CS 610: Dependence Testing

Swarnendu Biswas

Semester 2023-24-I CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

How to Write Efficient and Scalable Programs?

Choose algorithms and data structures wisely

• Determines number of operations executed

Write code that the compiler and architecture can effectively optimize

• Determines number of instructions executed

Check proportion of parallelizable code

• Reduces serial bottleneck (Amdahl's law)

Perform architecture-dependent optimizations

• Depends on the efficiency and characteristics of the platform (e.g., ISA and memory hierarchy)

Role of a Good Parallelizing Compiler

Try and extract performance automatically

Optimize memory access latency

- Code restructuring optimizations (e.g., loop interchange)
- Prefetching optimizations (e.g., software prefetching)
- Data layout optimizations
- Code layout optimizations

Machine code layout optimizations

Parallelism Challenges for a Compiler

- On single-core machines
 - Focus is on register allocation, instruction scheduling, reducing the cost of array accesses
- On parallel machines
 - Find **parallelism** in sequential code, find portions of work that can be executed in parallel
 - Principle strategy is data decomposition good idea because data parallelism can scale

Can we parallelize the following loops?

Focus is on loop parallelism because it can provide more savings

Inter-statement or and intra-statement parallelism is limited

	i	R	W
llo	1	A(1)	A(1)
iun	2	A(2)	A(2)
	3	A(3)	A(3)

Data Dependences

Execution constraints

- S2 must execute after S1
- S3 must execute after S2
- S3 must execute after S1
- S3 and S4 can execute in any order, and concurrently

There is a data dependence from S1 to S2 if and only if

- i. Both statements access the same memory location
- ii. At least one of the accesses is a write
- iii. There is a feasible execution path at run-time from S1 to S2

Types of Dependences Based on Memory Accesses

Flow (true) or RAW (denoted by $S_1 \delta S_2$)

Anti or WAR

(denoted by $S_1 \delta^{-1} S_2$)

Output or WAW

(denoted by $S_1 \delta^o S_2$)

Input

S1	Х	=	•••	
S2	•••	=	Х	
S1	•••	=	Х	
S2	Х	=	•••	
S1	Х	=	•••	
S2	Х	=	•••	
C 1		_	∍/h	
JT	•••	-	a/ D	
S2	•••	=	b *	С

Bernstein's Conditions

- Suppose there are two processes
 P₁ and P₂
- Let I_i be the set of all input variables for process P_i
- Let O_i be the set of all output variables for process P_i

- P₁ and P₂ can execute in parallel (denoted as P₁ || P₂) if and only if
 - $O_1 \cap I_2 = \Phi$

$$\bullet I_2 \cap O_1 = \Phi$$

$$\bullet \ O_2 \ \cap \ O_1 = \ \Phi$$

Two processes can execute in parallel if they are flow-, anti-, and output-independent

- If P_i || P_i, does that imply P_i || P_i?
- If $P_i || P_j$ and $P_j || P_k$, does that imply $P_i || P_k$?

A. Bernstein. Analysis of Programs for Parallel Processing. IEEE Transactions on Electronic Computers, 1966.

Finding Parallelism in Loops – Is it Easy?

 Need to check whether two array subscripts access the same memory location

- Statement S1 depends on itself in both examples, however, there is a subtle difference
- Compilers need formalism to analyze dependences and transform loops

Enumerate All Dependences in Loops

• Unrolling loops helps figure out dependences

S1(1)	A[1] = B[0] + C[1]
S2(1)	B[1] = A[3] + C[1]
S1(2)	A[2] = B[1] + C[2]
S2(2)	B[2] = A[4] + C[2]
S1(3)	A[3] = B[2] + C[3]
S2(3)	B[3] = A[5] + C[3]

- large loop bounds
- loop bounds may not be known at compile time

Normalized Iteration Number

• Parameterize the statement with the loop iteration number

DO I = 1, N S1 A(I+1) = A(I) + B(I) ENDDO DO I = L, U, S S1 ... ENDDO

For a loop where the loop index *I* runs from *L* to *U* in steps of *S*, the *normalized iteration number* of a specific iteration is (I - L)/S+1, where *I* is the value of the index on that iteration

Iteration Vector and Lexicographic Ordering

Given a nest of *n* loops, the *iteration vector i* of an iteration of the innermost loop is a vector of integers containing the iteration numbers for each of the loops in order of nesting level.

The iteration vector \mathbf{i} is $\{i_1, i_2, ..., i_n\}$ where i_k , $1 \le k \le n$, represents the iteration number for the loop at nesting level k.

- A vector (d1, d2) is positive if (0,0) < (d1, d2), i.e., its first non-zero component is
 positive
- Iteration *i* precedes iteration *j*, denoted by *i* < *j*, if and only if
 - i. i[1:n-1] < j[1:n-1], or
 - ii. i[1:n-1] = j[1:n-1] and $i_n < j_n$

Iteration Space Graphs

- Represent each dynamic instance of a loop as a point in the graph
- Arrows among points represent dependences

Dimension of iteration space is the loop nest level, need not always be rectangular

Formal Definition of Loop Dependence

There exists a loop dependence from statement S1 to S2 in a loop nest if and only if there exist two iteration vectors i and j for the nest, such that

- i. i < j or i = j and there is a path from S1 to S2 in the body of the loop,
- ii. S1 accesses memory location *M* on iteration i and S2 accesses *M* on iteration j, and
- iii. one of these accesses is a write.

Distance and Direction Vectors

- For each dimension of an iteration space, the distance is the number of iterations between accesses to the same memory location
- Dependence distance vector d(i,j) is defined as a vector of length n such that d(i,j)_k = j_k i_k

• Distance vector: (1, 2) outer loop

Direction Vectors

 Dependence direction vector D(i,j) is defined as a vector of length n such that

$$D(i,j)_{k} = \begin{cases} -if D(i,j)_{k} < 0 & < & \text{Positive} \\ 0 \ if D(i,j)_{k} = 0 & & \text{Alternate} \\ + \ if D(i,j)_{k} > 0 & & \text{Negative} \end{cases}$$

$$k = \begin{cases} -if D(i,j)_{k} < 0 & & \text{Alternate} \\ -if D(i,j)_{k} < 0 & & \text{Alternate} \\ -if D(i,j)_{k} < 0 & & \text{Alternate} \end{cases}$$

• Distance vector is a more **precise** form of a direction vector

For a valid dependence, the leftmost non-"0" component of the direction vector must be "+"

Summarizing Dependences

The number of dependences between a pair of accesses is equal to the number of **distinct** direction vectors over **all** the types of dependences between those accesses.

Distance and Direction Vector Example

Dependence Types

- There are two ways in which a statement S₂ can depend on another statement S₁, where both S₁ and S₂ are inside a loop
 - **Loop-carried** dependence: S₁ and S₂ execute in different iterations
 - **Loop-independent** dependence: S₁ and S₂ execute in the same iteration
- These types partition all possible data dependences

	DO I = 1, N
S1	A(I+1) = F(I)
S2	F(I+1) = A(I)
	ENDDO

Loop-Carried and Loop-Independent Dependences

Loop-carried

- i. S1 references location *M* on iteration i
- ii. S2 references *M* on iteration j
- iii. d(i,j) > 0 (that is, contains a "+" as leftmost non-"0" component)

Loop-independent

- i. S1 refers to location *M* on iteration i
- ii. S2 refers to *M* on iteration j and i = j
- iii. There is a control flow path from S1 to S2 within the iteration

Swarnendu Biswas

Program Transformations and Validity

Parallelism and Data Dependence

• Compilers apply transformations only when it is safe to do so

A reordering transformation is any program transformation that merely changes the order of execution of the code, without adding or deleting any executions of any statements.

- A reordering transformation that preserves every dependence preserves the meaning of the program
- Parallel loop iterations imply random interleaving of statements in the loop body

Direction Vector Transformation

- Let *T* be a transformation applied to a loop nest
- Assume T does not rearrange the statements in the body of the loop
- T is valid if, after it is applied, none of the direction vectors for dependences with source and sink in the nest has a leftmost non-"0" component that is "-"

A transformation is said to be valid for the program to which it applies if it preserves all dependences in the program

Utility of Dependence Levels

- A reordering transformation preserves all level-k dependences if it
 - i. preserves the iteration order of the level-k loop
 - ii. does not interchange any loop at level < k to a position inside the level-k loop and
 - iii. does not interchange any loop at level > k to a position outside the level-k loop.

Is this transformation valid?

DO I = 1, 10 DO J = 1, 10 DO K = 1, 10 S A(I+1,J+2,K+3) = A(I,J,K) + B ENDDO ENDDO ENDDO DO I = 1, 10 DO K = 10, 1, -1 DO J = 1, 10 S A(I+1,J+2,K+3) = A(I,J,K) + B ENDDO ENDDO ENDDO

Is this transformation valid?

```
DO I = 1, N
S1: A(I) = B(I) + C
S2: D(I) = A(I) + E
ENDDO
```

D(1) = A(1) + E DO I = 2, NS1: A(I-1) = B(I-1) + CS2: D(I) = A(I) + EENDDO A(N) = B(N) + C

Dependence Testing

Dependence Testing

Dependence testing is the method used to determine whether dependences exist between two subscripted references to the same array in a loop nest

- Dependence question
 - Can 4*I be equal to 2*I+2 for I in [1, N]?

Given (i) two subscript functions f and g, and (ii) lower and upper loop bounds L and U respectively, does $f(i_1) = g(i_2)$ have a solution such that $L \le i_1, i_2 \le U$?

Multiple Loop Indices, Multi-Dimensional Array

- Assumptions
 - Array subscripts are affine
 - Loops are in normalized form
- Let α and β be two valid vectors in the iteration space of the loop nest
- There is a dependence from S1 to S2 iff

 $\exists \alpha, \beta, \alpha \leq_{lo} \beta \wedge f_i(\alpha) = g_i(\beta) \ \forall i, 1 \leq i \leq m$

D0
$$i_1 = L_1, U_1, S_1$$

D0 $i_2 = L_2, U_2, S_2$
...
D0 $i_n = L_n, U_n$
 $X(f_1(i_1, ..., i_n), ..., f_m(i_1, ..., i_n)) = ...$
 $\dots = X(g_1(i_1, ..., i_n), ..., g_m(i_1, ..., i_n))$
Solving the system of equations
for arbitrary functions f and g
is NP-complete

Approximate Dependence Testing

 Following system of equations with 2n variables and m equations is the most common

$$a_{11}i_{1}+a_{12}i_{2}+...+a_{1n}i_{n}+c_{1} = b_{11}j_{1}+b_{12}j_{2}+...+b_{1n}j_{n}+d_{1}$$

$$a_{21}i_{1}+a_{22}i_{2}+...+a_{2n}i_{n}+c_{2} = b_{21}j_{1}+b_{22}j_{2}+...+b_{2n}j_{n}+d_{2}$$

...

$$a_{m1}i_{1}+a_{m2}i_{2}+...+a_{mn}i_{n}+c_{m} = b_{m1}j_{1}+b_{m2}j_{2}+...+b_{mn}j_{n}+d_{m}$$

- Solve the system of the form Ax=B for integer solutions
 - A is a $m \times 2n$ matrix and B is a vector of m elements
- Finding solutions to Diophantine equations is NP-complete

Dependence Testing with GCD

- Coefficients of the loop indices are integers \rightarrow Diophantine equations
- The Diophantine equation $a_1i_1 + a_2i_2 + \dots + a_ni_n = c$ has an integer solution iff $gcd(a_1, a_2, \dots, a_n)$ evenly divides c
- If there is a solution, we can test if it lies within the loop bounds. If not, then there is no dependence.

- If GCD(x,y) divides (m-k), then a dependence may exist between S1 and S2.
- If GCD(x,y) does not divide (m-k), then S1 and S2 are independent and can be executed at parallel.

Examples:

- 15*i+6*j-9*k=12 has a solution, gcd=3
- 2*i+7*j=3 has a solution, gcd=1
- 9*i+3*j+6*k=5 has no solution, gcd=3

Problems with Dependence Testing with GCD

- Coefficients of the loop indices are integers \rightarrow Diophantine equations
- The Diophantine equation $a_1i_1 + a_2i_2 + \dots + a_ni_n = c$ has an integer solution iff $gcd(a_1, a_2, \dots, a_n)$ evenly divides c
- If there is a solution, we can test if it lies within the loop bounds. If not, then there is no dependence.

for i = 1 to 10
S1 a[i] = b[i]+c[i]
S2 d[i] = a[i-100];

Problems

- Provides no information on distance or direction of dependence, only tells if there are no dependences
- Ignores loop bounds and GCD is often 1, resulting in false dependences

Lamport Test

- Used when there is a single index variable in the subscripts and the coefficients of the index variables are same
- There is an integer solution only if $d = \frac{c_1 c_2}{b}$ is an integer
 - Dependence is valid if $|\mathbf{d}| \leq U_i L_i$

for i = 1 to n for j = 1 to n S1 a[i,2*j] = a[i-1,2*j+1]

 $A[..., b*i+c_2,...] = ...$ $... = A[..., b*i+c_2, ...]$

Classifying Subscripts

- Subscript: A pair of subscript positions in a pair of array references
 - A(i,j) = A(i,k) + C
 - <i,i> is the first subscript, <j,k> is the second subscript
- A subscript is said to be
 - Zero index variable (ZIV) if it contains no index
 - Single index variable (SIV) if it contains only one index
 - Multi index variable (MIV) if it contains more than one index
 - A(5,i+1,j) = A(1,i,k) + C
 - First subscript is ZIV, second subscript is SIV, third subscript is MIV

Separability and Coupled Subscript Groups

- A subscript is separable if its indices do not occur in other subscripts
- If two different subscripts contain the same index they are coupled

• A(i+1,j) = A(k,j) + C : Both subscripts are separable

- A(i,j,j) = A(i,j,k) + C : Second and third subscripts are coupled
- Coupling indicates complexity in dependence testing

DO I = 1, 100
S1
$$A(I+1,I) = B(I) + C$$

S2 $D(I) = A(I,I) * E$
ENDDO

Overview of Dependency Testing

- 1. Partition subscripts of a pair of array references into separable and coupled groups
- 2. Classify each subscript as ZIV, SIV or MIV
- 3. For each separable subscript apply single subscript test
 - If not done, go to next step
- 4. For each coupled group apply multiple subscript test like Delta Test
- 5. If still not done, merge all direction vectors computed in the previous steps into a single set of direction vectors

G. Goff et al. Practical Dependence Testing, PLDI'91. Dependence Testing

Simple Subscript Tests

• ZIV test

- DO j = 1,100 A(e1) = A(e2) + B(j) ENDDO
- e1 and e2 are constants or loop invariant symbols
- If e1!=e2, then no dependence exists
- SIV test
 - Strong SIV test: <a*i+c₁, a*i+c₂>
 - a, c1, c2 are constants or loop invariant symbols
 - Example: <4i+1, 4i+5>
 - Solution: d=(c2-c1)/a is an integer and $|d| \le |U_i L_i|$
 - Weak SIV test: <a₁*i+c₁,a₂*i+c₂>
 - a₁, a₂, c1, c2 are constants or loop invariant symbols
 - Example: <4i+1,2i+5> or <i+3,2i>

Weak SIV Test

- Weak zero SIV: <a₁*i+c₁, c₂>
 - Solution: $i=(c_2-c_1)/a_1$ is an integer and $|i| \le |U-L|$

```
DO I = 1, N
S1 Y(I,N) = Y(1,N) + Y(N,N)
ENDDO
```

```
Y(1,N) = Y(1,N) + Y(N,N)

DO I = 2, N-1

S1 Y(I,N) = Y(1,N) + Y(N,N)

ENDDO

Y(N,N) = Y(1,N) + Y(N,N)
```

- Weak crossing SIV: <a*i+c₁, -a*i+c₂>
 - Solution: $i=(c_2-c_1)/2a$ is an integer and $|i| \le |U-L|$

```
DO I = 1, N

A(I) = A(N-I+1) + C

ENDDO

DO I = 1, (N+1)/2

S1 \quad A(I) = A(N-I+1) + C

ENDDO

DO I = (N+1)/2+1, N

S2 \quad A(I) = A(N-I+1) + C

ENDDO
```

Other Dependence Tests

- Banerjee-Wolfe test: widely used test
- Power test: improvement over Banerjee test
- Delta test: specializes for common array subscript patterns
- Omega test: "precise" test, most accurate for linear subscripts
- Range test: handles non-linear and symbolic subscripts
- Many variants of these tests exits

Banerjee-Wolfe Test

 If the total subscript range accessed by ref1 does not overlap with the range accessed by ref2, then ref1 and ref2 are independent

True: $\exists i, j \in [0, N - 1], i \le j \land f(i) = g(j)$ **Anti**: $\exists i, j \in [0, N - 1], i > j \land f(i) = g(j)$

True: $\exists i, j \in [0, N-1], i < j \land f(i) = g(j)$

Banerjee test

Delta Test

• Notation represents index values at the source and sink

```
DO I = 1, N
A(I + 1) = A(I) + B
ENDDO
```

- Let source Iteration be denoted by I₀, and sink iteration be denoted by I₀ + Δ I
- Valid dependence implies $I_0 + 1 = I_0 + \Delta I$
- We get $\Delta I = 1 \Rightarrow$ Loop-carried dependence with distance vector (1) and direction vector (+)

G. Goff et al. Practical Dependence Testing, PLDI'91.

Delta Test

```
DO I = 1, 100

DO J = 1, 100

DO K = 1, 100

A(I+1,J,K) = A(I,J,K+1) + B

ENDDO

ENDDO

ENDDO
```

- $I_0 + 1 = I_0 + \Delta I$; $J_0 = J_0 + \Delta J$; $K_0 = K_0 + \Delta K + 1$
- Solutions: $\Delta I = 1$; $\Delta J = 0$; $\Delta K = -1$
- Corresponding direction vector: (+,0,-)

```
DO I = 1, 100
DO J = 1, 100
A(I+1) = A(I) + B(J)
ENDDO
ENDDO
```

- If a loop index does not appear in a subscript, its distance is unconstrained and its direction is "*" (denotes union of all 3 directions)
- Direction vector is (+, *)
- (*, +) denotes { (+, +), (0, +), (-, +) }
 - (-, +) denotes a level 1 anti-dependence with direction vector (+, -)

Delta Test

 Extract constraints from SIV subscripts and use them for other subscripts

DO I = 1, N A(I, I) = A(1, I-1) + C ENDDO

DO I = 1, N A(I+1, I+2) = A(I, 1) + C ENDDO

```
DO I = 1, 100

DO J = 1, 100

A(I+1, I+J) = A(I, I+J-1) + C

ENDDO

ENDDO
```

```
DO I = 1, N

DO J = 1, N

DO K = 1, N

A(J-I,I+1,J+K) = A(J-I,I,J+K)

ENDDO

ENDDO

ENDDO
```

Solving Integer Inequalities

- The loop nest inequalities specify a convex polyhedron
 - A polyhedron is convex if for two points in the polyhedron, all points on the line between them are also in the polyhedron
- Data dependence implies a search for integer solutions that satisfy a set of linear inequalities
 - Integer linear programming is an NP-complete problem
- Steps
 - Use GCD test to check if integer solutions may exist
 - Use simple heuristics to handle typical inequalities
 - Use a linear integer programming solver that uses a branch-and- bound approach based on Fourier-Motzkin elimination for unsolved inequalities

Fourier-Motzkin Elimination

- **INPUT**: an *n*-dimensional polyhedron S with variables $x_1, x_2, ..., x_n$
- **GOAL**: Eliminate x_m , $m \le n$
- **OUTPUT**: a polyhedron S' with variables $x_1, x_2, \dots, x_{m-1}, x_{m+1}, \dots, x_n$

• STEPS

- Let C be all constraints in S involving x_m
- 1. For every pair of a lower bound and upper bound on x_m in C, such as, $L \le c_1 x_m$ and $c_2 x_m \le U$, create a new constraint $c_2 L \le c_1 U$
- 2. If integers c_1 and c_2 have a common factor, divide both sides by that factor
- 3. If the new constraint is not satisfiable, then there is no solution to *S*, i.e., *S* and *S*' are empty spaces
- 4. S' is the set of constraints S C, plus the new constraints generated in Step 2.

Example of Fourier-Motzkin Elimination

Consider the code

Goal is to interchange the loops

i

Example of Fourier-Motzkin Elimination

Use Fourier-Motzkin elimination to project the 2D i space away from the *i* dimension and onto the *j* dimension

 $0 \le i \land i \le 5 \land i \le j \implies 0 \le j \land 0 \le 5$, and we already have $j \le 7$

The new constraints are: $0 \le i, i \le 5, i \le j, 0 \le j, j \le 7$ Find the loop bounds from the original loop nest: L_i : 0, U_i : 5, j, L_j : 0, U_j : 7

Use ILP for Dependence Testing

• Algorithm:

- INPUT: A convex polyhedron S, over variables v_1, v_2, \dots, v_n
- OUTPUT: "yes" if S has an integer solution, "no" otherwise

```
for (i=1; i < 10; i++)
Z[i] = Z[i+10];</pre>
```

Show that there are no two dynamic accesses i and i' with $1 \le i \le 9$, $1 \le i' \le 9$, and i = i' + 10.

Dependence Testing is Hard

- Most dependence tests assume affine array subscripts
- Unknown loop bounds can lead to false dependences
- Need to be conservative about aliasing
- Triangular loops adds new constraints
- Loop transformations can add additional variables

Why is Dependence Analysis Important?

- Dependence information is used to drive important loop transformations
 - Goal is to remove dependences or parallelize in the presence of dependences
 - We will discuss many transformations (e.g., loop interchange and loop fusion)

References

- R. Allen and K. Kennedy Optimizing Compilers for Modern Architectures.
- Michelle Strout CS 553: Compiler Construction, Fall 2007.
- Hugh Leather Compiler Optimization: Dependence Analysis. 2019.
- Rudolf Eigenmann Optimizing Optimizing Compilers: Source-to-source (high-level) translation and optimization for multicores.
- P. Gibbons CS 15-745: Array Dependence Analysis & Parallelization.
- A. Chauhan <u>B629: Dependence Testing</u>
- Qing Yi <u>Dependence Testing: Solving System of Diophantine Equations.</u>
- G. Goff et al. Practical Dependence Testing, PLDI, 1991.