
CS 610: POSIX Threads
Swarnendu Biswas

Semester 2022-2023-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Advantages of Multithreading

Overlap compute while waiting for I/O

Handle asynchronous events

Allows for implementing priority via threads

Can be advantageous even on uniprocessor systems

CS 610 Swarnendu Biswas

Multithreading with C/C++

CS 610 Swarnendu Biswas

C/C++ languages do not provide built-in support for threads

Several thread libraries have been proposed
• Pthreads – low-level API with fine-grained control
• OpenMP – higher-level abstraction, cross-platform
• Intel TBB – high-level library for task-based programming

Unix Process

• Process id, process group id,
user id, parent id, group id, etc.

• Working directory

• Program instructions

• Registers, stack, heap

• File descriptors

• Shared libraries

• IPC

CS 610 Swarnendu Biswas

Blaise Barney, LLNL. POSIX Threads Programming.

Threads in Unix

• Part of the process and reuses
resources

• Software analog of cores

• Maintains its own SP, PC,
registers, scheduling properties,
any thread-specific data, …

• All threads share the process
heap and the global data
structures

CS 610 Swarnendu Biswas

Blaise Barney, LLNL. POSIX Threads Programming.

Threads in Unix

• Runtime system schedules
threads to cores

• If there are more threads than
cores, the runtime will time-slice
threads on to the cores

CS 610 Swarnendu Biswas

Blaise Barney, LLNL. POSIX Threads Programming.

POSIX Threads (Pthreads)

• POSIX: Portable Operation System Interface for Unix
• Standardized programming interface by IEEE POSIX 1003.1c for Unix-like

systems

• Pthreads: POSIX threading interface
• Provides system calls to create and manage threads

• Contains ~100 subroutines

CS 610 Swarnendu Biswas

When to use Pthreads?

• Pthreads provide good performance on shared-memory single-node
systems
• Compare with MPI on a single node

• No need for memory copies, no overhead from data transfer

• Ideal for shared-memory parallel programming

• Heuristic: # threads == # cores

CS 610 Swarnendu Biswas

Groups in Pthreads API

Thread management

• Create, detach, join threads

Mutexes

• Support mutual exclusion

Condition variables

• Communicate between threads via mutexes

Synchronization

• Other forms with read/write locks and barriers

CS 610 Swarnendu Biswas

Pthread Routines
Call Prefix Functional Group

pthread_ Thread management

pthread_attr_ Thread attributes objects

pthread_mutex Mutexes

pthread_mutexattr_ Mutex attribute objects

pthread_cond_ Condition Variables

pthread_condattr_ Condition attributes objects

pthread_key_ Thread-specific data keys

pthread_rwlock_ Read/write locks

pthread_barrier_ Synchronization barriers
CS 610 Swarnendu Biswas

Compile Pthread Programs

• GNU GCC
• gcc/g++ <options> <file_name(s)> -pthread

• Clang
• clang/clang++ <options> <file_name(s)> -pthread

• Intel C/C++ Compiler
• icc/icpc <options> <file_names(s)> -pthread

CS 610 Swarnendu Biswas

• -pthread defines few
library macros during
preprocessing

• -lpthread only links

Creating Threads

• Program begins execution with the main thread

CS 610 Swarnendu Biswas

#include <pthread.h>

int pthread_create(pthread_t* thread_handle,
const pthread_attr_t* attribute,
void* (*thread_function) (void*),
void* arg);

Thread Creation Example

• A pthread with handle “tid” is created

• Thread will execute the code defined in thread_function with
optional arguments captured in fun_args

• attribute captures different thread features
• Default values are used if you pass NULL

• errcode will be nonzero if thread creation fails

CS 610 Swarnendu Biswas

errcode = pthread_create(&tid, &attribute, &thread_function,
&fun_args);

Thread Creation Example

• A pthread with handle “tid” is created

• Thread will execute the code defined in thread_function with
optional arguments captured in fun_args

• attribute captures different thread features
• Default values are used if you pass NULL

• errcode will be nonzero if thread creation fails

CS 610 Swarnendu Biswas

errcode = pthread_create(&tid, &attribute, &thread_function,
&fun_args);

Q: Now that we have created a thread, when and where
will the thread be scheduled to run?

CS 610 Swarnendu Biswas

#include <cstdint>

#include <iostream>

#include <pthread.h>

#define NUM_THREADS 1

void *thr_func(void *thread_id) {

uint32_t id = (intptr_t)thread_id;

std::cout << "Hello World from
Thread " << id << "\n";

pthread_exit(NULL);

}

int main() {

pthread_t threads[NUM_THREADS];

int errcode;

uint32_t id;

for (id = 0; id < NUM_THREADS; id++) {

std::cout << "In main: creating thread: " << id <<
"\n";

errcode =

pthread_create(&threads[id], NULL, thr_func, (void
*)(intptr_t)id);

if (errcode) {

std::cout << "ERROR: return code from
pthread_create() is " << errcode

<< "\n";

exit(-1);

}

}

pthread_exit(NULL);

}

CS 610 Swarnendu Biswas

#include <cstdint>

#include <iostream>

#include <pthread.h>

#define NUM_THREADS 1

void *thr_func(void *thread_id) {

uint32_t id = (intptr_t)thread_id;

std::cout << "Hello World from
Thread " << id << "\n";

pthread_exit(NULL);

}

int main() {

pthread_t threads[NUM_THREADS];

int errcode;

uint32_t id;

for (id = 0; id < NUM_THREADS; id++) {

std::cout << "In main: creating thread: " << id <<
"\n";

errcode =

pthread_create(&threads[id], NULL, thr_func, (void
*)(intptr_t)id);

if (errcode) {

std::cout << "ERROR: return code from
pthread_create() is " << errcode

<< "\n";

exit(-1);

}

}

pthread_exit(NULL);

}

No Implied Hierarchy Between Threads

CS 610 Swarnendu Biswas

Number of Pthreads

CS 610 Swarnendu Biswas

The limit is
implementation-

dependent, and can
be changed.

Terminating Threads

• A thread is terminated with

• Process-shared resources (e.g., mutexes, file descriptors) are not
released

• Process terminates after the last thread terminates
• Like calling exit()
• Shared resources are released

• Child threads will continue to run if called from main thread

CS 610 Swarnendu Biswas

void pthread_exit(void* retval);

Other Ways to Terminate

• Thread completes executing thr_func()

• Thread calls pthread_exit()

• Thread is canceled by another thread via pthread_cancel()

• Entire process is terminated by exit()

• If main thread finishes first without calling pthread_exit()
explicitly

CS 610 Swarnendu Biswas

Joining Threads

CS 610 Swarnendu Biswas

int pthread_join(pthread_t thread, void ** value_ptr);

Subtle Issues to Keep in Mind

• Only threads that are created as “joinable” can be joined
• If a thread is created as “detached”, it can never be joined

• A joining thread can match one pthread_join() call
• It is a logical error to attempt multiple joins on the same thread

• If a thread requires joining, it is recommended to explicitly mark it as
joinable
• Provides portability as not all implementations may create threads as joinable by

default

CS 610 Swarnendu Biswas

Other Thread Management Routines

CS 610 Swarnendu Biswas

pthread_t pthread_self(void);

int pthread_equal(pthread_t t1, pthread_t
t2);

#define NUM_THREADS 10

uint32_t counter;

struct thr_args {

uint16_t id;

};

void *thrBody(void *arguments) {

struct thr_args *tmp =
static_cast<struct thr_args
*>(arguments);

for (uint32_t i = 0; i < 1000; i++) {

counter += 1;

}

pthread_exit(NULL);

}

int main() {

int i = 0;

int error;

pthread_t tid[NUM_THREADS];

pthread_attr_t attr;

pthread_attr_init(&attr);

struct thr_args args[NUM_THREADS] = {0};

while (i < NUM_THREADS) {

args[i].id = i;

error = pthread_create(&tid[i], &attr,
thrBody, args + i);

i++;

}

pthread_attr_destroy(&attr);
cout << "Value of counter: " << counter <<

"\n";

// Join with child threads
pthread_exit(NULL);

}
CS 610 Swarnendu Biswas

#define NUM_THREADS 10

uint32_t counter;

struct thr_args {

uint16_t id;

};

void *thrBody(void *arguments) {

struct thr_args *tmp =
static_cast<struct thr_args
*>(arguments);

for (uint32_t i = 0; i < 1000; i++) {

counter += 1;

}

pthread_exit(NULL);

}

int main() {

int i = 0;

int error;

pthread_t tid[NUM_THREADS];

pthread_attr_t attr;

pthread_attr_init(&attr);

struct thr_args args[NUM_THREADS] = {0};

while (i < NUM_THREADS) {

args[i].id = i;

error = pthread_create(&tid[i], &attr,
thrBody, args + i);

i++;

}

pthread_attr_destroy(&attr);
cout << "Value of counter: " << counter <<

"\n";

// Join with child threads
pthread_exit(NULL);

}
CS 610 Swarnendu Biswas

#define NUM_THREADS 10

uint32_t counter;

struct thr_args {

uint16_t id;

};

void *thrBody(void *arguments) {

struct thr_args *tmp =
static_cast<struct thr_args
*>(arguments);

for (uint32_t i = 0; i < 1000; i++) {

counter += 1;

}

pthread_exit(NULL);

}

int main() {

int i = 0;

int error;

pthread_t tid[NUM_THREADS];

pthread_attr_t attr;

pthread_attr_init(&attr);

struct thr_args args[NUM_THREADS] = {0};

while (i < NUM_THREADS) {

args[i].id = i;

error = pthread_create(&tid[i], &attr,
thrBody, args + i);

i++;

}

pthread_attr_destroy(&attr);
cout << "Value of counter: " << counter <<

"\n";

// Join with child threads
pthread_exit(NULL);

}
CS 610 Swarnendu Biswas

#define NUM_THREADS 10

uint32_t counter;

struct thr_args {

uint16_t id;

};

void *thrBody(void *arguments) {

struct thr_args *tmp =
static_cast<struct thr_args
*>(arguments);

for (uint32_t i = 0; i < 1000; i++) {

counter += 1;

}

pthread_exit(NULL);

}

int main() {

int i = 0;

int error;

pthread_t tid[NUM_THREADS];

pthread_attr_t attr;

pthread_attr_init(&attr);

struct thr_args args[NUM_THREADS] = {0};

while (i < NUM_THREADS) {

args[i].id = i;

error = pthread_create(&tid[i], &attr,
thrBody, args + i);

i++;

}

pthread_attr_destroy(&attr);
cout << "Value of counter: " << counter <<

"\n";

// Join with child threads
pthread_exit(NULL);

}
CS 610 Swarnendu Biswas

Data race which
results in an atomicity

violation

Mutual Exclusion

CS 610 Swarnendu Biswas

Mutual exclusion (locks)
• Synchronize access to a shared data

structure
• Cannot prevent bad behavior if other

threads do not take or take wrong
locks

…
lock l = alloc_init()
…

Thread i
acq(l)
access data
rel(l)
…

Thread i+1
acq(l)
access data
rel(l)
…

Checkout pthread_mutex_ …

Creating Mutexes

• Mutex variables must be initialized before use
• pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
• pthread_mutex_init()

CS 610 Swarnendu Biswas

int pthread_mutex_init(pthread_mutex_t *restrict
mutex, const pthread_mutexattr_t *restrict attr);

int pthread_mutex_destroy(pthread_mutex_t * mutex);

Using a Mutex

1) Create and initialize a mutex variable

2) Several threads attempt to lock the mutex

3) Only one thread wins and owns the mutex, other threads possibly
block

4) Owner thread performs operations in the critical section

5) Owner unlocks the mutex

6) One other thread acquires ownership of the mutex

7) Go to Step (2) if needed

8) Destroy the mutex

CS 610 Swarnendu Biswas

Locking and Unlocking Mutexes

CS 610 Swarnendu Biswas

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Locking and Unlocking Mutexes

CS 610 Swarnendu Biswas

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

What can be
uses of a trylock?

Types of Mutexes

• NORMAL
• Attempt to relock a mutex by the same thread will deadlock, no deadlock detection

• Attempt to unlock an unowned or unlocked mutex results in undefined behavior

• ERRORCHECK
• Returns error if a thread tries to relock the same mutex

• Attempt to unlock an unowned or unlocked mutex results in an error

• RECURSIVE
• Allows the concept of reentrancy by maintaining a lock count

• Attempt to unlock an unowned or unlocked mutex results in an error

• DEFAULT
• Wrong use results in undefined behavior

CS 610 Swarnendu Biswas

#define NUM_THREADS 10

uint32_t counter;

pthread_mutex_t count_mutex;

struct thr_args {

uint16_t id;

};

void *thrBody(void *arguments) {

pthread_mutex_lock(&count_mutex);

for (uint32_t i = 0; i < 1000; i++) {

counter += 1;

}

pthread_mutex_unlock(&count_mutex);

pthread_exit(NULL);

}

int main() {

int i = 0;

int error;

pthread_t tid[NUM_THREADS];

pthread_attr_t attr;

pthread_attr_init(&attr);

struct thr_args args[NUM_THREADS] = {0};

while (i < NUM_THREADS) {

args[i].id = i;

error = pthread_create(&tid[i], &attr,
thrBody, args + i);

i++;

}

pthread_attr_destroy(&attr);
cout << "Value of counter: " << counter <<

"\n";

// Join with child threads
pthread_exit(NULL);

}
CS 610 Swarnendu Biswas

#define NUM_THREADS 10

uint32_t counter;

pthread_mutex_t count_mutex;

struct thr_args {

uint16_t id;

};

void *thrBody(void *arguments) {

pthread_mutex_lock(&count_mutex);

for (uint32_t i = 0; i < 1000; i++) {

counter += 1;

}

pthread_mutex_unlock(&count_mutex);

pthread_exit(NULL);

}

int main() {

int i = 0;

int error;

pthread_t tid[NUM_THREADS];

pthread_attr_t attr;

pthread_attr_init(&attr);

struct thr_args args[NUM_THREADS] = {0};

while (i < NUM_THREADS) {

args[i].id = i;

error = pthread_create(&tid[i], &attr,
thrBody, args + i);

i++;

}

pthread_attr_destroy(&attr);
cout << "Value of counter: " << counter <<

"\n";

// Join with child threads
pthread_exit(NULL);

}
CS 610 Swarnendu Biswas

Pthread Mutexes vs Synchronized in Java

Pthread Mutex

• Explicit calls to release or unlock
the mutex

• Reentrancy is not enabled by
default

Synchronized in Java

• Implicit, lock is release once out
of scope

• Reentrancy is enabled since a
method can be called recursively

CS 610 Swarnendu Biswas

POSIX Semaphores in Pthreads

CS 610 Swarnendu Biswas

Semaphores
• Generalize locks to allow “n” threads to access
• Useful if you have > 1 resource units

#include <semaphore.h>

sem_init()
sem_wait()
sem_post()

gcc/g++ <options> <file_name(s)>
-pthread -lrt

Pthreads Barriers

CS 610 Swarnendu Biswas

Barrier
• Form of global synchronization
• Commonly used on GPUs, graph

analytics

…
dowork()
barrier
…

domorework()
barrier()
…

Checkout pthread_barrier_ …

Phased Program Execution

CS 610 Swarnendu Biswas

main
thread

worker
threads

worker
threads

barrier

barrier

Remember this Java Snippet?

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

CS 610 Swarnendu Biswas

#define NUM_THREADS 2

volatile int i = 0;

void *thr1Body(void *arguments) {

while (i == 0) {};

cout << “Value of i has changed\n”;

pthread_exit(NULL);

}

void *thr2Body(void *arguments) {

sleep(1000);

i = 42;

pthread_exit(NULL);

}

int main() {

pthread_t tid1, tid2;

pthread_create(&tid1, NULL, thr1Body, NULL);

pthread_create(&tid2, NULL, thr2Body, NULL);

pthread_exit(NULL);

}

CS 610 Swarnendu Biswas

#define NUM_THREADS 2

volatile int i = 0;

void *thr1Body(void *arguments) {

while (i == 0) {};

cout << “Value of i has changed\n”;

pthread_exit(NULL);

}

void *thr2Body(void *arguments) {

sleep(1000);

i = 42;

pthread_exit(NULL);

}

int main() {

pthread_t tid1, tid2;

pthread_create(&tid1, NULL, thr1Body, NULL);

pthread_create(&tid2, NULL, thr2Body, NULL);

pthread_exit(NULL);

}

CS 610 Swarnendu Biswas

Busy waiting leads to wasted work
• Often used idiom when we need to

synchronize on the data value

#define NUM_THREADS 2

volatile int i = 0;

void *thr1Body(void *arguments) {

while (i == 0) {};

cout << “Value of i has changed\n”;

pthread_exit(NULL);

}

void *thr2Body(void *arguments) {

sleep(1000);

i = 42;

pthread_exit(NULL);

}

int main() {

pthread_t tid1, tid2;

pthread_create(&tid1, NULL, thr1Body, NULL);

pthread_create(&tid2, NULL, thr2Body, NULL);

pthread_exit(NULL);

}

CS 610 Swarnendu Biswas

Can you think of situations where busy
waiting is actually advantageous?

Can you think of compiler optimizations that
can break the code?

Condition Variables

• A condition variable allows a thread to suspend execution until a
certain event or condition occurs

• When the event or condition occurs another thread can signal the
thread to “wake up”

CS 610 Swarnendu Biswas

Signaling mechanism
• Always used along with a mutex lock

Why?

Condition Variables

CS 610 Swarnendu Biswas

lock

(unlock)
sleep
(lock)

Finish critical
section, and
unlock

COND = TRUE

signal

unlock

lock

COND?

False

True

Condition Variables

CS 610 Swarnendu Biswas

lock

(unlock)
sleep
(lock)

Finish critical
section, and
unlock

COND =
TRUE

signal

unlock

lock

COND?

False

True

lock mutex

if condition has occurred {

signal thread(s)

} else {

unlock mutex and block

// When thread is unblocked,
the mutex is relocked

}

unlock mutex

Using Condition Variables

…

pthread_mutex_lock(&lock);

while (!COND) {

pthread_cond_wait(&cond,
&lock);

}

// Check COND is true

…

pthread_mutex_unlock(&lock);

…

…

pthread_mutex_lock(&lock);

…

// Set COND

// Wake up one or more threads

pthread_cond_signal(&cond);

…

pthread_mutex_unlock(&lock);

…

CS 610 Swarnendu Biswas

Condition Variables

CS 610 Swarnendu Biswas

lock

(unlock)
sleep
(lock)

Finish critical
section, and
unlock

COND =
TRUE

signal

unlock

lock

COND?

False

True

lock mutex

if condition has occurred {

signal thread(s)

} else {

unlock mutex and block

// When thread is unblocked,
the mutex is relocked

}

unlock mutex

• When a thread performs a condition wait, it takes itself off
the runnable list – it does not use any CPU cycles until it is
woken up

• In contrast, a mutex lock consumes CPU cycles as it polls for
the lock

Lost Wakeup Problem

pthread_cond_signal();

Check condition

pthread_cond_wait();

CS 610 Swarnendu Biswas

• Broadcast to all waiting threads, waiting thread should test the condition upon
wakeup

• Use timed waits

Condition Variables

CS 610 Swarnendu Biswas

Signaling mechanism
• Always used along with a mutex lock which protects

accesses to shared data

Checkout pthread_cond_ …

Slightly more
involved usage

Ways to Implement a Barrier

Mutex

Condition variables

Semaphores

CS 610 Swarnendu Biswas

Nuances of using Pthreads

• Low-level abstraction

• Pthreads scheduler may not be well-suited to manage large number
of threads
• Can lead to load imbalance

• OpenMP is commonly used in scientific computing
• Compiler extensions
• Higher level of abstraction

• Other abstractions like Transactional Memory

CS 610 Swarnendu Biswas

Pitfalls with Multithreading

• Thread scheduling – Do not assume that threads will get executed in
the same order as they were created
• In general, never assume anything about the relative order or speed of

execution

• Incorrect synchronization – Avoid data races

• Thread safety – Ensure the called library routines are thread safe

• Be careful about other concurrency bugs
• Deadlocks, atomicity and order violations

CS 610 Swarnendu Biswas

References

• James Demmel and Katherine Yelick – CS 267: Shared Memory Programming: Threads and OpenMP

• Keshav Pingali – CS 377P: Programming Shared-memory Machines, UT Austin.

• Blaise Barney, LLNL. POSIX Threads Programming, https://computing.llnl.gov/tutorials/pthreads.

• Blaise Barney, LLNL. Introduction to Parallel Computing, https://computing.llnl.gov/tutorials/parallel_comp/

• Peter Pacheco – An Introduction to Parallel Programming.

CS 610 Swarnendu Biswas

https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/parallel_comp/

