
CS 610: Dependence Testing
Swarnendu Biswas

Semester 2023-24-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

How to Write Efficient and Scalable Programs?

Choose algorithms and data structures wisely

• Determines number of operations executed

Write code that the compiler and architecture can effectively optimize

• Determines number of instructions executed

Check proportion of parallelizable code

• Reduces serial bottleneck (Amdahl’s law)

Perform architecture-dependent optimizations

• Depends on the efficiency and characteristics of the platform (e.g., ISA and memory
hierarchy)

CS 610, IIT Kanpur Swarnendu Biswas

Role of a Good Parallelizing Compiler

Try and extract performance automatically

Optimize memory access latency

• Code restructuring optimizations (e.g., loop
interchange)

• Prefetching optimizations (e.g., software
prefetching)

• Data layout optimizations

• Code layout optimizations

CS 610, IIT Kanpur Swarnendu Biswas

Machine code layout optimizations

F

hot path
test cond

call cold
func

hot path
test cond

T

T

hot path
test cond

call cold
func

hot path
test cond

F

https://easyperf.net/blog/2019/03/27/Machine-code-layout-optimizatoins

Parallelism Challenges for a Compiler

• On single-core machines
• Focus is on register allocation, instruction scheduling, reducing the cost of

array accesses

• On parallel machines
• Find parallelism in sequential code, find portions of work that can be

executed in parallel

• Principle strategy is data decomposition – good idea because data parallelism
can scale

CS 610, IIT Kanpur Swarnendu Biswas

Can we parallelize the following loops?

CS 610, IIT Kanpur Swarnendu Biswas

do i = 1, 100
A(i) = A(i) + 1

enddo

do i = 1, 100
A(i) = A(i-1) + 1

enddo

Focus is on loop parallelism because it can provide more savings
• Inter-statement or and intra-statement parallelism is limited

i R W

1 A(1) A(1)

2 A(2) A(2)

3 A(3) A(3)

i R W

1 A(0) A(1)

2 A(1) A(2)

3 A(2) A(3)

u
n

ro
ll

Data Dependences

S1 a = b + c

S2 d = a * 2

S3 a = c + 2

S4 e = d + c + 2

Execution constraints
• S2 must execute after S1

• S3 must execute after S2

• S3 must execute after S1

• S3 and S4 can execute in any order, and
concurrently

CS 610, IIT Kanpur Swarnendu Biswas

There is a data dependence from S1 to S2 if and only if
i. Both statements access the same memory location
ii. At least one of the accesses is a write
iii. There is a feasible execution path at run-time from S1 to S2

Types of Dependences Based on Memory
Accesses

Flow (true) or RAW

(denoted by 𝑆1𝛿𝑆2)

Anti or WAR

(denoted by 𝑆1𝛿
−1𝑆2)

Output or WAW

(denoted by 𝑆1𝛿
𝑜𝑆2)

Input

S1 X = …
S2 … = X

S1 … = X
S2 X = …

S1 X = …
S2 X = …

S1 … = a/b
S2 … = b * c

CS 610, IIT Kanpur Swarnendu Biswas

Bernstein’s Conditions
• Suppose there are two processes

P1 and P2

• Let Ii be the set of all input
variables for process Pi

• Let Oi be the set of all output
variables for process Pi

• P1 and P2 can execute in parallel
(denoted as P1 || P2) if and only
if
• 𝑂1 ∩ 𝐼2 = Φ

• 𝐼2 ∩ 𝑂1 = Φ

• 𝑂2 ∩ 𝑂1 = Φ

CS 610, IIT Kanpur Swarnendu Biswas

Two processes can execute in parallel if they are flow-, anti-,
and output-independent
• If Pi || Pj, does that imply Pj || Pi?
• If Pi || Pj and Pj || Pk, does that imply Pi || Pk?

A. Bernstein. Analysis of Programs for Parallel Processing. IEEE Transactions on Electronic Computers, 1966.

Finding Parallelism in Loops – Is it Easy?

• Need to check whether two array subscripts access the same memory
location

• Statement S1 depends on itself in both examples, however, there is a
subtle difference

• Compilers need formalism to analyze dependences and transform
loops

CS 610, IIT Kanpur Swarnendu Biswas

for i = 1 to N
S1 A[i+1] = A[i] + B[i]

endfor

for i = 1 to N
S1 A[i+2] = A[i] + B[i]

endfor

Enumerate All Dependences in Loops

for i = 1 to 50

S1 A[i] = B[i-1] + C[i]

S2 B[i] = A[i+2] + C[i]

endfor

• Unrolling loops helps figure out
dependences

S1(1) A[1] = B[0] + C[1]

S2(1) B[1] = A[3] + C[1]

S1(2) A[2] = B[1] + C[2]

S2(2) B[2] = A[4] + C[2]

S1(3) A[3] = B[2] + C[3]

S2(3) B[3] = A[5] + C[3]

CS 610, IIT Kanpur Swarnendu Biswas

• large loop bounds
• loop bounds may not be

known at compile time

Normalized Iteration Number

• Parameterize the statement with
the loop iteration number

DO I = 1, N

S1 A(I+1) = A(I) + B(I)

ENDDO

DO I = L, U, S

S1 ...

ENDDO

CS 610, IIT Kanpur Swarnendu Biswas

For a loop where the loop index I runs from L to U in steps of S,
the normalized iteration number of a specific iteration is (I–
L)/S+1, where I is the value of the index on that iteration

Iteration Vector and Lexicographic Ordering

CS 610, IIT Kanpur Swarnendu Biswas

Given a nest of n loops, the iteration vector i of an iteration of the
innermost loop is a vector of integers containing the iteration
numbers for each of the loops in order of nesting level.

The iteration vector i is {i1, i2, ..., in} where ik, 1 ≤ k ≤ n, represents
the iteration number for the loop at nesting level k.

• A vector (d1, d2) is positive if (0,0) < (d1, d2), i.e., its first non-zero component is
positive

• Iteration i precedes iteration j, denoted by i < j, if and only if
i. i[1:n-1] < j[1:n-1], or
ii. i[1:n-1] = j[1:n-1] and in < jn

Iteration Space Graphs
• Represent each dynamic instance of a loop as a point in the graph

• Arrows among points represent dependences

CS 610, IIT Kanpur Swarnendu Biswas

for (i = 1; i <= 4; i++)
for (j = 1; j <= 4; j++)

S1: a[i][j] = a[i][j-1] * x;

for i = 1 to 5 do
for j = i to 5 do

A(i, j) = B(i, j) + C(j)
endfor

endfor

Dimension of iteration space is the loop nest
level, need not always be rectangular

Formal Definition of Loop Dependence

CS 610, IIT Kanpur Swarnendu Biswas

There exists a loop dependence from statement S1 to S2 in a loop
nest if and only if there exist two iteration vectors i and j for the
nest, such that
i. i < j or i = j and there is a path from S1 to S2 in the body of the

loop,
ii. S1 accesses memory location M on iteration i and S2 accesses M

on iteration j, and
iii. one of these accesses is a write.

Distance and Direction Vectors
• For each dimension of an iteration space, the distance is the number

of iterations between accesses to the same memory location

• Dependence distance vector d(i,j) is defined as a vector of length n
such that d(i,j)k = jk – ik

• Distance vector: (1, 2)

CS 610, IIT Kanpur Swarnendu Biswas

do i = 1, 6
do j = 1, 5
A(i, j) = A(i-1, j-2) + 1

enddo
enddo

outer
loop

inner
loop

Direction Vectors
• Dependence direction vector D(i,j) is defined as a vector of length n

such that

• Distance vector is a more precise form of a direction vector

CS 610, IIT Kanpur Swarnendu Biswas

𝐷 𝑖, 𝑗 𝑘 = ൞

− 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 < 0

0 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 = 0

+ 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 > 0

< Positive

> Negative

= Zero

* Mixed

alternate
notation

For a valid dependence, the leftmost non-“0”
component of the direction vector must be “+”

Summarizing Dependences

CS 610, IIT Kanpur Swarnendu Biswas

DO J = 1, 10
DO I = 1, 10

S1 A(I+1,J) = A(I,J) + 5
ENDDO

ENDDO What are the
dependences?

How many?

The number of dependences between a pair of accesses is equal
to the number of distinct direction vectors over all the types of
dependences between those accesses.

Distance and Direction Vector Example

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, N
DO J = 1, M

S1 A(I,J) = …
S2 … = A(I,J) + …

ENDDO
ENDDO

DO I = 1, N
DO J = 1, M

S1 A(I,J) = A(I,1) + …
ENDDO

ENDDO

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1 A(I+1,J,K-1) = A(I,J,K) + 10

ENDDO
ENDDO

ENDDO

FOR I = 1, 5
FOR J = 1, 5

S1 A(I,J) = A(I,J-3) + A(I-2,J) +
A(I-1,J+2) + A(I+1,J-1)

ENDFOR
ENDFOR

Dependence Types

• There are two ways in which a
statement S2 can depend on
another statement S1 , where both
S1 and S2 are inside a loop
• Loop-carried dependence: S1 and S2

execute in different iterations

• Loop-independent dependence: S1
and S2 execute in the same iteration

• These types partition all possible
data dependences

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, N

S1 A(I+1) = F(I)

S2 F(I+1) = A(I)

ENDDO

DO I = 1, N

S1 A(I+1) = F(I)

S2 G(I+1) = A(I+1)

ENDDO

Loop-Carried and Loop-Independent
Dependences

Loop-carried

i. S1 references location M on iteration i

ii. S2 references M on iteration j

iii. d(i,j) > 0 (that is, contains a “+” as leftmost
non-“0” component)

Loop-independent

i. S1 refers to location M on iteration i

ii. S2 refers to M on iteration j and i = j

iii. There is a control flow path from S1 to S2
within the iteration

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, 10
DO J = 1, 10

DO K = 1, 10
S1 A(I,J,K+1) = A(I,J,K)

ENDDO
ENDDO

ENDDO

DO I = 1, 9
S1 A(I) =
S2 ... = A(10-I)

ENDDO
Level of a loop-carried dependence is the

leftmost non-“0” index of the
dependence D(i,j) (denoted by 𝑆1𝛿𝑙𝑆2) denoted by 𝑆1𝛿∞𝑆2

Program Transformations and
Validity

CS 610, IIT Kanpur Swarnendu Biswas

Parallelism and Data Dependence

• Compilers apply transformations only when it is safe to do so

• A reordering transformation that preserves every dependence
preserves the meaning of the program

• Parallel loop iterations imply random interleaving of statements in
the loop body

CS 610, IIT Kanpur Swarnendu Biswas

A reordering transformation is any program transformation that
merely changes the order of execution of the code, without
adding or deleting any executions of any statements.

Direction Vector Transformation

• Let T be a transformation applied to a loop nest

• Assume T does not rearrange the statements in the body of the loop

• T is valid if, after it is applied, none of the direction vectors for
dependences with source and sink in the nest has a leftmost non-“0”
component that is “-”

CS 610, IIT Kanpur Swarnendu Biswas

A transformation is said to be valid for the program to which it
applies if it preserves all dependences in the program

Utility of Dependence Levels

• A reordering transformation preserves all level-k dependences if it
i. preserves the iteration order of the level-k loop

ii. does not interchange any loop at level < k to a position inside the level-k
loop and

iii. does not interchange any loop at level > k to a position outside the level-k
loop.

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, 10
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)

ENDDO

DO I = 1, 10
S2 F(I+1) = A(I)
S1 A(I+1) = F(I)

ENDDO

Is this transformation valid?

DO I = 1, 10

DO J = 1, 10

DO K = 1, 10

S A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO

DO I = 1, 10

DO K = 10, 1, -1

DO J = 1, 10

S A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO

CS 610, IIT Kanpur Swarnendu Biswas

Is this transformation valid?

DO I = 1, N

S1: A(I) = B(I) + C

S2: D(I) = A(I) + E

ENDDO

D(1) = A(1) + E

DO I = 2, N

S1: A(I-1) = B(I-1) + C

S2: D(I) = A(I) + E

ENDDO

A(N) = B(N) + C

CS 610, IIT Kanpur Swarnendu Biswas

Dependence Testing

CS 610, IIT Kanpur Swarnendu Biswas

Dependence Testing

• Dependence question
• Can 4*I be equal to 2*I+2 for I in [1, N]?

DO I=1, N
A(4*I) = …
… = A(2*I+2)

ENDDO

CS 610, IIT Kanpur Swarnendu Biswas

Given (i) two subscript functions f and g, and (ii) lower and upper loop bounds L
and U respectively, does 𝑓 𝑖1 = 𝑔 𝑖2 have a solution such that 𝐿 ≤ 𝑖1, 𝑖2 ≤ 𝑈?

affine

Dependence testing is the method used to determine whether
dependences exist between two subscripted references to the same
array in a loop nest

Multiple Loop Indices, Multi-Dimensional
Array
• Assumptions

• Array subscripts are affine

• Loops are in normalized form

• Let 𝛼 and 𝛽 be two valid
vectors in the iteration space of
the loop nest

• There is a dependence from S1
to S2 iff

CS 610, IIT Kanpur Swarnendu Biswas

DO i1=L1,U1,S1
DO i2=L2,U2,S2
…

DO in=Ln,Un
S1 X(f1(i1,…,in), …, fm(i1,…,in)) = …

S2 … = X(g1(i1,…,in), …, gm(i1,…,in))

Solving the system of equations
for arbitrary functions f and g

is NP-complete

∃ 𝛼, 𝛽, 𝛼 ≤𝑙𝑜 𝛽 ∧ 𝑓𝑖 𝛼 = 𝑔𝑖 𝛽 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑚

Approximate Dependence Testing

• Following system of equations with 2n variables and m equations is
the most common

• Solve the system of the form Ax=B for integer solutions
• A is a 𝑚 × 2𝑛 matrix and B is a vector of 𝑚 elements

• Finding solutions to Diophantine equations is NP-complete

CS 610, IIT Kanpur Swarnendu Biswas

a11i1+a12i2+…+a1nin+c1 = b11j1+b12j2+…+b1njn+d1
a21i1+a22i2+…+a2nin+c2 = b21j1+b22j2+…+b2njn+d2
…
am1i1+am2i2+…+amnin+cm = bm1j1+bm2j2+…+bmnjn+dm

Dependence Testing with GCD

• Coefficients of the loop indices are integers → Diophantine equations

• The Diophantine equation 𝑎1𝑖1 + 𝑎2𝑖2 +⋯+ 𝑎𝑛𝑖𝑛 = 𝑐 has an
integer solution iff gcd(𝑎1, 𝑎2, … , 𝑎𝑛) evenly divides c

• If there is a solution, we can test if it lies within the loop bounds. If
not, then there is no dependence.

CS 610, IIT Kanpur Swarnendu Biswas

Examples:

• 15*i+6*j-9*k=12 has a solution, gcd=3
• 2*i+7*j=3 has a solution, gcd=1
• 9*i+3*j+6*k=5 has no solution, gcd=3

for i = 1 to N

S1 a[x*i+k] = …

S2 … = a[y*i+m];

𝑥 ∗ 𝑖1 + 𝑘 = 𝑦 ∗ 𝑖2 +𝑚,
where 0 ≤ 𝑖1, 𝑖2 ≤ 𝑁

• If GCD(x,y) divides (m-k), then a dependence may exist
between S1 and S2.

• If GCD(x,y) does not divide (m-k), then S1 and S2 are
independent and can be executed at parallel.

Problems with Dependence Testing with GCD

• Coefficients of the loop indices are integers → Diophantine equations

• The Diophantine equation 𝑎1𝑖1 + 𝑎2𝑖2 +⋯+ 𝑎𝑛𝑖𝑛 = 𝑐 has an
integer solution iff gcd(𝑎1, 𝑎2, … , 𝑎𝑛) evenly divides c

• If there is a solution, we can test if it lies within the loop bounds. If
not, then there is no dependence.

CS 610, IIT Kanpur Swarnendu Biswas

Problems
• Provides no information on distance or direction

of dependence, only tells if there are no
dependences

• Ignores loop bounds and GCD is often 1, resulting
in false dependences

for i = 1 to 10

S1 a[i] = b[i]+c[i]

S2 d[i] = a[i-100];

Lamport Test

• Used when there is a single index variable in
the subscripts and the coefficients of the
index variables are same

• There is an integer solution only if d =
𝑐1−𝑐2

𝑏
is an integer
• Dependence is valid if d ≤ 𝑈𝑖 − 𝐿𝑖

CS 610, IIT Kanpur Swarnendu Biswas

A[…, b*i+c2,…] = …
… = A[…,b*i+c2,…]

for i = 1 to n

for j = 1 to n

S1 a[i,j] = a[i-1,j+1]

for i = 1 to n

for j = 1 to n

S1 a[i,2*j] = a[i-1,2*j+1]

Classifying Subscripts

• Subscript: A pair of subscript positions in a pair of array references
• A(i,j) = A(i,k) + C
• <i,i> is the first subscript, <j,k> is the second subscript

• A subscript is said to be

• Zero index variable (ZIV) if it contains no index

• Single index variable (SIV) if it contains only one index

• Multi index variable (MIV) if it contains more than one index
• A(5,i+1,j) = A(1,i,k) + C
• First subscript is ZIV, second subscript is SIV, third subscript is MIV

CS 610, IIT Kanpur Swarnendu Biswas

Separability and Coupled Subscript Groups

• A subscript is separable if its indices do not occur in other subscripts

• If two different subscripts contain the same index they are coupled
• A(i+1,j) = A(k,j) + C : Both subscripts are separable

• A(i,j,j) = A(i,j,k) + C : Second and third subscripts are coupled

• Coupling indicates complexity in dependence testing

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, 100
S1 A(I+1,I) = B(I) + C
S2 D(I) = A(I,I) * E

ENDDO

Overview of Dependency Testing

1. Partition subscripts of a pair of array references into separable and
coupled groups

2. Classify each subscript as ZIV, SIV or MIV

3. For each separable subscript apply single subscript test
• If not done, go to next step

4. For each coupled group apply multiple subscript test like Delta Test

5. If still not done, merge all direction vectors computed in the
previous steps into a single set of direction vectors

CS 610, IIT Kanpur Swarnendu Biswas

G. Goff et al. Practical Dependence Testing, PLDI’91.
Dependence Testing

https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2006-Fall/LectureNotes/26-dependence-testing.html

Simple Subscript Tests

• ZIV test
• e1 and e2 are constants or loop invariant symbols

• If e1!=e2, then no dependence exists

• SIV test
• Strong SIV test: <a*i+c1,a*i+c2>

• a,c1,c2 are constants or loop invariant symbols

• Example: <4i+1, 4i+5>

• Solution: d=(c2-c1)/a is an integer and |𝑑| ≤ |𝑈𝑖 − 𝐿𝑖|

• Weak SIV test: <a1*i+c1,a2*i+c2>
• a1,a2,c1,c2 are constants or loop invariant symbols

• Example: <4i+1,2i+5> or <i+3,2i>

CS 610, IIT Kanpur Swarnendu Biswas

DO j = 1,100
A(e1) = A(e2) + B(j)

ENDDO

Weak SIV Test

• Weak zero SIV: <a1*i+c1,c2>
• Solution: i=(c2-c1)/a1 is an integer and |𝑖| ≤ |𝑈 − 𝐿|

• Weak crossing SIV: <a*i+c1,-a*i+c2>
• Solution: i=(c2-c1)/2a is an integer and |𝑖| ≤ |𝑈 − 𝐿|

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, N
S1 Y(I,N) = Y(1,N) + Y(N,N)

ENDDO

Y(1,N) = Y(1,N) + Y(N,N)
DO I = 2, N-1

S1 Y(I,N) = Y(1,N) + Y(N,N)
ENDDO
Y(N,N) = Y(1,N) + Y(N,N)

DO I = 1, N
S1 A(I) = A(N-I+1) + C

ENDDO

DO I = 1, (N+1)/2
S1 A(I) = A(N-I+1) + C

ENDDO
DO I = (N+1)/2+1, N

S2 A(I) = A(N-I+1) + C
ENDDO

Other Dependence Tests

• Banerjee-Wolfe test: widely used test

• Power test: improvement over Banerjee test

• Delta test: specializes for common array subscript patterns

• Omega test: “precise” test, most accurate for linear subscripts

• Range test: handles non-linear and symbolic subscripts

• Many variants of these tests exits

CS 610, IIT Kanpur Swarnendu Biswas

Banerjee-Wolfe Test

• If the total subscript range accessed by
ref1 does not overlap with the range
accessed by ref2, then ref1 and ref2
are independent

CS 610, IIT Kanpur Swarnendu Biswas

for (k=0; k < N; k++) {
c[f(i)] = …;
… = c[g(j)];

}

True: ∃𝑖, 𝑗 ∈ 0, 𝑁 − 1 , 𝑖 ≤ 𝑗 ∧ 𝑓 𝑖 = 𝑔(𝑗)

Anti: ∃𝑖, 𝑗 ∈ 0, 𝑁 − 1 , 𝑖 > 𝑗 ∧ 𝑓 𝑖 = 𝑔(𝑗)

for (k=0; k < N; k++) {
… = c[g(j)];
c[f(i)] = …;

}

True: ∃𝑖, 𝑗 ∈ 0, 𝑁 − 1 , 𝑖 < 𝑗 ∧ 𝑓 𝑖 = 𝑔(𝑗)

DO j=1,100
a(j) = …
… = a(j+200)

ENDDO

DO j=1,100
a(j) = …
… = a(j+5)

ENDDO

[1:100]
[201:300]

[1:100]
[6:105]

Banerjee test

https://en.wikipedia.org/wiki/Banerjee_test

Delta Test

• Notation represents index values at the source and sink

• Let source Iteration be denoted by I0, and sink iteration be denoted
by I0 + I

• Valid dependence implies I0 + 1 = I0 + I

• We get I = 1 Loop-carried dependence with distance vector (1)
and direction vector (+)

DO I = 1, N
A(I + 1) = A(I) + B

ENDDO

G. Goff et al. Practical Dependence Testing, PLDI’91.

CS 610, IIT Kanpur Swarnendu Biswas

Delta Test

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, 100
DO J = 1, 100

DO K = 1, 100
A(I+1,J,K) = A(I,J,K+1) + B

ENDDO
ENDDO

ENDDO

DO I = 1, 100
DO J = 1, 100

A(I+1) = A(I) + B(J)
ENDDO

ENDDO

• I0 + 1 = I0 + I; J0 = J0 + J; K0 = K0 + K + 1
• Solutions: I = 1; J = 0; K = -1
• Corresponding direction vector: (+,0,-)

• If a loop index does not appear in a
subscript, its distance is unconstrained
and its direction is “*” (denotes union of
all 3 directions)

• Direction vector is (+, *)

• (*, +) denotes { (+, +), (0, +), (-, +) }

• (-, +) denotes a level 1 anti-dependence

with direction vector (+, -)

Delta Test

• Extract constraints from SIV
subscripts and use them for
other subscripts

CS 610, IIT Kanpur Swarnendu Biswas

DO I = 1, 100
DO J = 1, 100

A(I+1, I+J) = A(I, I+J-1) + C
ENDDO

ENDDO

DO I = 1, N
A(I+1, I+2) = A(I, 1) + C

ENDDO

DO I = 1, N
A(I, I) = A(1, I-1) + C

ENDDO DO I = 1, N
DO J = 1, N

DO K = 1, N
A(J-I,I+1,J+K) = A(J-I,I,J+K)

ENDDO
ENDDO

ENDDO

Solving Integer Inequalities

• The loop nest inequalities specify a convex polyhedron
• A polyhedron is convex if for two points in the polyhedron, all points on the

line between them are also in the polyhedron

• Data dependence implies a search for integer solutions that satisfy a
set of linear inequalities
• Integer linear programming is an NP-complete problem

• Steps
• Use GCD test to check if integer solutions may exist
• Use simple heuristics to handle typical inequalities
• Use a linear integer programming solver that uses a branch-and- bound

approach based on Fourier-Motzkin elimination for unsolved inequalities

CS 610, IIT Kanpur Swarnendu Biswas

Fourier-Motzkin Elimination
• INPUT: an 𝑛-dimensional polyhedron 𝑆 with variables 𝑥1, 𝑥2, … , 𝑥𝑛
• GOAL: Eliminate 𝑥𝑚, 𝑚 ≤ 𝑛

• OUTPUT: a polyhedron 𝑆′ with variables 𝑥1, 𝑥2, … , 𝑥𝑚−1, 𝑥𝑚+1, … , 𝑥𝑛
• STEPS

• Let 𝐶 be all constraints in 𝑆 involving 𝑥𝑚
1. For every pair of a lower bound and upper bound on 𝑥𝑚 in 𝐶, such as, 𝐿 ≤

𝑐1𝑥𝑚 and 𝑐2𝑥𝑚 ≤ 𝑈, create a new constraint 𝑐2𝐿 ≤ 𝑐1𝑈
2. If integers 𝑐1 and 𝑐2 have a common factor, divide both sides by that factor
3. If the new constraint is not satisfiable, then there is no solution to 𝑆, i.e., 𝑆

and 𝑆′ are empty spaces
4. 𝑆′ is the set of constraints 𝑆 − 𝐶, plus the new constraints generated in

Step 2.

CS 610, IIT Kanpur Swarnendu Biswas

Example of Fourier-Motzkin Elimination

Consider the code

CS 610, IIT Kanpur Swarnendu Biswas

for (i = 0; i <= 5; i++)
for (j = i; j <= 7; j++)

Z[j,i] = 0;

0 ≤ 𝑖

𝑖 ≤ 5

𝑗 ≤ 7

𝑖

𝑗

𝑖 ≤ 𝑗

Goal is to interchange the
loops

for (j = __; j <= __; j++)
for (i = __; i <= __; i++)

Z[j,i] = 0;

Example of Fourier-Motzkin Elimination

CS 610, IIT Kanpur Swarnendu Biswas

for (i = 0; i <= 5; i++)
for (j = i; j <= 7; j++)

Z[j,i] = 0;

0 ≤ 𝑖

𝑖 ≤ 5

𝑗 ≤ 7

𝑖

𝑗

𝑖 ≤ 𝑗
Use Fourier-Motzkin elimination to project the 2D
space away from the 𝑖 dimension and onto the 𝑗 dimension

0 ≤ 𝑖 ∧ 𝑖 ≤ 5 ∧ 𝑖 ≤ 𝑗 0 ≤ 𝑗 ∧ 0 ≤ 5, and
we already have 𝑗 ≤ 7

The new constraints are: 0 ≤ 𝑖, 𝑖 ≤ 5, 𝑖 ≤ 𝑗, 0 ≤ 𝑗, 𝑗 ≤ 7
Find the loop bounds from the original loop nest: 𝐿𝑖: 0, 𝑈𝑖: 5, j, 𝐿𝑗: 0, 𝑈𝑗: 7

for (j = 0; j <= 7; j++)
for (i = 0; i <= min(5,j); i++)

Z[j,i] = 0;

Use ILP for Dependence Testing

• Algorithm:
• INPUT: A convex polyhedron 𝑆, over variables 𝑣1, 𝑣2, … , 𝑣𝑛
• OUTPUT: “yes” if 𝑆 has an integer solution, “no” otherwise

CS 610, IIT Kanpur Swarnendu Biswas

for (i=1; i < 10; i++)
Z[i] = Z[i+10];

Show that there are no two dynamic accesses 𝑖 and 𝑖′ with 1 ≤ 𝑖 ≤ 9,
1 ≤ 𝑖′ ≤ 9, and 𝑖 = 𝑖′ + 10.

Dependence Testing is Hard

• Most dependence tests assume
affine array subscripts

• Unknown loop bounds can lead
to false dependences

• Need to be conservative about
aliasing

• Triangular loops adds new
constraints

• Loop transformations can add
additional variables

CS 610, IIT Kanpur Swarnendu Biswas

for (i=0; i < N; i++) {
a[i] = a[i+10];

}
How do we

compare N and 10?

for (i=0; i < N; i++) {
for (j = 0; j < i-1; j++) {

a[i,j] = a[j,i];
}

} Add j<i as a new
constraint

for (i=L; i < H; i++) {
a[i] = a[i-1];

}

Loop transformations
(e.g., normalization) adds

new variables

Why is Dependence Analysis Important?

• Dependence information is used to drive important loop
transformations
• Goal is to remove dependences or parallelize in the presence of dependences

• We will discuss many transformations (e.g., loop interchange and loop fusion)

CS 610, IIT Kanpur Swarnendu Biswas

References

• R. Allen and K. Kennedy – Optimizing Compilers for Modern Architectures.

• Michelle Strout – CS 553: Compiler Construction, Fall 2007.

• Hugh Leather – Compiler Optimization: Dependence Analysis. 2019.

• Rudolf Eigenmann – Optimizing Optimizing Compilers: Source-to-source (high-level) translation and
optimization for multicores.

• P. Gibbons – CS 15-745: Array Dependence Analysis & Parallelization.

• A. Chauhan – B629: Dependence Testing

• Qing Yi – Dependence Testing: Solving System of Diophantine Equations.

• G. Goff et al. Practical Dependence Testing, PLDI, 1991.

CS 610, IIT Kanpur Swarnendu Biswas

https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2006-Fall/LectureNotes/26-dependence-testing.html
http://www.cs.uccs.edu/~qyi/UTSA-classes/cs6363/slides/Ch03TestingSlides.pdf

