
CS 610: Vectorization
Swarnendu Biswas

Semester 2022-2023-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Material adapted from
M. Garzaran et al. Program Optimization Through Loop Vectorization.

M. Voss. Topics in Loop Vectorization.

CS 610 Swarnendu Biswas

Different Levels of Parallelism in Hardware

• Instruction-level Parallelism
• Microarchitectural techniques like pipelining, OOO execution, and superscalar

• Vector-level Parallelism
• Use Single Instruction Multiple Data (SIMD) vector processing instructions and

units

• Thread-level Parallelism
• Hyperthreading

CS 610 Swarnendu Biswas

Vectorization

• Process of transforming a scalar operation on single data
elements at a time (SISD) to an operation on multiple data
elements at once (SIMD)

• Loop vectorization transforms a program so that the same
operation is performed at the same time on several vector
elements

CS 610 Swarnendu Biswas

Vectorization

Scalar mode

• One instruction produces one
result

• vaddsd/vaddss

Vector mode

• One instruction can produce
multiple results

• vaddpd/vaddps

double *a, *b, *c;
for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

a[i]

b[i]

c[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

M. Voss. Topics in Loop Vectorization.

Vectorization

for (i=0; i<n; i++)
c[i] = a[i] + b[i];

…Register File

X1

Y1

Z1

32 bits

32 bits

+

32 bits

ld r1, addr1
ld r2, addr2
add r3, r1, r2
st r3, addr3

n
times

ldv vr1, addr1
ldv vr2, addr2
addv vr3, vr1, vr2
stv vr3, addr3

n/4
times

M. Garzaran et al. Program Optimization Through Loop Vectorization.

M. Voss. Topics in Loop Vectorization.

Kirill Rogozhin, Intel. Vectorization.

Intel-Supported SIMD Extensions

SIMD
extensions

Width (bits) Dual precision
(64 bit)
calculations

Single
precision (32
bit)
calculations

Introduced

SSE2/SSE3/SSE4 128 2 4 ~2001-2007

AVX/AVX2 256 4 8 ~2011-2015

AVX-512 512 8 16 ~2017

Other platforms that support SIMD have different extensions

CS 610 Swarnendu Biswas

SIMD Vectorization

• Use of SIMD units can speed up the program
• Intel SSE has 128-bit vector registers and functional units

• 4 32-bit single precision floating point numbers
• 2 64-bit double precision floating point numbers
• 4 32-bit integer numbers
• 2 64 bit integer
• 8 16-bit integer or shorts
• 16 8-bit bytes or chars

• Assuming a single ALU, these SIMD units can execute 4 single precision
floating point number or 2 double precision operations in the time it takes
to do only one of these operations by a scalar unit

CS 610 Swarnendu Biswas

128-bit wide operands using integers

Daniel Kusswurm. Modern X86 Assembly Language Programming.

SSE Data Types

AVX2 Data Types

Intel-Supported SIMD Extensions

512 bits

256 bits

128 bits

XMMYMMZMM

64-bit architecture

SSE XMM0-XMM15

AVX YMM0-YMM15 Low- order 128 bits of each YMM register are
aliased to a corresponding XMM register

AVX-512 ZMM0-ZMM31 Low-order 256 and 128 bits are aliased to registers
YMM0-YMM31 and XMM0-XMM31 respectively

CS 610 Swarnendu Biswas

x86-64 Vector Operations

• Example instructions
• Move: (V)MOV[A/U]P[D/S]
• Comparing: (V)CMP[P/S][D/S]
• Arithmetic operations: (V)[ADD/SUB/MUL/DIV][P/S][D/S]

• Instruction decoding
• V – AVX
• P, S – packaged, scalar
• A, U – aligned, unaligned
• D, S – double, single
• B, W, D, Q – byte, word, doubleword, quadword integers

[] – required
() - optional

Andreas Schmitz. GCC AutoVectorization.

x86-64 Vector Operations

Instruction

movss xmm1, xmm2

vmovapd xmm1, xmm2

Explanation

Move scalar single-precision floating-point value
from xmm2 to xmm1

Move aligned packed double-precision floating-
point values from xmm2 to xmm1

CS 610 Swarnendu Biswas

AVX Scalar Floating-Point Instruction
Examples

Instruction

vaddss xmm0,xmm1,xmm2

vaddsd xmm0,xmm1,xmm2

Explanation

xmm0[31:0] = xmm1[31:0] +
xmm2[31:0]

xmm0[127:32] = xmm1[127:32]

ymm0[255:128] = 0

xmm0[63:0] = xmm1[63:0] +
xmm2[63:0]

xmm0[127:64] = xmm1[127:64]

ymm0[255:128] = 0

CS 610 Swarnendu Biswas

Kirill Rogozhin, Intel. Vectorization.

Ways to Vectorize Code

CS 610 Swarnendu Biswas

Vectorize Code
• Auto-vectorizing compiler

• Vector intrinsics

• Assembly language

for (i=0; i<LEN; i++)
c[i] = a[i] + b[i];

void example(){
__m128 rA, rB, rC;
for (int i = 0; i <LEN; i+=4){

rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC = _mm_add_ps(rA,rB);

_mm_store_ps(&C[i], rC);
}}

..B8.5
movaps a(,%rdx,4), %xmm0
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
jl ..B8.5

easy, but low
control

hard, but
most control

CS 610 Swarnendu Biswas

Vectorize Code

• Auto-vectorization
• Compiler vectorizes automatically – No code changes

• Semi auto-vectorization – Use pragmas as hints to guide compiler

• Explicit vector programming – OpenMP SIMD pragmas

• SIMD/Vector intrinsics

• Inline assembly language

• Use SIMD-capable libraries like Intel Math Kernel Library (MKL)

most control, but
harder to code, debug

and maintain

CS 610 Swarnendu Biswas

Auto-Vectorization

Transparent to programmers

Compilers can apply other transformations

Portability of code across architectures

• Vectorization instructions may differ but compilers take care of it

CS 610 Swarnendu Biswas

Auto-Vectorization

Transparent to programmers

Compilers can apply other transformations

Portability of code across architectures

• Vectorization instructions may differ but compilers take care of it

Compilers may fail to vectorize
• Programmers may give hints to help the compiler
• Programmers may have to manually vectorize their code

CS 610 Swarnendu Biswas

Data Dependences and Vectorization

• Loop dependences guide vectorization

• A statement inside a loop which is not in a cycle of the dependence
graph can be vectorized

CS 610 Swarnendu Biswas

How well do compilers vectorize?

Compiler

Loops

XLC ICC GCC

Total 159

Vectorized 74 75 32

Not vectorized 85 84 127

Average Speed Up 1.73 1.85 1.30

Compiler

Loops

XLC but

not ICC

ICC but

not XLC

Vectorized 25 26

How well do compilers vectorize?

Compiler

Loops

XLC ICC GCC

Total 159

Vectorized 74 75 32

Not vectorized 85 84 127

Average Speed Up 1.73 1.85 1.30

Compiler

Loops

XLC but

not ICC

ICC but

not XLC

Vectorized 25 26

By adding manual vectorization the average speedup

was 3.78 (versus 1.73 obtained by the XLC compiler)

Experimental results

• These slides show vectorization results for two

different platforms with the following compilers:

– Report generated by the compiler

– Execution Time for each platform

Platform 2: IBM Power 7

IBM Power 7, 3.55 GHz

IBM xlc compiler, version 11.0

OS Red Hat Linux Enterprise 5.4

Platform 1: Intel Nehalem

Intel Core i7 CPU 920@2.67GHz

Intel ICC compiler, version 11.1

OS Ubuntu Linux 9.04

The examples use single precision floating point numbers

Compiler directives

void test(float* A,float* B,float* C,float* D, float* E)
{

for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];

}
}

Compiler directives

void test(float* A, float* B, float*
C, float* D, float* E)
{
for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];
}

}

S1111 S1111

S1111

Intel Nehalem

Compiler report: Loop was not

vectorized.

Exec. Time scalar code: 5.6

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 5.6

Exec. Time vector code: 2.2

Speedup: 2.5

void test(float* __restrict__ A,
float* __restrict__ B,
float* __restrict__ C,
float* __restrict__ D,
float* __restrict__ E)
{
for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];
}

}

S1111

Compiler directives

void test(float* A, float* B, float*
C, float* D, float* E)
{
for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];
}

}

S1111 S1111

S1111

Power 7

Compiler report: Loop was not

vectorized.

Exec. Time scalar code: 2.3

Exec. Time vector code: --

Speedup: --

Power 7

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 1.6

Exec. Time vector code: 0.6

Speedup: 2.7

void test(float* __restrict__ A,
float* __restrict__ B,
float* __restrict__ C,
float* __restrict__ D,
float* __restrict__ E)
{
for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];
}

}

S1111

Loop Transformations

for (int i=0;i<LEN;i++) {
sum = (float) 0.0;
for (int j=0;j<LEN;j++) {

sum += A[j][i];
}
B[i] = sum;

}

???

CS 610 Swarnendu Biswas

Loop Transformations

for (int i=0;i<LEN;i++) {
sum = (float) 0.0;
for (int j=0;j<LEN;j++) {

sum += A[j][i];
}
B[i] = sum;

}

for (int i=0;i<size;i++) {
sum[i] = 0;
for (int j=0;j<size;j++) {

sum[i] += A[j][i];
}
B[i] = sum[i];

}

CS 610 Swarnendu Biswas

Loop Transformations
for (int i=0;i<LEN;i++) {

sum = (float) 0.0;
for (int j=0;j<LEN;j++) {

sum += A[j][i];
}
B[i] = sum;

}

Intel Nehalem
Compiler report: Loop was not
vectorized. Vectorization
possible but seems inefficient.
Exec. Time scalar code: 3.7
Exec. Time vector code: --
Speedup: --

Intel Nehalem
Compiler report: Permuted loop
was vectorized.
scalar code: 1.6
vector code: 0.6
Speedup: 2.6

Intel Nehalem
Compiler report: Permuted loop
was vectorized.
scalar code: 1.6
vector code: 0.6
Speedup: 2.6

for (int i=0;i<LEN;i++) {
sum[i] = (float) 0.0;
for (int j=0;j<LEN;j++) {

sum[i] += A[j][i];
}
B[i]=sum[i];

}

for (int i=0;i<LEN;i++) {
B[i] = (float) 0.0;
for (int j=0;j<LEN;j++) {

B[i] += A[j][i];
}

}

CS 610 Swarnendu Biswas

Loop Transformations
for (int i=0;i<LEN;i++) {

sum = (float) 0.0;
for (int j=0;j<LEN;j++) {

sum += A[j][i];
}
B[i] = sum;

}

IBM Power 7
Compiler report: Loop was not
SIMD vectorized
Exec. Time scalar code: 2.0
Exec. Time vector code: --
Speedup: --

IBM Power 7
Compiler report: Loop
interchanging applied. Loop was
SIMD vectorized
scalar code: 0.4
vector code: 0.16
Speedup: 2.7

IBM Power 7
Compiler report: Loop
interchanging applied. Loop was
SIMD vectorized
scalar code: 0.4
vector code: 0.2
Speedup: 2.0

for (int i=0;i<LEN;i++) {
sum[i] = (float) 0.0;
for (int j=0;j<LEN;j++) {

sum[i] += A[j][i];
}
B[i]=sum[i];

}

for (int i=0;i<LEN;i++) {
B[i] = (float) 0.0;
for (int j=0;j<LEN;j++) {

B[i] += A[j][i];
}

}

CS 610 Swarnendu Biswas

SSE Intrinsics

#define n 1024

__attribute__ ((aligned(16))) float
a[n], b[n], c[n];

int main() {
for (i = 0; i < n; i++) {

c[i]=a[i]*b[i];
}

}

#include <xmmintrin.h>
#define n 1024
__attribute__((aligned(16))) float
a[n], b[n], c[n];

int main() {
__m128 rA, rB, rC;
for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC= _mm_mul_ps(rA,rB);
_mm_store_ps(&c[i], rC);

}
}

CS 610 Swarnendu Biswas

Challenges in Vectorization

CS 610 Swarnendu Biswas

Data Dependences

• Loop dependences guide vectorization
• Statements not data dependent on each other can be reordered, executed in

parallel, or coalesced into a vector operation

A statement inside a loop which is not in a cycle of the dependence
graph can be vectorized

for (i=0; i<n; i++) {
a[i] = b[i] + 1;

}

a[0:n-1] = b[0:n-1] + 1;

CS 610 Swarnendu Biswas

Data dependences and vectorization

• Main idea: A statement inside a loop which is not in a cycle of the dependence

graph can be vectorized.

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}

S1

S1

S2

1

a[1:n] = b[1:n] + 1;
c[1:n] = a[0:n-1] + 2;

S2

Data dependences and transformations

• When cycles are present, vectorization can be achieved by:

– Separating (distributing) the statements not in a cycle

– Removing dependences

– Freezing loops

– Changing the algorithm

Distributing

for (i=1; i<n; i++){
b[i] = b[i] + c[i];
a[i] = a[i-1]*a[i-2]+b[i];
c[i] = a[i] + 1;

}

S1
S2
S3

S1

S2

S3

b[1:n-1] = b[1:n-1] + c[1:n-1];
for (i=1; i<n; i++){

a[i] = a[i-1]*a[i-2]+b[i];
}

c[1:n-1] = a[1:n-1] + 1;

Removing dependences

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

}

S1

S2

S1

S2

for (i=0; i<n; i++){
a’[i] = b[i] + 1;
c[i] = a’[i] + 2;

}
a=a’[n-1]

S1

S2

S1

S2

a’[0:n-1] = b[0:n-1] + 1;
c[0:n-1] = a’[0:n-1] + 2;
a=a’[n-1]

S1

S2

Freezing Loops

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j]+a[i-1][j];
}

}

S1

1,0

for (j=1; j<n; j++) {
a[i][j]=a[i][j]+a[i-1][j];

}

S1

Ignoring (freezing) the outer loop:

for (i=1; i<n; i++) {
a[i][1:n-1]=a[i][1:n-1]+a[i-1][1:n-1];

}

Changing the algorithm

• When there is a recurrence, it is necessary to change the algorithm in order to

vectorize.

• Compiler use pattern matching to identify the recurrence and then replace it with

a parallel version.

• Examples or recurrences include:

– Reductions (S+=A[i])

– Linear recurrences (A[i]=B[i]*A[i-1]+C[i])

– Boolean recurrences (if (A[i]>max) max = A[i])

Stripmining

• Stripmining is a simple transformation.

• It is typically used to improve locality.

for (i=1; i<n; i++){
…

}

/* n is a multiple of q */
for (k=1; k<n; k+=q){

for (i=k; i<k+q-1; i++){
…
}

}

Stripmining (cont.)

• Stripmining is often used when vectorizing
for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

for (i=1; i<n; i+=q){
a[i:i+q-1] = b[i:i+q-1] + 1;
c[i:i+q-1] = a[i:i+q] + 2;

}

for (k=1; k<n; k+=q){
/* q could be size of vector register */
for (i=k; i < k+q; i++){

a[i] = b[i] + 1;
c[i] = a[i-1] + 2;

}
}

stripmine

vectorize

Loop Vectorization

• Loop Vectorization is not always a legal and profitable

transformation.

• Compiler needs:

– Compute the dependences

• The compiler figures out dependences by

– Solving a system of (integer) equations (with constraints)

– Demonstrating that there is no solution to the system of equations

– Remove cycles in the dependence graph

– Determine data alignment

– Vectorization is profitable

Loop Vectorization

• When vectorizing a loop with several statements the compiler need to strip-

mine the loop and then apply loop distribution

for (i=0; i<LEN; i++){
a[i]=b[i]+(float)1.0;
c[i]=b[i]+(float)2.0;

}

S1

S2

for (i=0; i<LEN; i+=strip_size){
for (j=i; j<i+strip_size; j++)

a[j]=b[j]+(float)1.0;
for (j=i; j<i+strip_size; j++)

c[j]=b[j]+(float)2.0;
}

S2 S2S2S2 S2 S2S2S2

S1 S1S1S1

i=0 i=1 i=2 i=3

S1 S1S1S1

i=4 i=5 i=6 i=7

Loop Vectorization

• When vectorizing a loop with several statements the compiler need to strip-

mine the loop and then apply loop distribution

for (i=0; i<LEN; i++){
a[i]=b[i]+(float)1.0;
c[i]=b[i]+(float)2.0;

}

S1

S2

for (i=0; i<LEN; i+=strip_size){
for (j=i; j<i+strip_size; j++)

a[j]=b[j]+(float)1.0;
for (j=i; j<i+strip_size; j++)

c[j]=b[j]+(float)2.0;
}

S2 S2S2S2 S2 S2S2S2

S1 S1S1S1

i=0 i=1 i=2 i=3

S1 S1S1S1

i=4 i=5 i=6 i=7

Loop Vectorization

• When vectorizing a loop with several statements the compiler need to strip-

mine the loop and then apply loop distribution

for (i=0; i<LEN; i++){
a[i]=b[i]+(float)1.0;
c[i]=b[i]+(float)2.0;

}

S1

S2

for (i=0; i<LEN; i+=strip_size){
for (j=i; j<i+strip_size; j++)

a[j]=b[j]+(float)1.0;
for (j=i; j<i+strip_size; j++)

c[j]=b[j]+(float)2.0;
}

S2 S2S2S2 S2 S2S2S2

S1 S1S1S1

i=0 i=1 i=2 i=3

S1 S1S1S1

i=4 i=5 i=6 i=7

Loop Vectorization

• When vectorizing a loop with several statements the compiler need to strip-

mine the loop and then apply loop distribution

for (i=0; i<LEN; i++){
a[i]=b[i]+(float)1.0;
c[i]=b[i]+(float)2.0;

}

S1

S2

for (i=0; i<LEN; i+=strip_size){
for (j=i; j<i+strip_size; j++)

a[j]=b[j]+(float)1.0;
for (j=i; j<i+strip_size; j++)

c[j]=b[j]+(float)2.0;
}

S2 S2S2S2 S2 S2S2S2

S1 S1S1S1

i=0 i=1 i=2 i=3

S1 S1S1S1

i=4 i=5 i=6 i=7

Loop Vectorization

• When vectorizing a loop with several statements the compiler need to strip-

mine the loop and then apply loop distribution

for (i=0; i<LEN; i++){
a[i]=b[i]+(float)1.0;
c[i]=b[i]+(float)2.0;

}

S1

S2

for (i=0; i<LEN; i+=strip_size){
for (j=i; j<i+strip_size; j++)

a[j]=b[j]+(float)1.0;
for (j=i; j<i+strip_size; j++)

c[j]=b[j]+(float)2.0;
}

S2 S2S2S2 S2 S2S2S2

S1 S1S1S1

i=0 i=1 i=2 i=3

S1 S1S1S1

i=4 i=5 i=6 i=7

Dependence Graphs and Compiler

Vectorization
• No dependences: previous two slides

• Acyclic graphs:

– All dependences are forward:

• Vectorized by the compiler

– Some backward dependences:

• Sometimes vectorized by the compiler

• Cycles in the dependence graph

– Self-antidependence:

• Vectorized by the compiler

– Recurrence:

• Usually not vectorized by the the compiler

– Other examples

Acyclic Dependence Graphs:

Forward Dependences

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i] + (float) 1.0;

}

S1
S2

S1

S2

forward

dependence

S1

S2

S1

S2

S1

S2

S1

S2

i=0 i=1 i=2 i=3

Acyclic Dependence Graphs:

Forward Dependences

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i] + (float) 1.0;

}

S1
S2

S1

S2

forward

dependence

S1

S2

S1

S2

S1

S2

S1

S2

i=0 i=1 i=2 i=3

Acyclic Dependence Graphs:

Forward Dependences

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i] + (float) 1.0;

}

S1
S2

S1

S2

forward

dependence

S1

S2

S1

S2

S1

S2

S1

S2

i=0 i=1 i=2 i=3

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i] + (float) 1.0;

}

Intel Nehalem

Compiler report: Loop was

vectorized

Exec. Time scalar code: 10.2

Exec. Time vector code: 6.3

Speedup: 1.6

S113

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.1

Exec. Time vector code: 1.5

Speedup: 2.0

Acyclic Dependence Graphs:

Forward Dependences

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i+1] + (float) 1.0;

}

S1

S2

S1

S2 backward

dependence

S1: a[0] = b[0] + c[0]

S2: d[0] = a[1] + 1

S1: a[1] = b[0] + c[0]

S2: d[1] = a[2] + 1

i=0

i=1

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized as it is

Acyclic Dependenden Graphs

Backward Dependences (I)

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i+1] + (float) 1.0;

}

S1

S2

S1

S2 backward

dependence

S1: a[0] = b[0] + c[0]

S2: d[0] = a[1] + 1

S1: a[1] = b[0] + c[0]

S2: d[1] = a[2] + 1

i=0

i=1

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized as it is

Acyclic Dependenden Graphs

Backward Dependences (I)

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i+1] + (float) 1.0;

}

S1

S2

S1

S2 backward

dependence

S1: a[0] = b[0] + c[0]

S2: d[0] = a[1] + 1

S1: a[1] = b[0] + c[0]

S2: d[1] = a[2] + 1

i=0

i=1

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized as it is

Acyclic Dependenden Graphs

Backward Dependences (I)

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i+1] + (float) 1.0;

}

S1
S2

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];

}

S2
S1

S1

S2

backward

dependence

S2

S1

forward

dependence

Acyclic Dependenden Graphs

Backward Dependences (I)

S1

S2

S1

S2

S1

S2

S2

S1

S2

S1

S2

S1

Reorder of statements

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i];
d[i] = a[i+1]+(float)1.0;

}

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];

}

S114 S114_1

S114 S114_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 12.6

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was vectorized

Exec. Time scalar code: 10.7

Exec. Time vector code: 6.2

Speedup: 1.72

Speedup vs non-reordered code:2.03

Acyclic Dependenden Graphs

Backward Dependences (I)

S1

S2

S1

S2

S114 S114_1

S114 S114_1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 1.2

Exec. Time vector code: 0.6

Speedup: 2.0

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 1.2

Exec. Time vector code: 0.6

Speedup: 2.0

The IBM XLC compiler generated the same code in both cases

Acyclic Dependenden Graphs

Backward Dependences (I)

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i];
d[i] = a[i+1]+(float)1.0;

}

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];

}

for (int i = 1; i < LEN; i++) {
a[i] = d[i-1] + (float)sqrt(c[i]);
d[i] = b[i] + (float)sqrt(e[i]);

}

S1

S2

S1

S2 backward

dependence

S1: a[1] = d[0] + sqrt(c[1])

S2: d[1] = b[1] + sqrt(e[1])

S1: a[2] = d[1] + sqrt(c[2])

S2: d[2] = b[2] + sqrt(e[2])

i=1

i=2

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized as it is

Acyclic Dependenden Graphs

Backward Dependences (II)

for (int i = 1; i < LEN; i++) {
a[i] = d[i-1] + (float)sqrt(c[i]);
d[i] = b[i] + (float)sqrt(e[i]);

}

S1

S2

S1

S2 backward

dependence

S1: a[1] = d[0] + sqrt(c[1])

S2: d[1] = b[1] + sqrt(e[1])

S1: a[2] = d[1] + sqrt(c[2])

S2: d[2] = b[2] + sqrt(e[2])

i=1

i=2

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized as it is

Acyclic Dependenden Graphs

Backward Dependences (II)

for (int i = 1; i < LEN; i++) {
a[i] = d[i-1] + (float)sqrt(c[i]);
d[i] = b[i] + (float)sqrt(e[i]);

}

S1

S2

S1

S2 backward

dependence

S1: a[1] = d[0] + sqrt(c[1])

S2: d[1] = b[1] + sqrt(e[1])

S1: a[2] = d[1] + sqrt(c[2])

S2: d[2] = b[2] + sqrt(e[2])

i=1

i=2

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized as it is

Acyclic Dependenden Graphs

Backward Dependences (II)

S214 S214_1

S114 S114_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 7.6

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was vectorized

Exec. Time scalar code: 7.6

Exec. Time vector code: 3.8

Speedup: 2.0

Acyclic Dependenden Graphs

Backward Dependences (II)

S1

S2

S1

S2

for (int i=1;i<LEN;i++) {
a[i]=d[i-1]+(float)sqrt(c[i]);
d[i]=b[i]+(float)sqrt(e[i]);

}

for (int i=1;i<LEN;i++) {
d[i]=b[i]+(float)sqrt(e[i]);
a[i]=d[i-1]+(float)sqrt(c[i]);

}

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i];
d[i] = a[i+1]+(float)1.0;

}

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];

}

S114 S114_1

S114 S114_1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.3

Exec. Time vector code: 1.8

Speedup: 1.8

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.3

Exec. Time vector code: 1.8

Speedup: 1.8

The IBM XLC compiler generated the same code in both cases

Acyclic Dependenden Graphs

Backward Dependences (II)

Cycles in the DG (I)

S1

S2

for (int i=0;i<LEN-1;i++){
b[i] = a[i] + (float) 1.0;
a[i+1] = b[i] + (float) 2.0;

}

S1
S2

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized (as it is)

Statements cannot be simply reordered

Cycles in the DG (I)

S1

S2

for (int i=0;i<LEN-1;i++){
b[i] = a[i] + (float) 1.0;
a[i+1] = b[i] + (float) 2.0;

}

S1
S2

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized (as it is)

Statements cannot be simply reordered

Cycles in the DG (I)

S1

S2

for (int i=0;i<LEN-1;i++){
b[i] = a[i] + (float) 1.0;
a[i+1] = b[i] + (float) 2.0;

}

S1
S2

S1

S2

S1

S2

S1

S2

S1

S2

This loop cannot be vectorized (as it is)

Statements cannot be simply reordered

for (int i=0;i<LEN-1;i++){
b[i] = a[i] + (float) 1.0;
a[i+1] = b[i] + (float) 2.0;

}

S115

S115

Intel Nehalem

Compiler report: Loop was not vectorized.

Existence of vector dependence

Exec. Time scalar code: 12.1

Exec. Time vector code: --

Speedup: --

Cycles in the DG (I)

for (int i=0;i<LEN-1;i++){
b[i] = a[i] + (float) 1.0;
a[i+1] = b[i] + (float) 2.0;

}

S115

S115

IBM Power 7

Compiler report: Loop was SIMD vectorized

Exec. Time scalar code: 3.1

Exec. Time vector code: 2.2

Speedup: 1.4

Cycles in the DG (I)

for (int i=0;i<LEN-1;i++)
a[i+1]=a[i]+(float)1.0+(float)2.0;

for (int i=0;i<LEN-1;i++)
b[i] = a[i] + (float) 1.0;

compiler generated code

for (int i=0;i<LEN-1;i++){
b[i] = a[i] + (float) 1.0;
a[i+1] = b[i] + (float) 2.0;

}

S115

The IBM XLC compiler applies

forward substitution and reordering

to vectorize the code

This loop is

not vectorized

This loop is

vectorized

b[i]

S1

S2

S1

S2

Cycles in the DG (I)

for (int i=0;i<LEN-1;i++){
b[i] =a[i]+(float)1.0;
a[i+1]=b[i]+(float)2.0;

}

S115 S215

for (int i=0;i<LEN-1;i++){
b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i];
a[i+1]=b[i]+(float)2.0;

}

Will the IBM XLC compiler

vectorize this code as before?

Cycles in the DG (I)

for (int i=0;i<LEN-1;i++)
a[i+1]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float)2.0;

for (int i=0;i<LEN-1;i++)
b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float) 1.0;

To vectorize, the compiler needs to do this

for (int i=0;i<LEN-1;i++){
b[i] =a[i]+(float)1.0;
a[i+1]=b[i]+(float)2.0;

}

S115 S215

for (int i=0;i<LEN-1;i++){
b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i];
a[i+1]=b[i]+(float)2.0;

}

Will the IBM XLC compiler

vectorize this code as before?

Cycles in the DG (I)

for (int i=0;i<LEN-1;i++)
a[i+1]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float)2.0;

for (int i=0;i<LEN-1;i++)
b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float) 1.0;

for (int i=0;i<LEN-1;i++){
b[i] =a[i]+(float)1.0;
a[i+1]=b[i]+(float)2.0;

}

S115 S215

for (int i=0;i<LEN-1;i++){
b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i];
a[i+1]=b[i]+(float)2.0;

}

Will the IBM XLC compiler

vectorize this code as before?

No, the compiler does not

vectorize S215 because

it is not cost-effective

Cycles in the DG (I)

S1

S2

for (int i=1;i<LEN;i++){
a[i] = b[i] + c[i];
d[i] = a[i] + e[i-1];
e[i] = d[i] + c[i];

}

S1
S2

A loop can be partially vectorized

S3

S3

S1 can be vectorized

S2 and S3 cannot be vectorized (as they are)

Cycles in the DG (II)

for (int i=1;i<LEN;i++){
a[i] = b[i] + c[i];
d[i] = a[i] + e[i-1];
e[i] = d[i] + c[i];

}

S116 S116

Intel Nehalem

Compiler report: Loop was

partially vectorized

Exec. Time scalar code: 14.7

Exec. Time vector code: 18.1

Speedup: 0.8

S116 S116

Cycles in the DG (II)

for (int i=1;i<LEN;i++){
a[i] = b[i] + c[i];
d[i] = a[i] + e[i-1];
e[i] = d[i] + c[i];

}

IBM Power 7

Compiler report: Loop was not

SIMD vectorized because a data

dependence prevents SIMD

vectorization

Exec. Time scalar code: 13.5

Exec. Time vector code: --

Speedup: --

for (int i=0;i<LEN-1;i++){
a[i]=a[i+1]+b[i];

}
S1

S1

for (int i=1;i<LEN;i++){
a[i]=a[i-1]+b[i];

}

S1

Self-antidependence

can be vectorized

Self true-dependence

can not vectorized

(as it is)

a[0]=a[1]+b[0]

a[1]=a[2]+b[1]

a[2]=a[3]+b[2]

a[3]=a[4]+b[3]

a[1]=a[0]+b[1]

a[2]=a[1]+b[2]

a[3]=a[2]+b[3]

a[4]=a[3]+b[4]

S1

87

Cycles in the DG (III)

for (int i=0;i<LEN-1;i++){
a[i]=a[i+1]+b[i];

}
S1

for (int i=1;i<LEN;i++){
a[i]=a[i-1]+b[i];

}
S1

88

S117 S118

Intel Nehalem

Compiler report: Loop was

vectorized

Exec. Time scalar code: 6.0

Exec. Time vector code: 2.7

Speedup: 2.2

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 7.2

Exec. Time vector code: --

Speedup: --

S117 S118

S1 S1

Cycles in the DG (III)

for (int i=0;i<LEN-1;i++){
a[i]=a[i+1]+b[i];

}
S1

for (int i=1;i<LEN;i++){
a[i]=a[i-1]+b[i];

}

S1

S117 S118

S117 S118

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 2.0

Exec. Time vector code: 1.0

Speedup: 2.0

IBM Power 7

Compiler report: : Loop was not

SIMD vectorized because a data

dependence prevents SIMD

vectorization

Exec. Time scalar code: 7.2

Exec. Time vector code: --

Speedup: --

S1 S1

Cycles in the DG (III)

for (int i=1;i<LEN;i++){
a[i]=a[i-1]+b[i];

}

S1

Self true-dependence

is not vectorized

a[1]=a[0]+b[1]

a[2]=a[1]+b[2]

a[3]=a[2]+b[3]

S1

This is also a self-true

dependence. But …

can it be vectorized?

S1

a[4] =a[0]+b[4]

a[5] =a[1]+b[5]

a[6] =a[2]+b[6]

a[7] =a[3]+b[7]

a[8] =a[4]+b[8]

a[9] =a[5]+b[9]

a[10]=a[6]+b[10]

a[11]=a[7]+b[11]

i=4

i=5

i=6

i=7

i=8

i=9

i=10

i=11

for (int i=4;i<LEN;i++){
a[i]=a[i-4]+b[i];

}

Cycles in the DG (IV)

4

1

for (int i=1;i<LEN;i++){
a[i]=a[i-1]+b[i];

}

S1

a[1]=a[0]+b[1]

a[2]=a[1]+b[2]

a[3]=a[2]+b[3]

S1

91

for (int i=4;i<LEN;i++){
a[i]=a[i-4]+b[i];

}

Yes, it can be vectorized because the

dependence distance is 4, which is the

number of iterations that the SIMD unit

can execute simultaneously.

S1

a[4] =a[0]+b[4]

a[5] =a[1]+b[5]

a[6] =a[2]+b[6]

a[7] =a[3]+b[7]

a[8] =a[4]+b[8]

a[9] =a[5]+b[9]

a[10]=a[6]+b[10]

a[11]=a[7]+b[11]

S1

S1

S1

S1

S1

S1

S1

S1

i=4

i=5

i=6

i=7

i=8

i=9

i=10

i=11

Self true-dependence

cannot be vectorized

4

1

Cycles in the DG (IV)

for (int i=4;i<LEN;i++){
a[i]=a[i-4]+b[i];

}

S119

Intel Nehalem

Compiler report: Loop was

vectorized

Exec. Time scalar code: 8.4

Exec. Time vector code: 3.9

Speedup: 2.1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 6.6

Exec. Time vector code: 1.8

Speedup: 3.7

Cycles in the DG (IV)

for (int i = 0; i < LEN-1; i++) {
for (int j = 0; j < LEN; j++)

a[i+1][j] = a[i][j] + b;
}

S1

Can this loop be vectorized?

i=0, j=0: a[1][0] = a[0][0] + b

j=1: a[1][1] = a[0][1] + b

j=2: a[1][2] = a[0][2] + b

i=1 j=0: a[2][0] = a[1][0] + b

j=1: a[2][1] = a[1][1] + b

j=2: a[2][2] = a[1][2] + b

S1

93

Cycles in the DG (V)

Can this loop be vectorized?

i=0, j=0: a[1][0] = a[0][0] + 1

j=1: a[1][1] = a[0][1] + 1

j=2: a[1][2] = a[0][2] + 1

i=1 j=0: a[2][0] = a[1][0] + 1

j=1: a[2][1] = a[1][1] + 1

j=2: a[2][2] = a[1][2] + 1

for (int i=0;i<LEN;i++){
a[i+1][0:LEN-1]=a[i][0:LEN-

1]+b;
}

Dependences occur in the outermost loop.

- outer loop runs serially

- inner loop can be vectorized

for (int i = 0; i < LEN-1; i++) {
for (int j = 0; j < LEN; j++)

a[i+1][j] = a[i][j] + (float) 1.0;
}

S1
S1

94

Cycles in the DG (V)

for (int i = 0; i < LEN-1; i++) {
for (int j = 0; j < LEN; j++)
a[i+1][j] = a[i][j] + 1;

}

95

S121

Intel Nehalem

Compiler report: Loop was

vectorized

Exec. Time scalar code: 11.6

Exec. Time vector code: 3.2

Speedup: 3.5

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.9

Exec. Time vector code: 1.8

Speedup: 2.1

Cycles in the DG (V)

for (int i=0;i<LEN;i++){
a[r[i]] = a[r[i]] * (float) 2.0;

}
S1

• Cycles can appear because the compiler does not know

if there are dependences

S1

S1

S1

S1

S1

S1

Compiler cannot resolve the system

To be safe, it considers that a data

dependence is possible for every

instance of S1

Is there a value of i such

that r[i’] = r[i], such that i’ ≠ i?

Cycles in the DG (VI)

S1

for (int i=0;i<LEN;i++){
r[i] = i;
a[r[i]] = a[r[i]]* (float) 2.0;

}

• The compiler is conservative.

• The compiler only vectorizes when it can prove that it is

safe to do it.

Does the compiler use the info that r[i] = i to compute

data dependences?

Cycles in the DG (VI)

for (int i=0;i<LEN;i++){
a[r[i]]=a[r[i]]*(float)2.0;

}

Does the compiler uses the info that

r[i] = i to compute data dependences?

S122

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 5.0

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Partial Loop was

vectorized

Exec. Time scalar code: 5.8

Exec. Time vector code: 5.7

Speedup: 1.01

for (int i=0;i<LEN;i++){
r[i] = i;
a[r[i]]=a[r[i]]*(float)2.0;

}

S123

S122 S123

Cycles in the DG (VI)

for (int i=0;i<LEN;i++){
a[r[i]]=a[r[i]]*(float)2.0;

}

Does the compiler uses the info that

r[i] = i to compute data dependences?

IBM Power 7

Compiler report: Loop was not

vectorized because a data

dependence prevents SIMD

vectorization

Exec. Time scalar code: 2.6

Exec. Time vector code: 2.3

Speedup: 1.1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 2.1

Exec. Time vector code: 0.9

Speedup: 2.3

for (int i=0;i<LEN;i++){
r[i] = i;
a[r[i]]=a[r[i]]*(float)2.0;

}

S122 S123

S122 S123

Cycles in the DG (VI)

Uses

forward

substitution

to vectorize

Dependence Graphs and Compiler

Vectorization
• No dependences: Vectorized by the compiler

• Acyclic graphs:

– All dependences are forward:

• Vectorized by the compiler

– Some backward dependences:

• Sometimes vectorized by the compiler

• Cycles in the dependence graph

– Self-antidependence:

• Vectorized by the compiler

– Recurrence:

• Usually not vectorized by the the compiler

– Other examples

Loop Transformations

• Compiler Directives

• Loop Distribution or loop fission

• Reordering Statements

• Node Splitting

• Scalar expansion

• Loop Peeling

• Loop Fusion

• Loop Unrolling

• Loop Interchanging

101

Compiler Directives (I)

• When the compiler does not vectorize automatically due to dependences the

programmer can inform the compiler that it is safe to vectorize:

#pragma ivdep (ICC compiler)

#pragma ibm independent_loop (XLC compiler)

Compiler Directives (I)

• This loop can be vectorized when k < -3 and k >= 0.

• Programmer knows that k>=0

for (int i=val;i<LEN-k;i++)
a[i]=a[i+k]+b[i];

a[0]=a[1]+b[0]

a[1]=a[2]+b[1]

a[2]=a[3]+b[2]

a[1]=a[0]+b[0]

a[2]=a[1]+b[1]

a[3]=a[2]+b[2]

k =-1

If (k >= 0) → no dependence

or self-anti-dependence

If (k <0) → self-true dependence

Can be vectorized
k =1

Cannot be vectorized

S1

S1

Compiler Directives (I)

• This loop can be vectorized when k < -3 and k >= 0.

• Programmer knows that k>=0

for (int i=val;i<LEN-k;i++)
a[i]=a[i+k]+b[i];

How can the programmer tell the compiler

that k >= 0?

Compiler Directives (I)

• This loop can be vectorized when k < -3 and k >= 0.

• Programmer knows that k>=0

#pragma ivdep

wrong results will be obtained if

loop is vectorized when -3 < k < 0

Intel ICC provides the #pragma ivdep to

tell the compiler that it is safe to ignore

unknown dependences

for (int i=val;i<LEN-k;i++)
a[i]=a[i+k]+b[i];

Compiler Directives (I)

for (int i=0;i<LEN-k;i++)

a[i]=a[i+k]+b[i];

S124 S124_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 6.0

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized

Exec. Time scalar code: 6.0

Exec. Time vector code: 2.4

Speedup: 2.5

S124 and S124_1 S124_2

if (k>=0)
#pragma ivdep

for (int i=0;i<LEN-k;i++)

a[i]=a[i+k]+b[i];
if (k<0)
for (int i=0);i<LEN-k;i++)

a[i]=a[i+k]+b[i];

if (k>=0)

for (int i=0;i<LEN-k;i++)

a[i]=a[i+k]+b[i];
if (k<0)
for (int i=0);i<LEN-k;i++)

a[i]=a[i+k]+b[i];

S124_2

Compiler Directives (I)

IBM Power 7

Compiler report: Loop was not

vectorized because a data

dependence prevents SIMD

vectorization

Exec. Time scalar code: 2.2

Exec. Time vector code: --

Speedup: --

#pragma ibm independent_loop

needs AIX OS (we ran the

experiments on Linux)

for (int i=0;i<LEN-k;i++)

a[i]=a[i+k]+b[i];

S124 S124_1

if (k>=0)

for (int i=0;i<LEN-k;i++)

a[i]=a[i+k]+b[i];
if (k<0)
for (int i=0);i<LEN-k;i++)

a[i]=a[i+k]+b[i];

S124_2

S124 and S124_1 S124_2

if (k>=0)
#pragma ibm independent_loop

for (int i=0;i<LEN-k;i++)

a[i]=a[i+k]+b[i];
if (k<0)
for (int i=0);i<LEN-k;i++)

a[i]=a[i+k]+b[i];

Compiler Directives (II)

• Programmer can disable vectorization of a loop when the when the vector

code runs slower than the scalar code

#pragma novector (ICC compiler)

#pragma nosimd (XLC compiler)

S1

S2

for (int i=1;i<LEN;i++){
a[i] = b[i] + c[i];
d[i] = a[i] + e[i-1];
e[i] = d[i] + c[i];

}

S1
S2

Vector code can run slower than scalar code

S3

S3

S1 can be vectorized

S2 and S3 cannot be vectorized (as they are)

Compiler Directives (II)

Less locality when

executing in vector mode

#pragma novector

S116

Intel Nehalem

Compiler report: Loop was

partially vectorized

Exec. Time scalar code: 14.7

Exec. Time vector code: 18.1

Speedup: 0.8

S116

Compiler Directives (II)

for (int i=1;i<LEN;i++){
a[i] = b[i] + c[i];
d[i] = a[i] + e[i-1];
e[i] = d[i] + c[i];

}

Loop Distribution

• It is also called loop fission.

• Divides loop control over different statements in the loop body.

for (i=1; i<LEN; i++) {
a[i]= (float)sqrt(b[i])+

(float)sqrt(c[i]);
dummy(a,b,c);

}

Loop Distribution

• It is also called loop fission.

• Divides loop control over different statements in the loop body.

for (i=1; i<LEN; i++) {
a[i]= (float)sqrt(b[i])+

(float)sqrt(c[i]);
dummy(a,b,c);

}

for (i=1; i<LEN; i++)
a[i]= (float)sqrt(b[i])+

(float)sqrt(c[i]);

for (i=1; i<LEN; i++)
dummy(a,b,c);

- Compiler cannot analyze the dummy function.

As a result, the compiler cannot apply loop distribution,

because it does not know if it is a legal transformation

- Programmer can apply loop distribution if legal.

Loop Distribution
S126 S126_1

Intel Nehalem

Compiler report: Loop was not

vectorized

Exec. Time scalar code: 4.3

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report:

- Loop 1 was vectorized.

- Loop 2 was not vectorized

Exec. Time scalar code: 5.1

Exec. Time vector code: 1.1

Speedup: 4.6

S126 S126_1

for (i=1; i<LEN; i++) {
a[i]= (float)sqrt(b[i])+

(float)sqrt(c[i]);
dummy(a,b,c);

}

for (i=1; i<LEN; i++)
a[i]= (float)sqrt(b[i])+

(float)sqrt(c[i]);
for (i=1; i<LEN; i++)

dummy(a,b,c);

Loop Distribution
S126 S126_1

S126 S126_1

IBM Power 7

Compiler report: Loop was not

SIMD vectorized

Exec. Time scalar code: 1.3

Exec. Time vector code: --

Speedup: --

IBM Power 7

Compiler report:

- Loop 1 was SIMD vectorized.

- Loop 2 was not SIMD vectorized

Exec. Time scalar code: 1.14

Exec. Time vector code: 1.0

Speedup: 1.14

for (i=1; i<LEN; i++) {
a[i]= (float)sqrt(b[i])+

(float)sqrt(c[i]);
dummy(a,b,c);

}

for (i=1; i<LEN; i++)
a[i]= (float)sqrt(b[i])+

(float)sqrt(c[i]);
for (i=1; i<LEN; i++)

dummy(a,b,c);

Reordering Statements

S1
S2

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i];
d[i] = a[i+1]+(float)1.0;

}

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];

}

S1
S2

S1

S2

backward

depedence

S1

S2

forward

depedence

Reordering Statements

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i];
d[i] = a[i+1]+(float)1.0;

}

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];

}

S114 S114_1

S114 S114_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 12.6

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 10.7

Exec. Time vector code: 6.2

Speedup: 1.7

Reordering Statements

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i];
d[i] = a[i+1]+(float)1.0;

}

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];

}

S114 S114_1

S114 S114_1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.3

Exec. Time vector code: 1.8

Speedup: 1.8

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.3

Exec. Time vector code: 1.8

Speedup: 1.8

The IBM XLC compiler generated the same code in both cases

Node Splitting

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;

}

S1
S2

for (int i=0;i<LEN-1;i++){
temp[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+temp[i])*(float) 0.5;

}

S1

S2

S1

S2

S0

S0
S1

S2

Node Splitting

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;

}

for (int i=0;i<LEN-1;i++){
temp[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+temp[i])*(float)0.5;

}

S126 S126_1

S126 S126_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 12.6

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 13.2

Exec. Time vector code: 9.7

Speedup: 1.3

Node Splitting

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;

}

S1
S2

for (int i=0;i<LEN-1;i++){
temp[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+temp[i])*(float) 0.5;

}

S1

S2

S0

S126 S126_1

S126 S126_1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.8

Exec. Time vector code: 1.7

Speedup: 2.2

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 5.1

Exec. Time vector code: 2.4

Speedup: 2.0

Scalar Expansion

for (int i=0;i<n;i++){
t = a[i];
a[i] = b[i];
b[i] = t;

}

S1
S2

S3

for (int i=0;i<n;i++){
t[i] = a[i];
a[i] = b[i];
b[i] = t[i];

}

S1

S2

S3

S1

S2

S3

S1

S2

S3

Scalar Expansion

for (int i=0;i<n;i++){
t = a[i];
a[i] = b[i];
b[i] = t;

}

for (int i=0;i<n;i++){
t[i] = a[i];
a[i] = b[i];
b[i] = t[i];

}

S139 S139_1

S139 S139_1

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 0.7

Exec. Time vector code: 0.4

Speedup: 1.5

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 0.7

Exec. Time vector code: 0.4

Speedup: 1.5

Scalar Expansion

for (int i=0;i<n;i++){
t = a[i];
a[i] = b[i];
b[i] = t;

}

for (int i=0;i<n;i++){
t[i] = a[i];
a[i] = b[i];
b[i] = t[i];

}

S139 S139_1

S139 S139_1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 0.28

Exec. Time vector code: 0.14

Speedup: 2

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 0.28

Exec. Time vector code: 0.14

Speedup: 2.0

• Remove the first/s or the last/s iteration of the loop into separate

code outside the loop

• It is always legal, provided that no additional iterations are

introduced.

• When the trip count of the loop is not constant the peeled loop has

to be protected with additional runtime tests.

• This transformation is useful to enforce a particular initial memory

alignment on array references prior to loop vectorization.

for (i=0; i<LEN; i++)
A[i] = B[i] + C[i];

A[0] = B[0] + C[0];
for (i=1; i<LEN; i++)

A[i] = B[i] + C[i];

124

Loop Peeling

• Remove the first/s or the last/s iteration of the loop into separate

code outside the loop

• It is always legal, provided that no additional iterations are

introduced.

• When the trip count of the loop is not constant the peeled loop has

to be protected with additional runtime tests.

• This transformation is useful to enforce a particular initial memory

alignment on array references prior to loop vectorization.

for (i=0; i<N; i++)
A[i] = B[i] + C[i];

if (N>=1)
A[0] = B[0] + C[0];

for (i=1; i<N; i++)
A[i] = B[i] + C[i];

Loop Peeling

Loop Peeling

for (int i=0;i<LEN;i++){
a[i] = a[i] + a[0];

}

S1

a[0]= a[0] + a[0];
for (int i=1;i<LEN;i++){

a[i] = a[i] + a[0]
}

a[0]=a[0]+a[0]

a[1]=a[1]+a[0]

a[2]=a[2]+a[0]

S1

Self true-dependence

is not vectorized

After loop peeling, there are no

dependences, and the loop can be

vectorized

Loop Peeling

for (int i=0;i<LEN;i++){
a[i] = a[i] + a[0];

}

S1

a[0]= a[0] + a[0];
for (int i=1;i<LEN;i++){

a[i] = a[i] + a[0]
}

S127 S127_1

S127 S127_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 6.7

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 6.6

Exec. Time vector code: 1.2

Speedup: 5.2

Loop Interchanging

• This transformation switches the positions of one loop that is tightly nested

within another loop.

for (i=0; i<LEN; i++)
for (j=0; j<LEN; j++)

A[i][j]=0.0;

for (j=0; j<LEN; j++)
for (i=0; i<LEN; i++)

A[i][j]=0.0;

129

A[1][1]=A[0][1] +1

A[2][1]=A[1][1] + 1

A[3][1]=A[2][1] + 1

A[2][2]=A[1][2] +1

A[3][2]=A[2][2] +1

A[3][3]=A[2][3] +1

Loop Interchanging

for (j=1; j<LEN; j++){
for (i=j; i<LEN; i++){

A[i][j]=A[i-1][j]+(float) 1.0;
}}

1 2 3

1

2

3

j

i

i=1

i=2

i=3

i=2

i=3

j=3 i=3

j=1

j=2

Inner loop cannot be vectorized

because of self-dependence

A[1][1]=A[0][1] +1

A[2][1]=A[1][1] + 1

A[2][2]=A[1][2] + 1

A[3][1]=A[2][1] +1

A[3][2]=A[2][2] +1

A[3][3]=A[2][3] +1

Loop Interchanging

for (i=1; i<LEN; i++){
for (j=1; j<i+1; j++){

A[i][j]=A[i-1][j]+(float) 1.0;
}}

1 2 3

1

2

3

j

i

i=1

i=3

j=1

j=1

j=2

j=1

j=2

j=3

i=2

Loop interchange is legal

No dependences in inner loop

Loop Interchanging

133

S228 S228_1

S228 S228_1

Intel Nehalem

Compiler report: Loop was not

vectorized.

Exec. Time scalar code: 2.3

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 0.6

Exec. Time vector code: 0.2

Speedup: 3

for (j=1; j<LEN; j++){
for (i=j; i<LEN; i++){

A[i][j]=A[i-1][j]+(float)1.0;
}}

for (i=1; i<LEN; i++){
for (j=1; j<i+1; j++){

A[i][j]=A[i-1][j]+(float)1.0;
}}

Loop Interchanging

134

S228 S228_1

S228 S228_1

IBM Power 7

Compiler report: Loop was not

SIMD vectorized

Exec. Time scalar code: 0.5

Exec. Time vector code: --

Speedup: --

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 0.2

Exec. Time vector code: 0.14

Speedup: 1.42

for (j=1; j<LEN; j++){
for (i=j; i<LEN; i++){

A[i][j]=A[i-1][j]+(float)1.0;
}}

for (i=1; i<LEN; i++){
for (j=1; j<i+1; j++){

A[i][j]=A[i-1][j]+(float)1.0;
}}

Outline

1. Intro

2. Data Dependences (Definition)

3. Overcoming limitations to SIMD-Vectorization

– Data Dependences

• Reductions

– Data Alignment

– Aliasing

– Non-unit strides

– Conditional Statements

4. Vectorization using intrinsics

Reductions

x = a[0];
index = 0;
for (int i=0;i<LEN;++i){

if (a[i] > x) {
x = a[i];
index = i;

}}

sum = 0;
for (int i=0;i<LEN;++i){

sum += a[i];
}

S1

Sum Reduction Max Loc Reduction

• Reduction is an operation, such as addition, which is applied to
the elements of an array to produce a result of a lesser rank.

Reductions

x = a[0];
index = 0;
for (int i=0;i<LEN;++i){

if (a[i] > x) {
x = a[i];
index = i;

}}

sum = 0;
for (int i=0;i<LEN;++i){

sum+= a[i];
}

S131 S132

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 5.2

Exec. Time vector code: 1.2

Speedup: 4.1

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 9.6

Exec. Time vector code: 2.4

Speedup: 3.9

S131 S132

Reductions

x = a[0];
index = 0;
for (int i=0;i<LEN;++i){

if (a[i] > x) {
x = a[i];
index = i;

}}

sum = 0;
for (int i=0;i<LEN;++i){

sum+= a[i];
}

S131 S132

S131 S132

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 1.1

Exec. Time vector code: 0.4

Speedup: 2.4

IBM Power 7

Compiler report: Loop was not

SIMD vectorized

Exec. Time scalar code: 4.4

Exec. Time vector code: --

Speedup: --

Outline

1. Intro

2. Data Dependences (Definition)

3. Overcoming limitations to SIMD-Vectorization

– Data Dependences

• Induction variables

– Data Alignment

– Aliasing

– Non-unit strides

– Conditional Statements

4. Vectorization with intrinsics

Induction variables

• Induction variable is a variable that can be expressed as
a function of the loop iteration variable

float s = (float)0.0;
for (int i=0;i<LEN;i++){

s += (float)2.;
a[i] = s * b[i];

}

Induction variables

• Induction variable is a variable that can be expressed as
a function of the loop iteration variable

for (int i=0;i<LEN;i++){
a[i] = (float)2.*(i+1)*b[i];

}

S1

S2

float s = (float)0.0;
for (int i=0;i<LEN;i++){

s += (float)2.;
a[i] = s * b[i];

}

Induction variables

for (int i=0;i<LEN;i++){
a[i] = (float)2.*(i+1)*b[i];

}

float s = (float)0.0;
for (int i=0;i<LEN;i++){

s += (float)2.;
a[i] = s * b[i];

}

S133 S133_1

S133 S133_1

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 6.1

Exec. Time vector code: 1.9

Speedup: 3.1

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 8.4

Exec. Time vector code: 1.9

Speedup: 4.2

The Intel ICC compiler generated the same vector code in both cases

Induction variables

for (int i=0;i<LEN;i++){
a[i] = (float)2.*(i+1)*b[i];

}

float s = (float)0.0;
for (int i=0;i<LEN;i++){

s += (float)2.;
a[i] = s * b[i];

}

S133 S133_1

S133 S133_1

IBM Power 7

Compiler report: Loop was not

SIMD vectorized

Exec. Time scalar code: 2.7

Exec. Time vector code: --

Speedup: --

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.7

Exec. Time vector code: 1.4

Speedup: 2.6

Induction Variables

• Coding style matters:

for (int i=0;i<LEN;i++) {
*a = *b + *c;
a++; b++; c++;

}

for (int i=0;i<LEN;i++){
a[i] = b[i] + c[i];

}

These codes are equivalent, but …

Induction Variables

for (int i=0;i<LEN;i++) {
*a = *b + *c;
a++; b++; c++;

}

for (int i=0;i<LEN;i++){
a[i] = b[i] + c[i];

}

S134 S134_1

S134 S134_1

Intel Nehalem

Compiler report: Loop was not

vectorized.

Exec. Time scalar code: 5.5

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 6.1

Exec. Time vector code: 3.2

Speedup: 1.8

Induction Variables

for (int i=0;i<LEN;i++) {
*a = *b + *c;
a++; b++; c++;

}

for (int i=0;i<LEN;i++){
a[i] = b[i] + c[i];

}

S134 S134_1

S134 S134_1

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 2.2

Exec. Time vector code: 1.0

Speedup: 2.2

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 2.2

Exec. Time vector code: 1.0

Speedup: 2.2

The IBM XLC compiler generated the same code in both cases

Outline

1. Intro

2. Data Dependences (Definition)

3. Overcoming limitations to SIMD-Vectorization

– Data Dependences

– Data Alignment

– Aliasing

– Non-unit strides

– Conditional Statements

4. Vectorization with intrinsics

Data Alignment

• Vector loads/stores load/store 128 consecutive bits to a vector

register.

• Data addresses need to be 16-byte (128 bits) aligned to be

loaded/stored

- Intel platforms support aligned and unaligned load/stores

- IBM platforms do not support unaligned load/stores

void test1(float *a,float *b,float *c) {
for (int i=0;i<LEN;i++){
a[i] = b[i] + c[i];

}

b

0 1 2 3

Is &b[0] 16-byte aligned?

vector load loads b[0] … b[3]

Why data alignment may improve efficiency

• Vector load/store from aligned

data requires one memory

access

• Vector load/store from

unaligned data requires

multiple memory accesses and

some shift operations
Reading 4 bytes from address 1

requires two loads

Data Alignment

• To know if a pointer is 16-byte aligned, the last

digit of the pointer address in hex must be 0.

• Note that if &b[0] is 16-byte aligned, and is a

single precision array, then &b[4] is also 16-byte

aligned

Output:

0x7fff1e9d8580, 0x7fff1e9d8590

__attribute__ ((aligned(16))) float B[1024];

int main(){
printf("%p, %p\n", &B[0], &B[4]);

}

Data Alignment

• In many cases, the compiler cannot statically know the

alignment of the address in a pointer

• The compiler assumes that the base address of the

pointer is 16-byte aligned and adds a run-time checks for it

– if the runtime check is false, then it uses another code

(which may be scalar)

Data Alignment

• Manual 16-byte alignment can be achieved by forcing

the base address to be a multiple of 16.

__attribute__ ((aligned(16))) float b[N];
float* a = (float*) memalign(16,N*sizeof(float));

• When the pointer is passed to a function, the compiler should be aware of

where the 16-byte aligned address of the array starts.

void func1(float *a, float *b,
float *c) {

__assume_aligned(a, 16);
__assume_aligned(b, 16);
__assume_aligned(c, 16);

for int (i=0; i<LEN; i++) {
a[i] = b[i] + c[i];

}

Data Alignment - Example

float A[N] __attribute__((aligned(16)));
float B[N] __attribute__((aligned(16)));
float C[N] __attribute__((aligned(16)));

void test(){
for (int i = 0; i < N; i++){
C[i] = A[i] + B[i];

}}

Data Alignment - Example

float A[N] __attribute__((aligned(16)));
float B[N] __attribute__((aligned(16)));
float C[N] __attribute__((aligned(16)));

void test1(){
__m128 rA, rB, rC;
for (int i = 0; i < N; i+=4){
rA = _mm_load_ps(&A[i]);
rB = _mm_load_ps(&B[i]);
rC = _mm_add_ps(rA,rB);
_mm_store_ps(&C[i], rC);

}}

void test2(){
__m128 rA, rB, rC;
for (int i = 0; i < N; i+=4){
rA = _mm_loadu_ps(&A[i]);
rB = _mm_loadu_ps(&B[i]);
rC = _mm_add_ps(rA,rB);
_mm_storeu_ps(&C[i], rC);

}}

void test3(){
__m128 rA, rB, rC;
for (int i = 1; i < N-3; i+=4){
rA = _mm_loadu_ps(&A[i]);
rB = _mm_loadu_ps(&B[i]);
rC = _mm_add_ps(rA,rB);
_mm_storeu_ps(&C[i], rC);

}}

Nanosecond per iteration

Core 2 Duo Intel i7 Power 7

Aligned 0.577 0.580 0.156

Aligned (unaligned ld) 0.689 0.581 0.241

Unaligned 2.176 0.629 0.243

Alignment in a struct

• Arrays B and D are not 16-bytes aligned (see the

address)

struct st{
char A;
int B[64];
float C;
int D[64];

};

int main(){
st s1;
printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);}

Output:

0x7fffe6765f00, 0x7fffe6765f04, 0x7fffe6766004, 0x7fffe6766008

Alignment in a struct

• Arrays B and D are aligned to 16-bytes (notice

the 0 in the 4 least significant bits of the address)

• Compiler automatically does padding

struct st{
char A;
int B[64] __attribute__ ((aligned(16)));
float C;
int D[64] __attribute__ ((aligned(16)));

};

int main(){
st s1;
printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);}

Output:

0x7fff1e9d8580, 0x7fff1e9d8590, 0x7fff1e9d8690, 0x7fff1e9d86a0

Outline

1. Intro

2. Data Dependences (Definition)

3. Overcoming limitations to SIMD-Vectorization

– Data Dependences

– Data Alignment

– Aliasing

– Non-unit strides

– Conditional Statements

4. Vectorization with intrinsics

Aliasing

• Can the compiler vectorize this loop?

void func1(float *a,float *b, float *c){
for (int i = 0; i < LEN; i++) {

a[i] = b[i] + c[i];
}

Aliasing

• Can the compiler vectorize this loop?

void func1(float *a,float *b, float *c)
{

for (int i = 0; i < LEN; i++)
a[i] = b[i] + c[i];

}

float* a = &b[1];

…

b[1]= b[0] + c[0]

b[2] = b[1] + c[1]

Aliasing

• Can the compiler vectorize this loop?

void func1(float *a,float *b, float *c)
{

for (int i = 0; i < LEN; i++)
a[i] = b[i] + c[i];

}

float* a = &b[1];

…

a and b are aliasing

There is a self-true dependence

Vectorizing this loop would

be illegal

void func1(float *a, float *b, float *c){
for (int i=0; i<LEN; i++)
a[i] = b[i] + c[i];

}

• To vectorize, the compiler needs to guarantee that the pointers are not
aliased.

• When the compiler does not know if two pointer are alias, it still vectorizes,
but needs to add up-to 𝑂 𝑛2 run-time checks, where n is the number of
pointers

When the number of pointers is large, the compiler may decide to not
vectorize

Aliasing

Aliasing

• Two solutions can be used to avoid the run-time

checks

1. static and global arrays

2. __restrict__ attribute

Aliasing

1. Static and Global arrays
__attribute__ ((aligned(16))) float a[LEN];
__attribute__ ((aligned(16))) float b[LEN];
__attribute__ ((aligned(16))) float c[LEN];

void func1(){
for (int i=0; i<LEN; i++)

a[i] = b[i] + c[i];
}

int main() {
…

func1();
}

Aliasing

1. __restrict__ keyword
void func1(float* __restrict__ a,float* __restrict__ b,
float* __restrict__ c) {

__assume_aligned(a, 16);
__assume_aligned(b, 16);
__assume_aligned(c, 16);
for int (i=0; i<LEN; i++)

a[i] = b[i] + c[i];
}

int main() {
float* a=(float*) memalign(16,LEN*sizeof(float));
float* b=(float*) memalign(16,LEN*sizeof(float));
float* c=(float*) memalign(16,LEN*sizeof(float));
…
func1(a,b,c);

}

Aliasing – Multidimensional

arrays

• Example with 2D arrays: pointer-to-pointer declaration.

void func1(float** __restrict__ a,float**
__restrict__ b, float** __restrict__ c) {
for (int i=0; i<LEN; i++)

for (int j=1; j<LEN; j++)
a[i][j] = b[i][j-1] * c[i][j];

}

Aliasing – Multidimensional arrays

• Example with 2D arrays: pointer-to-pointer declaration.
void func1(float** __restrict__ a,float** __restrict__
b, float** __restrict__ c) {
for (int i=0; i<LEN; i++)

for (int j=1; j<LEN; j++)
a[i][j] = b[i][j-1] * c[i][j];

}

c c[0]

c[1]

c[2]

c[3]

c[0][0] c[0][1] …

c[1][0] c[1][1] …

c[2][0] c[2][1] …

c[3][0] c[3][1] …

__restrict__ only qualifies

the first dereferencing of c;

Nothing is said about the

arrays that can be accessed

through c[i]

Aliasing – Multidimensional arrays

• Example with 2D arrays: pointer-to-pointer declaration.
void func1(float** __restrict__ a,float** __restrict__
b, float** __restrict__ c) {
for (int i=0; i<LEN; i++)

for (int j=1; j<LEN; j++)
a[i][j] = b[i][j-1] * c[i][j];

}

c c[0]

c[1]

c[2]

c[3]

c[0][0] c[0][1] …

c[1][0] c[1][1] …

c[2][0] c[2][1] …

c[3][0] c[3][1] …

__restrict__ only qualifies

the first dereferencing of c;

Nothing is said about the

arrays that can be accessed

through c[i]

Intel ICC compiler, version 11.1 will vectorize this code.

Previous versions of the Intel compiler or compilers from

other vendors, such as IBM XLC, will not vectorize it.

Aliasing – Multidemensional

Arrays
• Three solutions when __restrict__ does not enable

vectorization

1. Static and global arrays

2. Linearize the arrays and use __restrict__ keyword

3. Use compiler directives

Aliasing – Multidimensional

arrays

1. Static and Global declaration

__attribute__ ((aligned(16))) float a[N][N];
void t(){

a[i][j]….
}

int main() {

…
t();

}

Aliasing – Multidimensional

arrays

2. Linearize the arrays

void t(float* __restrict__ A){
//Access to Element A[i][j] is now A[i*128+j]
….

}

int main() {
float* A = (float*) memalign(16,128*128*sizeof(float));
…
t(A);

}

Aliasing – Multidimensional

arrays

3. Use compiler directives:

#pragma ivdep (Intel ICC)

#pragma disjoint(IBM XLC)

void func1(float **a, float **b, float **c) {
for (int i=0; i<m; i++) {

for (int j=0; j<LEN; j++)
c[i][j] = b[i][j] * a[i][j];

}}

#pragma ivdep

Outline

1. Intro

2. Data Dependences (Definition)

3. Overcoming limitations to SIMD-Vectorization

– Data Dependences

– Data Alignment

– Aliasing

– Non-unit strides

– Conditional Statements

4. Vectorization with intrinsics

Non-unit Stride – Example I

• Array of a struct

typedef struct{int x, y, z}
point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0
x1 y1

z1 x2 y2
z2 x3 y3

z3

pt[0] pt[1] pt[2] pt[3]

Non-unit Stride – Example I

• Array of a struct

typedef struct{int x, y, z}
point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0
x1 y1

z1 x2 y2
z2

vector load vector load

x3 y3
z3

vector load

pt[0] pt[1] pt[2] pt[3]

Non-unit Stride – Example I

• Array of a struct

typedef struct{int x, y, z}
point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0
x1 y1

z1 x2 y2
z2

vector load

vector register

(I need)

y0 y1 y2

vector load

y3

x3 y3
z3

vector load

Non-unit Stride – Example I

• Array of a struct

typedef struct{int x, y, z}
point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

point pt[N] x0 y0 z0 x1 y1 z1 x2 y2 z2

vector load

vector register

(I need)

y0 y1 y2

vector load

y3

int ptx[LEN], int pty[LEN],
int ptz[LEN];

for (int i=0; i<LEN; i++) {
pty[i] *= scale;

}

• Arrays

y0 y1 y3 y4
y5 y6 y7

y0 y1 y2 y3

y2

vector load vector load

Non-unit Stride – Example I

typedef struct{int x, y, z}
point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

int ptx[LEN], int pty[LEN],
int ptz[LEN];

for (int i=0; i<LEN; i++) {
pty[i] *= scale;

}

S135 S135_1

S135 S135_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Vectorization possible

but seems inefficient

Exec. Time scalar code: 6.8

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 4.8

Exec. Time vector code: 1.3

Speedup: 3.7

Non-unit Stride – Example I

typedef struct{int x, y, z}
point;
point pt[LEN];

for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

int ptx[LEN], int pty[LEN],
int ptz[LEN];

for (int i=0; i<LEN; i++) {
pty[i] *= scale;

}

S135 S135_1

S135 S135_1

IBM Power 7

Compiler report: Loop was not

SIMD vectorized because it is not

profitable to vectorize

Exec. Time scalar code: 2.0

Exec. Time vector code: --

Speedup: --

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 1.8

Exec. Time vector code: 1.5

Speedup: 1.2

Outline

1. Intro

2. Data Dependences (Definition)

3. Overcoming limitations to SIMD-Vectorization

– Data Dependences

– Data Alignment

– Aliasing

– Non-unit strides

– Conditional Statements

4. Vectorization with intrinsics

#pragma vector always
for (int i = 0; i < LEN; i++){
if (c[i] < (float) 0.0)
a[i] = a[i] * b[i] + d[i];

}

Conditional Statements – I

• Loops with conditions need #pragma vector always

– Since the compiler does not know if vectorization will be

profitable

– The condition may prevent from an exception

for (int i = 0; i < LEN; i++){
if (c[i] < (float) 0.0)

a[i] = a[i] * b[i] + d[i];
}

Conditional Statements – I
S137 S137_1

S137 S137_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Condition may protect

exception

Exec. Time scalar code: 10.4

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 10.4

Exec. Time vector code: 5.0

Speedup: 2.0

#pragma vector always
for (int i = 0; i < LEN; i++){

if (c[i] < (float) 0.0)
a[i] = a[i] * b[i] + d[i];

}

for (int i = 0; i < LEN; i++){
if (c[i] < (float) 0.0)
a[i] = a[i] * b[i] + d[i];

}

Conditional Statements

• Compiler removes if conditions when

generating vector code

Compiler Directives

• Compiler vectorizes many loops, but many more can be

vectorized if the appropriate directives are used

Compiler Hints for Intel ICC Semantics

#pragma ivdep Ignore assume data dependences

#pragma vector always override efficiency heuristics

#pragma novector disable vectorization

__restrict__ assert exclusive access through

pointer

__attribute__ ((aligned(int-val))) request memory alignment

memalign(int-val,size); malloc aligned memory

__assume_aligned(exp, int-val) assert alignment property

Compiler Directives

• Compiler vectorizes many loops, but many more can be

vectorized if the appropriate directives are used

Compiler Hints for IBM XLC Semantics

#pragma ibm independent_loop Ignore assumed data dependences

#pragma nosimd disable vectorization

__restrict__ assert exclusive access through

pointer

__attribute__ ((aligned(int-val))) request memory alignment

memalign(int-val,size); malloc aligned memory

__alignx (int-val, exp) assert alignment property

Outline

1. Intro

2. Data Dependences (Definition)

3. Overcoming limitations to SIMD-Vectorization

– Data Dependences

– Data Alignment

– Aliasing

– Non-unit strides

– Conditional Statements

4. Vectorization with intrinsics

Access the SIMD through intrinsics

• Intrinsics are vendor/architecture specific

• We will focus on the Intel vector intrinsics

• Intrinsics are useful when

– the compiler fails to vectorize

– when the programmer thinks it is possible to generate better code than the

one produced by the compiler

The Intel SSE intrinsics Header file

• SSE can be accessed using intrinsics.

• You must use one of the following header files:

#include <xmmintrin.h> (for SSE)

#include <emmintrin.h> (for SSE2)

#include <pmmintrin.h> (for SSE3)

#include <smmintrin.h> (for SSE4)

• These include the prototypes of the intrinsics.

Intel SSE intrinsics Data types

• We will use the following data types:

__m128 packed single precision (vector XMM register)

__m128d packed double precision (vector XMM register)

__m128i packed integer (vector XMM register)

• Example

#include <xmmintrin.h>

int main () {

...

__m128 A, B, C; /* three packed s.p. variables */

...

}

Intel SSE intrinsic Instructions
• Intrinsics operate on these types and have the format:

_mm_instruction_suffix(…)

• Suffix can take many forms. Among them:

ss scalar single precision

ps packed (vector) singe precision

sd scalar double precision

pd packed double precision

si# scalar integer (8, 16, 32, 64, 128 bits)

su# scalar unsigned integer (8, 16, 32, 64, 128 bits)

Intel SSE intrinsics

Instructions – Examples

• Load four 16-byte aligned single precision values in a

vector:

float a[4]={1.0,2.0,3.0,4.0};//a must be 16-byte aligned

__m128 x = _mm_load_ps(a);

• Add two vectors containing four single precision values:

__m128 a, b;

__m128 c = _mm_add_ps(a, b);

Intrinsics (SSE)

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float

a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

#define n 1024

__attribute__ ((aligned(16)))
float a[n], b[n], c[n];

int main() {

for (i = 0; i < n; i++) {

c[i]=a[i]*b[i];

}

}

Intel SSE intrinsics

A complete example

Header file#define n 1024

int main() {

float a[n], b[n], c[n];

for (i = 0; i < n; i+=4) {

c[i:i+3]=a[i:i+3]+b[i:i+3];

}

}

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float

a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

Intel SSE intrinsics

A complete example

#define n 1024

int main() {

float a[n], b[n], c[n];

for (i = 0; i < n; i+=4) {

c[i:i+3]=a[i:i+3]+b[i:i+3];

}

}

Declare 3 vector

registers

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float

a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

Intel SSE intrinsics

A complete example

Execute vector

statements

#define n 1000

int main() {

float a[n], b[n], c[n];

for (i = 0; i < n; i+=4) {

c[i:i+3]=a[i:i+3]+b[i:i+3];

}

}

#include <xmmintrin.h>

#define n 1024

__attribute__((aligned(16))) float

a[n], b[n], c[n];

int main() {

__m128 rA, rB, rC;

for (i = 0; i < n; i+=4) {

rA = _mm_load_ps(&a[i]);

rB = _mm_load_ps(&b[i]);

rC= _mm_mul_ps(rA,rB);

_mm_store_ps(&c[i], rC);

}}

Node Splitting

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;

}

S1
S2

for (int i=0;i<LEN-1;i++){
temp[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+temp[i])*(float) 0.5;

}

S1

S2

S1

S2

S0

S0
S1

S2

Node Splitting with intrinsics

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;

}

for (int i=0;i<LEN-1;i++){
temp[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+temp[i])*(float)0.5;

}

#include <xmmintrin.h>

#define n 1000

int main() {

__m128 rA1, rA2, rB, rC, rD;

__m128 r5=_mm_set1_ps((float)0.5)

for (i = 0; i < LEN-4; i+=4) {

rA2= _mm_loadu_ps(&a[i+1]);

rB= _mm_load_ps(&b[i]);

rC= _mm_load_ps(&c[i]);

rA1= _mm_add_ps(rB, rC);

rD= _mm_mul_ps(_mm_add_ps(rA1,rA2),r5);

_mm_store_ps(&a[i], rA1);

_mm_store_ps(&d[i], rD);

}}

Which code runs faster ?

Why?

Node Splitting with intrinsics

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;

}

for (int i=0;i<LEN-1;i++){
temp[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+temp[i])*(float)0.5;

}

#include <xmmintrin.h>

#define n 1000

int main() {

__m128 rA1, rA2, rB, rC, rD;

__m128 r5=_mm_set1_ps((float)0.5)

for (i = 0; i < LEN-4; i+=4) {

rA2= _mm_loadu_ps(&a[i+1]);

rB= _mm_load_ps(&b[i]);

rC= _mm_load_ps(&c[i]);

rA1= _mm_add_ps(rB, rC);

rD= _mm_mul_ps(_mm_add_ps(rA1,rA2),r5);

_mm_store_ps(&a[i], rA1);

_mm_store_ps(&d[i], rD);

}}

S126 S126_2

S126_1

Node Splitting with intrinsics

S126_2

S126 S126_1

Intel Nehalem

Compiler report: Loop was not

vectorized. Existence of vector

dependence

Exec. Time scalar code: 12.6

Exec. Time vector code: --

Speedup: --

Intel Nehalem

Compiler report: Loop was

vectorized.

Exec. Time scalar code: 13.2

Exec. Time vector code: 9.7

Speedup: 1.3

Intel Nehalem

Exec. Time intrinsics: 6.1

Speedup (versus vector code): 1.6

Node Splitting with intrinsics

S126 S126_1

S126_2

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 3.8

Exec. Time vector code: 1.7

Speedup: 2.2

IBM Power 7

Compiler report: Loop was SIMD

vectorized

Exec. Time scalar code: 5.1

Exec. Time vector code: 2.4

Speedup: 2.0

IBM Power 7

Exec. Time intrinsics: 1.6

Speedup (versus vector code): 1.5

Summary

• Microprocessor vector extensions can contribute to improve program performance and the amount of this

contribution is likely to increase in the future as vector lengths grow.

• Compilers are only partially successful at vectorizing

• When the compiler fails, programmers can

– add compiler directives

– apply loop transformations

• If after transforming the code, the compiler still fails to vectorize (or the performance of the generated code is

poor), the only option is to program the vector extensions directly using intrinsics or assembly language.

References

• Michael Voss, Software and Services Group, Intel. Topics in Loop Vectorization.

• María Garzarán, Saeed Maleki, William Gropp and David Padua. Program Optimization Through Loop
Vectorization. UIUC.

• Daniel Kusswurm – Modern X86 Assembly Language Programming.

CS 610 Swarnendu Biswas

