
CS 610: Dependence Testing
Swarnendu Biswas

Semester 2023-24-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



How to Write Efficient and Scalable Programs?

Choose algorithms and data structures wisely

• Determines number of operations executed

Write code that the compiler and architecture can effectively optimize

• Determines number of instructions executed

Check proportion of parallelizable code

• Reduces serial bottleneck (Amdahl’s law)

Perform architecture-dependent optimizations

• Depends on the efficiency and characteristics of the platform (e.g., ISA and memory 
hierarchy)
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Role of a Good Parallelizing Compiler

Try and extract performance automatically

Optimize memory access latency

• Code restructuring optimizations (e.g., loop 
interchange) 

• Prefetching optimizations (e.g., software 
prefetching)

• Data layout optimizations

• Code layout optimizations
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Machine code layout optimizations
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https://easyperf.net/blog/2019/03/27/Machine-code-layout-optimizatoins


Parallelism Challenges for a Compiler

• On single-core machines
• Focus is on register allocation, instruction scheduling, reducing the cost of 

array accesses

• On parallel machines
• Find parallelism in sequential code, find portions of work that can be 

executed in parallel

• Principle strategy is data decomposition – good idea because data parallelism 
can scale
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Can we parallelize the following loops?
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do i = 1, 100
A(i) = A(i) + 1

enddo

do i = 1, 100
A(i) = A(i-1) + 1

enddo

Focus is on loop parallelism because it can provide more savings 
• Inter-statement or and intra-statement parallelism is limited
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Data Dependences

S1  a = b + c

S2  d = a * 2

S3  a = c + 2

S4  e = d + c + 2

Execution constraints
• S2 must execute after S1

• S3 must execute after S2

• S3 must execute after S1

• S3 and S4 can execute in any order, and 
concurrently
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There is a data dependence from S1 to S2 if and only if 
i. Both statements access the same memory location
ii. At least one of the accesses is a write
iii. There is a feasible execution path at run-time from S1 to S2



Types of Dependences Based on Memory 
Accesses

Flow (true) or RAW

(denoted by 𝑆1𝛿𝑆2)

Anti or WAR

(denoted by 𝑆1𝛿
−1𝑆2)

Output or WAW

(denoted by 𝑆1𝛿
𝑜𝑆2)

Input

S1  X = …
S2  … = X

S1  … = X
S2  X = … 

S1  X = …
S2  X = …

S1  … = a/b
S2  … = b * c
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Bernstein’s Conditions
• Suppose there are two processes 

P1 and P2

• Let Ii be the set of all input 
variables for process Pi

• Let Oi be the set of all output 
variables for process Pi

• P1 and P2 can execute in parallel 
(denoted as P1 || P2) if and only 
if 
• 𝑂1 ∩ 𝐼2 = Φ

• 𝐼2 ∩ 𝑂1 = Φ

• 𝑂2 ∩ 𝑂1 = Φ
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Two processes can execute in parallel if they are flow-, anti-, 
and output-independent
• If Pi || Pj, does that imply Pj || Pi?
• If Pi || Pj and Pj || Pk, does that imply Pi || Pk?

A. Bernstein. Analysis of Programs for Parallel Processing. IEEE Transactions on Electronic Computers, 1966.



Finding Parallelism in Loops – Is it Easy?

• Need to check whether two array subscripts access the same memory 
location

• Statement S1 depends on itself in both examples, however, there is a 
subtle difference

• Compilers need formalism to analyze dependences and transform 
loops
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for i = 1 to N
S1    A[i+1] = A[i] + B[i]

endfor

for i = 1 to N
S1    A[i+2] = A[i] + B[i]

endfor



Enumerate All Dependences in Loops

for i = 1 to 50

S1    A[i] = B[i-1] + C[i]

S2    B[i] = A[i+2] + C[i]

endfor

• Unrolling loops helps figure out 
dependences

S1(1)    A[1] = B[0] + C[1]

S2(1)    B[1] = A[3] + C[1]

S1(2)    A[2] = B[1] + C[2]

S2(2)    B[2] = A[4] + C[2]

S1(3)    A[3] = B[2] + C[3]

S2(3)    B[3] = A[5] + C[3]
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• large loop bounds
• loop bounds may not be 

known at compile time



Normalized Iteration Number

• Parameterize the statement with 
the loop iteration number

DO I = 1, N

S1    A(I+1) = A(I) + B(I)

ENDDO

DO I = L, U, S

S1    ...

ENDDO
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For a loop where the loop index I runs from L to U in steps of S, 
the normalized iteration number of a specific iteration is (I–
L)/S+1, where I is the value of the index on that iteration



Iteration Vector and Lexicographic Ordering 
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Given a nest of n loops, the iteration vector i of an iteration of the 
innermost loop is a vector of integers containing the iteration 
numbers for each of the loops in order of nesting level. 

The iteration vector i is {i1, i2, ..., in} where ik, 1 ≤ k ≤ n, represents 
the iteration number for the loop at nesting level k.

• A vector (d1, d2) is positive if (0,0) < (d1, d2), i.e., its first non-zero component is 
positive

• Iteration i precedes iteration j, denoted by i < j, if and only if 
i. i[1:n-1] < j[1:n-1], or
ii. i[1:n-1] = j[1:n-1] and in < jn



Iteration Space Graphs
• Represent each dynamic instance of a loop as a point in the graph

• Arrows among points represent dependences
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for (i = 1; i <= 4; i++)
for (j = 1; j <= 4; j++)

S1:      a[i][j] = a[i][j-1] * x;

for i = 1 to 5 do
for j = i to 5 do

A(i, j) = B(i, j) + C(j)
endfor

endfor

Dimension of iteration space is the loop nest 
level, need not always be rectangular



Formal Definition of Loop Dependence
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There exists a loop dependence from statement S1 to S2 in a loop 
nest if and only if there exist two iteration vectors i and j for the 
nest, such that 
i. i < j or i = j and there is a path from S1 to S2 in the body of the 

loop, 
ii. S1 accesses memory location M on iteration i and S2 accesses M 

on iteration j, and 
iii. one of these accesses is a write.



Distance and Direction Vectors
• For each dimension of an iteration space, the distance is the number 

of iterations between accesses to the same memory location

• Dependence distance vector d(i,j) is defined as a vector of length n 
such that d(i,j)k = jk – ik

• Distance vector: (1, 2)
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do i = 1, 6
do j = 1, 5
A(i, j) = A(i-1, j-2) + 1

enddo
enddo

outer 
loop

inner 
loop



Direction Vectors
• Dependence direction vector D(i,j) is defined as a vector of length n

such that

• Distance vector is a more precise form of a direction vector
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𝐷 𝑖, 𝑗 𝑘 = ൞

− 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 < 0

0 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 = 0

+ 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 > 0

< Positive

> Negative

= Zero

* Mixed

alternate 
notation

For a valid dependence, the leftmost non-“0” 
component of the direction vector must be “+”



Summarizing Dependences
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DO J = 1, 10
DO I = 1, 10

S1      A(I+1,J) = A(I,J) + 5
ENDDO

ENDDO What are the 
dependences? 

How many?

The number of dependences between a pair of accesses is equal 
to the number of distinct direction vectors over all the types of 
dependences between those accesses.



Distance and Direction Vector Example
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DO I = 1, N
DO J = 1, M

S1      A(I,J) = …
S2      … = A(I,J) + …

ENDDO
ENDDO 

DO I = 1, N
DO J = 1, M

S1      A(I,J) = A(I,1) + …
ENDDO

ENDDO 

DO I = 1, N
DO J = 1, M

DO K = 1, L
S1        A(I+1,J,K-1) = A(I,J,K) + 10

ENDDO
ENDDO

ENDDO 

FOR I = 1, 5
FOR J = 1, 5

S1      A(I,J) = A(I,J-3) + A(I-2,J) + 
A(I-1,J+2) + A(I+1,J-1)

ENDFOR
ENDFOR



Dependence Types

• There are two ways in which a 
statement S2 can depend on 
another statement S1 , where both 
S1 and S2 are inside a loop
• Loop-carried dependence: S1 and  S2

execute in different iterations

• Loop-independent dependence: S1
and S2 execute in the same iteration

• These types partition all possible 
data dependences
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DO I = 1, N

S1    A(I+1) = F(I)

S2    F(I+1) = A(I)

ENDDO

DO I = 1, N

S1    A(I+1) = F(I)

S2    G(I+1) = A(I+1)

ENDDO



Loop-Carried and Loop-Independent 
Dependences

Loop-carried

i. S1 references location M on iteration i

ii. S2 references M on iteration j

iii. d(i,j) > 0 (that is, contains a “+” as leftmost 
non-“0” component)

Loop-independent

i. S1 refers to location M on iteration i

ii. S2 refers to M on iteration j and i = j

iii. There is a control flow path from S1 to S2 
within the iteration
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DO I = 1, 10
DO J = 1, 10

DO K = 1, 10
S1        A(I,J,K+1) = A(I,J,K)

ENDDO
ENDDO

ENDDO

DO I = 1, 9
S1    A(I) =
S2    ... = A(10-I)

ENDDO
Level of a loop-carried dependence is the 

leftmost non-“0” index of the 
dependence D(i,j) (denoted by 𝑆1𝛿𝑙𝑆2) denoted by 𝑆1𝛿∞𝑆2



Program Transformations and 
Validity
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Parallelism and Data Dependence

• Compilers apply transformations only when it is safe to do so

• A reordering transformation that preserves every dependence 
preserves the meaning of the program

• Parallel loop iterations imply random interleaving of statements in 
the loop body
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A reordering transformation is any program transformation that 
merely changes the order of execution of the code, without 
adding or deleting any executions of any statements. 



Direction Vector Transformation

• Let T be a transformation applied to a loop nest 

• Assume T does not rearrange the statements in the body of the loop

• T is valid if, after it is applied, none of the direction vectors for 
dependences with source and sink in the nest has a leftmost non-“0” 
component that is “-”
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A transformation is said to be valid for the program to which it 
applies if it preserves all dependences in the program



Utility of Dependence Levels

• A reordering transformation preserves all level-k dependences if it
i. preserves the iteration order of the level-k loop 

ii. does not interchange any loop at level < k to a position inside the level-k 
loop and 

iii. does not interchange any loop at level > k to a position outside the level-k 
loop.
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DO I = 1, 10
S1    A(I+1) = F(I)
S2    F(I+1) = A(I)

ENDDO

DO I = 1, 10
S2    F(I+1) = A(I)
S1    A(I+1) = F(I)

ENDDO



Is this transformation valid?

DO I = 1, 10

DO J = 1, 10

DO K = 1, 10

S       A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO

DO I = 1, 10

DO K = 10, 1, -1

DO J = 1, 10

S       A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO
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Is this transformation valid?

DO I = 1, N

S1:   A(I) = B(I) + C

S2:   D(I) = A(I) + E

ENDDO

D(1) = A(1) + E

DO I = 2, N

S1:   A(I-1) = B(I-1) + C

S2:   D(I) = A(I) + E

ENDDO

A(N) = B(N) + C
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Dependence Testing
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Dependence Testing

• Dependence question
• Can 4*I be equal to 2*I+2 for I in [1, N]?

DO I=1, N
A(4*I) = …
… = A(2*I+2)

ENDDO
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Given (i) two subscript functions f and g, and (ii) lower and upper loop bounds L 
and U respectively, does 𝑓 𝑖1 = 𝑔 𝑖2 have a solution such that 𝐿 ≤ 𝑖1, 𝑖2 ≤ 𝑈?

affine

Dependence testing is the method used to determine whether 
dependences exist between two subscripted references to the same 
array in a loop nest



Multiple Loop Indices, Multi-Dimensional 
Array
• Assumptions

• Array subscripts are affine

• Loops are in normalized form

• Let 𝛼 and 𝛽 be two valid 
vectors in the iteration space of 
the loop nest

• There is a dependence from S1 
to S2 iff
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DO i1=L1,U1,S1
DO i2=L2,U2,S2
…

DO in=Ln,Un
S1     X(f1(i1,…,in), …, fm(i1,…,in)) = …

S2     … = X(g1(i1,…,in), …, gm(i1,…,in))

Solving the system of equations 
for arbitrary functions f and g

is NP-complete

∃ 𝛼, 𝛽, 𝛼 ≤𝑙𝑜 𝛽 ∧ 𝑓𝑖 𝛼 = 𝑔𝑖 𝛽 ∀𝑖, 1 ≤ 𝑖 ≤ 𝑚



Approximate Dependence Testing

• Following system of equations with 2n variables and m equations is 
the most common

• Solve the system of the form Ax=B for integer solutions
• A is a 𝑚 × 2𝑛 matrix and B is a vector of 𝑚 elements

• Finding solutions to Diophantine equations is NP-complete
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a11i1+a12i2+…+a1nin+c1 = b11j1+b12j2+…+b1njn+d1
a21i1+a22i2+…+a2nin+c2 = b21j1+b22j2+…+b2njn+d2
…
am1i1+am2i2+…+amnin+cm = bm1j1+bm2j2+…+bmnjn+dm



Dependence Testing with GCD

• Coefficients of the loop indices are integers → Diophantine equations

• The Diophantine equation 𝑎1𝑖1 + 𝑎2𝑖2 +⋯+ 𝑎𝑛𝑖𝑛 = 𝑐 has an 
integer solution iff gcd(𝑎1, 𝑎2, … , 𝑎𝑛) evenly divides c

• If there is a solution, we can test if it lies within the loop bounds. If 
not, then there is no dependence.

CS 610, IIT Kanpur Swarnendu Biswas

Examples:

• 15*i+6*j-9*k=12 has a solution, gcd=3
• 2*i+7*j=3 has a solution, gcd=1
• 9*i+3*j+6*k=5 has no solution, gcd=3

for i = 1 to N  

S1     a[x*i+k] = … 

S2     … = a[y*i+m]; 

𝑥 ∗ 𝑖1 + 𝑘 = 𝑦 ∗ 𝑖2 +𝑚, 
where 0 ≤ 𝑖1, 𝑖2 ≤ 𝑁

• If GCD(x,y) divides (m-k), then a dependence may exist 
between S1 and S2. 

• If GCD(x,y) does not divide (m-k), then S1 and S2 are 
independent and can be executed at parallel.



Problems with Dependence Testing with GCD

• Coefficients of the loop indices are integers → Diophantine equations

• The Diophantine equation 𝑎1𝑖1 + 𝑎2𝑖2 +⋯+ 𝑎𝑛𝑖𝑛 = 𝑐 has an 
integer solution iff gcd(𝑎1, 𝑎2, … , 𝑎𝑛) evenly divides c

• If there is a solution, we can test if it lies within the loop bounds. If 
not, then there is no dependence.
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Problems
• Provides no information on distance or direction 

of dependence, only tells if there are no 
dependences

• Ignores loop bounds and GCD is often 1, resulting 
in false dependences

for i = 1 to 10  

S1     a[i] = b[i]+c[i] 

S2     d[i] = a[i-100]; 



Lamport Test

• Used when there is a single index variable in 
the subscripts and the coefficients of the 
index variables are same

• There is an integer solution only if d =
𝑐1−𝑐2

𝑏
is an integer
• Dependence is valid if d ≤ 𝑈𝑖 − 𝐿𝑖
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A[…, b*i+c2,…] = …
… = A[…,b*i+c2,…]

for i = 1 to n 

for j = 1 to n 

S1      a[i,j] = a[i-1,j+1]

for i = 1 to n 

for j = 1 to n 

S1      a[i,2*j] = a[i-1,2*j+1]



Classifying Subscripts

• Subscript: A pair of subscript positions in a pair of array references
• A(i,j) = A(i,k) + C
• <i,i> is the first subscript, <j,k> is the second subscript

• A subscript is said to be

• Zero index variable (ZIV) if it contains no index

• Single index variable (SIV) if it contains only one index

• Multi index variable (MIV) if it contains more than one index
• A(5,i+1,j) = A(1,i,k) + C
• First subscript is ZIV, second subscript is SIV, third subscript is MIV
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Separability and Coupled Subscript Groups

• A subscript is separable if its indices do not occur in other subscripts

• If two different subscripts contain the same index they are coupled
• A(i+1,j) = A(k,j) + C : Both subscripts are separable

• A(i,j,j) = A(i,j,k) + C : Second and third subscripts are coupled

• Coupling indicates complexity in dependence testing
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DO I = 1, 100
S1 A(I+1,I) = B(I) + C
S2 D(I) = A(I,I) * E

ENDDO



Overview of Dependency Testing

1. Partition subscripts of a pair of array references into separable and 
coupled groups

2. Classify each subscript as ZIV, SIV or MIV

3. For each separable subscript apply single subscript test
• If not done, go to next step

4. For each coupled group apply multiple subscript test like Delta Test

5. If still not done, merge all direction vectors computed in the 
previous steps into a single set of direction vectors
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G. Goff et al. Practical Dependence Testing, PLDI’91.
Dependence Testing

https://homes.luddy.indiana.edu/achauhan/Teaching/B629/2006-Fall/LectureNotes/26-dependence-testing.html


Simple Subscript Tests

• ZIV test
• e1 and e2 are constants or loop invariant symbols

• If e1!=e2, then no dependence exists

• SIV test
• Strong SIV test: <a*i+c1,a*i+c2>

• a,c1,c2 are constants or loop invariant symbols

• Example: <4i+1, 4i+5>

• Solution: d=(c2-c1)/a is an integer and |𝑑| ≤ |𝑈𝑖 − 𝐿𝑖|

• Weak SIV test: <a1*i+c1,a2*i+c2>
• a1,a2,c1,c2 are constants or loop invariant symbols

• Example: <4i+1,2i+5> or <i+3,2i>
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DO j = 1,100
A(e1) = A(e2) + B(j)

ENDDO



Weak SIV Test

• Weak zero SIV: <a1*i+c1,c2>
• Solution: i=(c2-c1)/a1 is an integer and |𝑖| ≤ |𝑈 − 𝐿|

• Weak crossing SIV: <a*i+c1,-a*i+c2>
• Solution: i=(c2-c1)/2a is an integer and |𝑖| ≤ |𝑈 − 𝐿|
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DO I = 1, N
S1    Y(I,N) = Y(1,N) + Y(N,N)

ENDDO

Y(1,N) = Y(1,N) + Y(N,N)
DO I = 2, N-1

S1    Y(I,N) = Y(1,N) + Y(N,N)
ENDDO
Y(N,N) = Y(1,N) + Y(N,N) 

DO I = 1, N
S1    A(I) = A(N-I+1) + C

ENDDO

DO I = 1, (N+1)/2
S1    A(I) = A(N-I+1) + C

ENDDO
DO I = (N+1)/2+1, N

S2    A(I) = A(N-I+1) + C
ENDDO



Other Dependence Tests

• Banerjee-Wolfe test: widely used test

• Power test: improvement over Banerjee test

• Delta test: specializes for common array subscript patterns

• Omega test: “precise” test, most accurate for linear subscripts

• Range test: handles non-linear and symbolic subscripts

• Many variants of these tests exits
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Banerjee-Wolfe Test

• If the total subscript range accessed by 
ref1 does not overlap with the range 
accessed by ref2, then ref1 and ref2 
are independent
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for (k=0; k < N; k++) {
c[f(i)] = …;
… = c[g(j)];

}

True: ∃𝑖, 𝑗 ∈ 0, 𝑁 − 1 , 𝑖 ≤ 𝑗 ∧ 𝑓 𝑖 = 𝑔(𝑗)

Anti: ∃𝑖, 𝑗 ∈ 0, 𝑁 − 1 , 𝑖 > 𝑗 ∧ 𝑓 𝑖 = 𝑔(𝑗)

for (k=0; k < N; k++) {
… = c[g(j)];
c[f(i)] = …;

}

True: ∃𝑖, 𝑗 ∈ 0, 𝑁 − 1 , 𝑖 < 𝑗 ∧ 𝑓 𝑖 = 𝑔(𝑗)

DO j=1,100 
a(j) = …
… = a(j+200)

ENDDO

DO j=1,100
a(j) = …
… = a(j+5)

ENDDO

[1:100]
[201:300]

[1:100]
[6:105]

Banerjee test

https://en.wikipedia.org/wiki/Banerjee_test


Delta Test

• Notation represents index values at the source and sink

• Let source Iteration be denoted by I0, and sink iteration be denoted 
by I0 + I

• Valid dependence implies I0 + 1 = I0 + I

• We get I = 1  Loop-carried dependence with distance vector (1) 
and direction vector (+)

DO I = 1, N
A(I + 1) = A(I) + B

ENDDO

G. Goff et al. Practical Dependence Testing, PLDI’91.
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Delta Test
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DO I = 1, 100
DO J = 1, 100

DO K = 1, 100
A(I+1,J,K) = A(I,J,K+1) + B

ENDDO
ENDDO

ENDDO

DO I = 1, 100
DO J = 1, 100

A(I+1) = A(I) + B(J)
ENDDO

ENDDO

• I0 + 1 = I0 + I;   J0 = J0 + J;   K0 = K0 + K + 1
• Solutions: I = 1;    J = 0;      K = -1
• Corresponding direction vector: (+,0,-)

• If a loop index does not appear in a 
subscript, its distance is unconstrained 
and its direction is “*” (denotes union of 
all 3 directions)

• Direction vector is (+, *)

• (*, +) denotes { (+, +), (0, +), (-, +) }

• (-, +) denotes a level 1 anti-dependence 

with direction vector (+, -)



Delta Test

• Extract constraints from SIV 
subscripts and use them for 
other subscripts
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DO I = 1, 100
DO J = 1, 100

A(I+1, I+J) = A(I, I+J-1) + C
ENDDO

ENDDO

DO I = 1, N
A(I+1, I+2) = A(I, 1) + C

ENDDO

DO I = 1, N
A(I, I) = A(1, I-1) + C

ENDDO DO I = 1, N
DO J = 1, N

DO K = 1, N
A(J-I,I+1,J+K) = A(J-I,I,J+K)

ENDDO
ENDDO

ENDDO



Solving Integer Inequalities

• The loop nest inequalities specify a convex polyhedron
• A polyhedron is convex if  for two points in the polyhedron, all points on the 

line between them are also in the polyhedron

• Data dependence implies a search for integer solutions that satisfy a 
set of linear inequalities
• Integer linear programming is an NP-complete problem

• Steps
• Use GCD test to check if integer solutions may exist
• Use simple heuristics to handle typical inequalities
• Use a linear integer programming solver that uses a branch-and- bound 

approach based on Fourier-Motzkin elimination for unsolved inequalities
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Fourier-Motzkin Elimination
• INPUT: an 𝑛-dimensional polyhedron 𝑆 with variables 𝑥1, 𝑥2, … , 𝑥𝑛
• GOAL: Eliminate 𝑥𝑚, 𝑚 ≤ 𝑛

• OUTPUT: a polyhedron 𝑆′ with variables 𝑥1, 𝑥2, … , 𝑥𝑚−1, 𝑥𝑚+1, … , 𝑥𝑛
• STEPS

• Let 𝐶 be all constraints in 𝑆 involving 𝑥𝑚
1. For every pair of a lower bound and upper bound on 𝑥𝑚 in 𝐶, such as, 𝐿 ≤

𝑐1𝑥𝑚 and 𝑐2𝑥𝑚 ≤ 𝑈, create a new constraint 𝑐2𝐿 ≤ 𝑐1𝑈
2. If integers 𝑐1 and 𝑐2 have a common factor, divide both sides by that factor
3. If the new constraint is not satisfiable, then there is no solution to 𝑆, i.e., 𝑆

and 𝑆′ are empty spaces
4. 𝑆′ is the set of constraints 𝑆 − 𝐶, plus the new constraints generated in 

Step 2.
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Example of Fourier-Motzkin Elimination

Consider the code
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for (i = 0; i <= 5; i++)
for (j = i; j <= 7; j++)

Z[j,i] = 0;

0 ≤ 𝑖

𝑖 ≤ 5

𝑗 ≤ 7

𝑖

𝑗

𝑖 ≤ 𝑗

Goal is to interchange the 
loops

for (j = __; j <= __; j++)
for (i = __; i <= __; i++)

Z[j,i] = 0;



Example of Fourier-Motzkin Elimination
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for (i = 0; i <= 5; i++)
for (j = i; j <= 7; j++)

Z[j,i] = 0;

0 ≤ 𝑖

𝑖 ≤ 5

𝑗 ≤ 7

𝑖

𝑗

𝑖 ≤ 𝑗
Use Fourier-Motzkin elimination to project the 2D
space away from the 𝑖 dimension and onto the 𝑗 dimension

0 ≤ 𝑖 ∧ 𝑖 ≤ 5 ∧ 𝑖 ≤ 𝑗 0 ≤ 𝑗 ∧ 0 ≤ 5, and 
we already have 𝑗 ≤ 7

The new constraints are: 0 ≤ 𝑖, 𝑖 ≤ 5, 𝑖 ≤ 𝑗, 0 ≤ 𝑗, 𝑗 ≤ 7
Find the loop bounds from the original loop nest: 𝐿𝑖: 0,  𝑈𝑖: 5, j,  𝐿𝑗: 0,  𝑈𝑗: 7

for (j = 0; j <= 7; j++)
for (i = 0; i <= min(5,j); i++)

Z[j,i] = 0;



Use ILP for Dependence Testing

• Algorithm:
• INPUT: A convex polyhedron 𝑆, over variables 𝑣1, 𝑣2, … , 𝑣𝑛
• OUTPUT: “yes” if 𝑆 has an integer solution, “no” otherwise
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for (i=1; i < 10; i++)
Z[i] = Z[i+10];

Show that there are no two dynamic accesses 𝑖 and 𝑖′ with 1 ≤ 𝑖 ≤ 9, 
1 ≤ 𝑖′ ≤ 9, and 𝑖 = 𝑖′ + 10.



Dependence Testing is Hard

• Most dependence tests assume 
affine array subscripts

• Unknown loop bounds can lead 
to false dependences

• Need to be conservative about 
aliasing 

• Triangular loops adds new 
constraints

• Loop transformations can add 
additional variables
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for (i=0; i < N; i++) {
a[i] = a[i+10];

}
How do we 

compare N and 10?

for (i=0; i < N; i++) {
for (j = 0; j < i-1; j++) {

a[i,j] = a[j,i];
}

} Add j<i as a new 
constraint

for (i=L; i < H; i++) {
a[i] = a[i-1];

}

Loop transformations 
(e.g., normalization) adds 

new variables



Why is Dependence Analysis Important?

• Dependence information is used to drive important loop 
transformations
• Goal is to remove dependences or parallelize in the presence of dependences

• We will discuss many transformations (e.g., loop interchange and loop fusion) 
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