
CS 610: OpenMP Memory 
Model

Swarnendu Biswas

Semester 2022-2023-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



Correctness of Shared-memory Programs

CS 610 Swarnendu Biswas

“To write correct and efficient shared memory programs, 
programmers need a precise notion of how memory behaves with 
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. WRL Research Report, 1995.



Busy-Wait Paradigm

X = new Object();
done = true;

Thread T1

while (!done) {}
if (X != null)
X.compute();

Thread T2

Object X = null;
boolean done= false;

CS 610 Swarnendu Biswas



done = true;

X = new Object();

while (!done) {} 
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {} 

Thread T1 Thread T2

Infinite loop

CS 610 Swarnendu Biswas



What Value Can a Read Return?

Core C1

S1: store X, 10

S2: store done, 1

Core C2

L1: load r1, done

B1: if (r1 != 1) goto L1

L2: load r2, X

X = 0
done = 0

CS 610 Swarnendu Biswas



Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

CS 610 Swarnendu Biswas

Different 
addresses!



Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

CS 610 Swarnendu Biswas

Different 
addresses!

Correct in a single-threaded context

Non-trivial in a multithreaded context



What values can a load return? 

Return the “last” write

Uniprocessor: program order

Multiprocessor: ?

CS 610 Swarnendu Biswas



Memory Consistency Model

Set of rules that govern how systems process memory operation 
requests from multiple processors

• Determines the order in which memory operations appear to execute

Specifies the allowed behaviors  of multithreaded programs executing 
with shared memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors

CS 610 Swarnendu Biswas



Importance of Memory Consistency Models

Determines what optimizations are correct

Contract between the programmer and the hardware

Influences ease of programming and program 
performance

Impacts program portability

CS 610 Swarnendu Biswas



Dekker’s Algorithm

Core C1

S1: store flag1, 1

L1: load r1, flag2

Core C2

S2: store flag2, 1

L2: load r2, flag1

flag1 = 0
flag2 = 0

Can both r1 and r2 be set to zero?

CS 610 Swarnendu Biswas



Sequential Consistency

CS 610 Swarnendu Biswas

A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program.

Leslie Lamport



Interleavings with SC

CS 610 Swarnendu Biswas



Interleavings with SC

CS 610 Swarnendu Biswas



SC Formalism

Every load gets its value from the last store before it (in 
global memory order) to the same address

CS 610 Swarnendu Biswas

Suppose we have 
two addresses a 

and b
• a == b or a!= b

Constraints

• if L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) 



End-to-end SC

Simple memory model that can be implemented both 
in hardware and in languages

Performance can take a hit

• Naive hardware

• Maintain program order - expensive for a write

CS 610 Swarnendu Biswas



Cache Coherence

Single writer multiple readers (SWMR)

Memory updates are passed correctly, cached copies always contain the most 
recent data

Virtually a synonym for SC, but for a single memory location

Alternate definition based on relaxed ordering

• A write is eventually made visible to all processors

• Writes to the same location appear to be seen in the same order by all processors (serialization)

• SC - *all*

CS 610 Swarnendu Biswas



Memory Consistency vs Cache Coherence

Memory Consistency

• Defines shared memory behavior

• Related to all shared-memory locations

• Policy on when new value is propagated to 
other cores

• Memory consistency implementations can 
use cache coherence as a “black box”

Cache Coherence

• Does not define shared memory behavior

• Specific to a single shared-memory location

• Propagate new value to other cached copies
• Invalidation-based or update-based

CS 610 Swarnendu Biswas



Existing Memory Consistency Models

Hardware

• Sequential Consistency (SC)

• Total Store Order (TSO)

• Partial Store Order (PSO)

• Weak Ordering (WO)

• …

Programming Languages

• Java

• C++ and OpenMP

• …

CS 610 Swarnendu Biswas



Total Store Order

Allows reordering stores to loads

Can read own write early, not other’s writes

Conjecture: widely-used x86 memory model is 
equivalent to TSO

CS 610 Swarnendu Biswas



TSO Rules

• If L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b) 

• If S(a) <p S(b) ⇒ S(a) <m S(b) 

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO Write Buffer */

a == b or a != b

Every load gets its value from the last store before it 
to the same address

CS 610 Swarnendu Biswas



Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p FENCE ⇒ FENCE <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 

If FENCE <p S(a) ⇒ FENCE <m S(a) 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 

CS 610 Swarnendu Biswas



Possible Outcomes with TSO

CS 610 Swarnendu Biswas



Possible Outcomes with TSO

CS 610 Swarnendu Biswas



Partial Store Order (PSO)

• Allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be 
pipelined or overlapped and are allowed to reach memory or other 
cached copies out of program order

• Can read own write early, not other’s writes

CS 610 Swarnendu Biswas



Opportunities to Reorder Memory Operations

CS 610 Swarnendu Biswas



Reorder Operations Within a Synchronization 
Block

CS 610 Swarnendu Biswas



Optimization Opportunities

Non-FIFO coalescing write buffer

Support non-blocking reads

• Hide latency of reads

• Use lockup-free caches and speculative execution

Simpler support for speculation

• Need not compare addresses of loads to coherence requests

• For SC, need support to check whether the speculation is correct

CS 610 Swarnendu Biswas



Desirable Properties of a Memory Model

Hard to 
satisfy all 

three 
properties

• Programmability

• Performance 

• Portability Pros
• Intuitive

• Serializability of instructions

Cons

• No atomicity of regions

• Inhibits compiler 
transformations

• Almost all recent 
architectures violate SC

CS 610 Swarnendu Biswas

Think of SC



Relaxed Consistency Memory Model in 
OpenMP
• OpenMP supports a relaxed consistency 

shared memory model
• Closely related to the weak ordering model

• Threads can maintain a temporary view 
of shared memory that is not consistent 
with other threads

• These temporary views are made 
consistent only at certain points in the 
program

• The operation that enforces consistency 
is called the flush operation

CS 610 Swarnendu Biswas

Data operations

sync 
operations

Data operations

sync 
operations

reo
rd

erin
g acro

ss syn
c 

o
p

eratio
n

s is n
o

t allo
w

ed



Semantics of the flush Operation

• A flush is a sequence point at which a thread is guaranteed to see a 
consistent view of memory
• All previous read/writes by this thread have completed and are visible to 

other threads

• No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory 
APIs

CS 610 Swarnendu Biswas



Potential Benefits with Relaxed Consistency

• Relaxed memory model allows 
flexibility to OpenMP 
implementations

• Write to A
• May complete immediately

• May complete after the execution 
marked “…; …”

A = 1 

…

…

#pragma omp flush(A)

CS 610 Swarnendu Biswas



Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations
• at entry/exit of parallel, critical, and ordered regions
• at implicit and explicit barriers
• at entry/exit of parallel worksharing regions
• during lock APIs
• ….

• If you are mixing reads and writes of a variable across multiple 
threads, you cannot assume the reading threads see the results of the 
writes unless:
• The writing threads follow the writes with a construct that implies a flush
• The reading threads precede the reads with a construct that implies a flush

CS 610 Swarnendu Biswas

Aah! this is why 
we never needed 
flush so far



Reordering Example

1. a = …; 

2. b = …;

3. c = …;

4. #pragma omp flush(c)

5. #pragma omp flush(a, b)

6. …= a…b…;

7. …c…;

• 1 and 2 may not be moved after 
5

• 4 and 5 maybe interchanged at 
will

• 6 may not be moved before 5

CS 610 Swarnendu Biswas



Fixing Dekker’s Algorithm

CS 610 Swarnendu Biswas

Dekker’s Algorithm

flag1 = 1
if (flag2 == 0) {

// Critical Section
}

flag2 = 1
if (flag1 == 0) {

// Critical Section
}

Where should I 
add a flush?



Usage of flush
#pragma omp parallel sections

{

// Producer

#pragma omp section 

{

// produce data 

flag = 1;

}

// Consumer

#pragma omp section

{

while (flag == 0 ) {}

// consume data

}

}

#pragma omp parallel sections

{

#pragma omp section 

{

// produce data 

#pragma omp flush

#pragma omp atomic write

flag = 1;

#pragma omp flush(flag)

}

#pragma omp section

{

while (1) {

#pragma omp flush(flag)

#pragma omp atomic read

flag_read = flag

if (flag_read) break;

}

#pragma omp flush

// consume data

}

}

CS 610 Swarnendu Biswas



OpenMP Optimizing Compiler

• Can reorder operations freely inside a parallel region
• No guarantees about the ordering of operations during a parallel region 

excepting around flush operations

• Parallel region contains implicit flushes

• Cannot move operations outside of the parallel region or around 
synchronization operations 

• Presence of flush operations make the OpenMP memory model a variant of 
weak ordering

CS 610 Swarnendu Biswas



References

• S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. WRL Research Report, 1995.

• D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

CS 610 Swarnendu Biswas


