Pages and page table entries (PTEs) are not created

until the first access by the GPU or the CPU

• Hardware supports page faulting and
migration
• The GPU stalls the accessor threads when they

access absent pages

• The Page Migration Engine migrates pages to the
device before resuming the threads

CS 610, IIT Kanpur Swarnendu Biswas

J. Jung et al. Overlapping Host-to-Device Copy and Computation using Hidden Unified Memory. PPoPP’20.

Pre-Pascal Behavior of cudaMallocManaged()

CS 610, IIT Kanpur Swarnendu Biswas

__global__ void add(int n, float* x, float* y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}
int main(void) {
int N = 1 << 20;
float *x, *y;
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; i < N; i++) {

x[i] = 1.0f; y[i] = 2.0f;
}
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize();
…

}

Unified Memory for CUDA Beginners | NVIDIA Technical Blog

x and y are allocated on GPU memory,
driver sets up page table entries

Page fault on CPU, x and y are
copied to CPU memory

Lacked support for page faults, so all data
is copied to GPU before kernel launch

Moves data back to CPU memory

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Pre-Pascal Behavior of cudaMallocManaged()

CS 610, IIT Kanpur Swarnendu Biswas

__global__ void add(int n, float* x, float* y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}
int main(void) {
int N = 1 << 20;
float *x, *y;
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; i < N; i++) {

x[i] = 1.0f; y[i] = 2.0f;
}
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize();
…

}

Unified Memory for CUDA Beginners | NVIDIA Technical Blog

x and y are allocated on GPU memory,
driver sets up page table entries

Page fault on CPU, x and y are
copied to CPU memory

Lacked support for page faults, so all data
is copied to GPU before kernel launch

Moves data back to CPU memory

No concurrent access

No on-demand migration to GPU

No oversubscription

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Behavior of cudaMallocManaged() for Pascal+

CS 610, IIT Kanpur Swarnendu Biswas

__global__ void add(int n, float* x, float* y) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}
int main(void) {
int N = 1 << 20;
float *x, *y;
cudaMallocManaged(&x, N * sizeof(float));
cudaMallocManaged(&y, N * sizeof(float));
for (int i = 0; i < N; i++) {

x[i] = 1.0f; y[i] = 2.0f;
}
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);
cudaDeviceSynchronize();
…

}

Unified Memory for CUDA Beginners | NVIDIA Technical Blog

Physical memory for x and y are not immediately
allocated, allocated only on first access or prefetch

Page fault on CPU, x and y are
allocated on CPU memory

Supports page faults, so no data
migration overhead before kernel launch

Page migration cost is now part of the kernel
execution time

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Profiling with nvprof on Turing GPU

CS 610, IIT Kanpur Swarnendu Biswas

==1459082== NVPROF is profiling process 1459082, command: ./bin/cuda-add-grid
…
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 100.00% 4.0563ms 1 4.0563ms 4.0563ms 4.0563ms add(int, float*,

float*)
API calls: 98.37% 310.90ms 2 155.45ms 46.172us 310.86ms cudaMallocManaged

1.28% 4.0568ms 1 4.0568ms 4.0568ms 4.0568ms
cudaDeviceSynchronize

0.27% 853.93us 2 426.97us 411.16us 442.77us cudaFree
0.05% 148.86us 101 1.4730us 165ns 66.807us

cuDeviceGetAttribute
0.01% 44.596us 1 44.596us 44.596us 44.596us cuDeviceGetName
0.01% 43.138us 1 43.138us 43.138us 43.138us cudaLaunchKernel
0.00% 9.0230us 1 9.0230us 9.0230us 9.0230us

cuDeviceGetPCIBusId
…
==1459082== Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
93 88.086KB 4.0000KB 992.00KB 8.000000MB 849.3010us Host To Device
24 170.67KB 4.0000KB 0.9961MB 4.000000MB 342.6530us Device To Host
12 - - - - 4.268824ms Gpu page fault groups

Total CPU Page faults: 36

How to reduce
overheads?

Page Migration: High-Level Mechanism
• Assume a Pascal+ GPU accesses a page is not present in the local GPU

memory

• Address translation for the faulting page generates a fault message and
locks the TLBs for the corresponding SM
• On some architectures, two SMs share a TLB, so both are locked

• Locking implies outstanding translations can proceed but new translations will be
stalled until all faults are resolved

• GPU can generate many faults concurrently for the same page

• UVM driver processes the faults, remove duplicates, updates mappings and
transfers the data

• Fault handling adds significant overhead to streaming performance of UVM

CS 610, IIT Kanpur Swarnendu Biswas

Maximizing Unified Memory Performance in CUDA | NVIDIA Technical Blog

https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/

Reduce Page Migration Overhead (i)
• Initialize data on the device

CS 610, IIT Kanpur Swarnendu Biswas

Unified Memory for CUDA Beginners | NVIDIA Technical Blog

__global__ void init(int n, float *x, float *y) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride) {

x[i] = 1.0f;
y[i] = 2.0f;

}
}

==1460828== NVPROF is profiling process 1460828, command: ./bin/cuda-add-grid-init
==1460828== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 97.93% 1.6654ms 1 1.6654ms 1.6654ms 1.6654ms init(int, float*,

float*)
2.07% 35.263us 1 35.263us 35.263us 35.263us add(int, float*,

float*)
API calls: 99.19% 299.71ms 2 149.86ms 33.526us 299.68ms cudaMallocManaged

==1460828== Unified Memory profiling result:
Count Avg Size Min Size Max Size Total Size Total Time Name

24 170.67KB 4.0000KB 0.9961MB 4.000000MB 341.6910us Device To Host
11 - - - - 1.644405ms Gpu page fault groups

Total CPU Page faults: 12

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Reduce Page Migration Overhead (ii)
• Use warm-up iterations or take the

average of kernel multiple runs

• Prefetch data on the GPU with
cudaMemPrefetchAsync()

CS 610, IIT Kanpur Swarnendu Biswas

int device = -1;
cudaGetDevice(&device);
cudaMemPrefetchAsync(x, N*sizeof(float),

device, NULL);
cudaMemPrefetchAsync(y, N*sizeof(float),

device, NULL);

==1461431== NVPROF is profiling process 1461431, command: ./bin/cuda-add-grid-prefetch
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 100.00% 29.600us 1 29.600us 29.600us 29.600us add(int, float*,

float*)
API calls: 99.19% 301.89ms 2 150.94ms 38.488us 301.85ms cudaMallocManaged

0.34% 1.0467ms 1 1.0467ms 1.0467ms 1.0467ms
cudaDeviceSynchronize

0.21% 638.19us 2 319.09us 304.82us 333.37us cudaFree
0.17% 504.87us 2 252.43us 188.92us 315.95us

cudaMemPrefetchAsync
==1461431== Unified Memory profiling result:
Device "Quadro RTX 5000 (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
4 2.0000MB 2.0000MB 2.0000MB 8.000000MB 710.9370us Host To Device

24 170.67KB 4.0000KB 0.9961MB 4.000000MB 341.5960us Device To Host
Total CPU Page faults: 36

No GPU
page faults

Explicit Memory Hints in UVM

• Advise runtime on expected memory access behaviors

• Possible hints:
• cudaMemAdviseSetReadMostly: Specify read duplication

• cudaMemAdviseSetPreferredLocation: Suggest best location

• cudaMemAdviseSetAccessedBy: Suggest mapping

• Hints do not trigger data movement by themselves

CS 610, IIT Kanpur Swarnendu Biswas

cudaMemAdvise(ptr, count, hint, device)

CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf

cudaMemAdviseSetReadMostly

• Data will usually be read-only

• UM system will make a “local” copy of the data for each processor
that touches it

• If a processor writes to it, this invalidates all copies except the one
written

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf

cudaMemAdviseSetPreferredLocation

• Suggests which processor is the best location for the data

• Does not automatically cause migration

• Data will be migrated to the preferred processor on-demand (or if
prefetched)

• If possible, data mappings will be provided when other processors
touch it

• If mapping is not possible, data is migrated

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf

cudaMemAdviseSetAccessedBy

• Does not cause movement or affect location of data

• Indicated processor receives a mapping to the data

• If the data is migrated, mapping is updated

• Objective: provide access without incurring page faults

CS 610, IIT Kanpur Swarnendu Biswas

CUDA Unified Memory

https://www.olcf.ornl.gov/wp-content/uploads/2019/06/06_Managed_Memory.pdf

Hardware Prefetching

• Providing user hints can be complicated and error-prone

• Hardware can implement different prefetch policies: (i) random, (ii)
sequential, or (iii) locality-aware
• E.g., “random” prefetches a random 4KB page from the 2MB large page

boundary along with the 4KB faulting page

• Nvidia implements a locality-aware tree-based neighborhood
prefetcher GeForce GTX 1080ti (reverse engineered*)
• Migrate multiples of 64KB basic blocks contiguous in the virtual address space

grouped in a single transfer

• All pages being prefetched are local to the current faulty pages and are within
2MB large page boundary

CS 610, IIT Kanpur Swarnendu Biswas

*D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.

Nvidia’s Tree-based Neighborhood Prefetcher

CS 610, IIT Kanpur Swarnendu Biswas

D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.

• Allocation with cudaMallocManaged() is
logically divided into 2MB large pages

• The 2MB pages are further divided into logical
64KB basic blocks to create a full binary tree

• If the user-specified allocation request is not a
multiple of 2MB, the remainder allocation is
rounded up to the next 2𝑖∗ 64KB
• If the requests are for 4MB and 192KB,

then two 2MB trees and 1 256KB trees
are created

Effectiveness of Prefetching without
Oversubscription

CS 610, IIT Kanpur Swarnendu Biswas

D. Ganguly et al. Interplay between Hardware Prefetcher and Page Eviction Policy in CPU-GPU Unified Virtual Memory. ISCA’19.

Note about UVM

• Primary goal for UVM is to improve programmer
productivity
• Code is less verbose, makes it easy to work with nested

data structures (think of C++ classes with dynamically
allocated attributes)

• UVM kernels may have poorer performance

CS 610, IIT Kanpur Swarnendu Biswas

struct dataElem {
int prop1;
int prop2;
char *name;

}

Unified Memory in CUDA 6 | NVIDIA Technical Blog

https://developer.nvidia.com/blog/unified-memory-in-cuda-6/

Note about UVM

• UVM provides a coherent view of a single virtual address space
between CPUs and GPUs with automatic data migration via demand
paging
• Allows GPUs to access a page that resides in the CPU memory as if it were in

the GPU memory

• Allows applications to run without worrying about the device memory
capacity

• Negative is the substantial cost of address translation overhead and
demand paging

CS 610, IIT Kanpur Swarnendu Biswas

Handing GPU Page Faults

CS 610, IIT Kanpur Swarnendu Biswas

H. Kim et al. Batch-Aware Unified Memory Management in GPUs for Irregular Workloads. ASPLOS’20.

• When a GPU tries to access a physical memory page that is not currently resident in device
memory, a page fault is raised and GPU runtime migrates the requested page to the GPU
memory

• Page fault handling is expensive because it requires long latency communications between the
CPU and GPU over the PCIe bus
• The GPU runtime processes a group of page faults together to amortize overhead

Memory Access Divergence

• An SIMD memory instruction cannot complete until data for all threads are
available
• Problematic for irregular applications with little scope for coalescing
• Execution of one instruction requires multiple cache accesses when accesses fall on

distinct cache lines and multiple virtual-to-physical address translations when
accesses fall on distinct pages

• Negative impact from divergence can impact address translation more than
cache access
• Irregular memory accesses can lead from 1 to warp size (32/64) address translation

requests, most will miss in the TLB
• A page table walk on a TLB miss can take up to four memory accesses, for a total of

128-256 memory accesses per instruction
• GPUs employ physical caches which makes address translation the bottleneck

CS 610, IIT Kanpur Swarnendu Biswas

Address Translation Request

CS 610, IIT Kanpur Swarnendu Biswas

S. Shin et al. Scheduling Page Table Walks for Irregular GPU Applications. ISCA’18.

• IOMMU is a hardware component on the CPU that
services address translation requests for accesses to
the DRAM by any accelerator (e.g., GPU)

• IOMMU supports multiple page table walkers (e.g., 8-
16) to concurrently service multiple page table walk
requests (TLB misses)

• IOMMU employs small page walk caches (PWC) for
the first three levels of the page tables

• GPU multiprocessors (compute units) share a private
L1 TLB across SIMD units

• The GPU’s L1 TLBs are backed by a larger L2 TLB that is
shared across all the CUs in the GPU

Address Translation Request

CS 610, IIT Kanpur Swarnendu Biswas

S. Shin et al. Scheduling Page Table Walks for Irregular GPU Applications. ISCA’18.

i. An address translation request is generated by a SIMD
load/store instruction

ii. A hardware coalescer merges multiple requests to the same
page generated by the same SIMD instruction

iii. The coalesced translation request looks up the GPU’s L1 TLB
and then the GPU’s shared L2

iv. On a miss in the GPU’s L2 TLB, the request is sent to the
IOMMU

v. At the IOMMU, the request looks up the IOMMU’s TLBs
vi. On a miss, the request queues up as a page walk request in

the IOMMU buffer
vii. When an IOMMU’s page table walker becomes free, it selects

a pending request from the IOMMU buffer in some order
viii. The page table walker first performs a PWC lookup and then

completes the walk of the page table, generating one to four
memory accesses

ix. On finishing a walk, the desired translation is returned to the
TLBs and ultimately to the GPU SIMD unit that requested it

Memory Oversubscription

• UVM support allows GPUs to oversubscribe memory

• At oversubscription, a memory page is first evicted from GPU memory
to system memory, followed by transfer of requested memory from
CPU to GPU

CS 610, IIT Kanpur Swarnendu Biswas

Prefetching with Memory Oversubscription

• Aggressive prefetching under memory constraint can be counter-
productive, may cause displacement of heavily-accessed pages

• CUDA drivers implement LRU 4KB page replacement policy

• Penalty of faults are greater under oversubscription
• Threads need to be stalled for writing back pages along with the latency to

migrate new pages

• An option is to disable prefetching on oversubscription
• Active area of research

CS 610, IIT Kanpur Swarnendu Biswas

References

• NVIDIA – CUDA C++ Programming Guide v11.8.

• NVIDIA – CUDA C++ Best Practices Guide v11.8.

• D. Kirk and W. Hwu – Programming Massively Parallel Processors, 3rd edition.

• N. Matloff – Programming on Parallel Machines.

• Shane Cook – CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs.

• T. Aamodt et al. – General-Purpose Graphics Processor Architecture.

• J. Sanders and E. Kandrot – CUDA By Example: An Introduction to General-Purpose GPU Programming.

CS 610, IIT Kanpur Swarnendu Biswas

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

