CS 610: Loop Transformations

Swarnendu Biswas

Semester 2022-2023-I
CSE, IIT Kanpur

Enhancing Program Performance

Fundamental issues

- Adequate fine-grained parallelism
- Multiple pipelined functional units in each core
- Exploit vector instruction sets (SSE, AVX, AVX-512)
- Adequate parallelism for SMP-type systems
- Keep multiple asynchronous processors busy with work
- Minimize cost of memory accesses

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

- Code restructuring optimizations
- Prefetching optimizations
- Data layout optimizations
- Code layout optimizations

Loop Optimizations

- Loops are one of most commonly used constructs in HPC program
- Compiler performs many of loop optimization techniques automatically
- In some cases source code modifications enhance optimizer's ability to transform code

Reordering Transformations

- A reordering transformation does not add or remove statements from a loop nest
- Only reorders the execution of the statements that are already in the loop

Do not add or remove statements

Do not add or remove any new dependences

Reordering Transformations

- A reordering transformation does not add or remove statements from
a loop nest
- Only reorders the execution of the statements that are already in the loop

A reordering transformation is valid if it preserves all existing dependences in the loop

Iteration Reordering and Parallelization

- A transformation that reorders the iterations of a level-k loop, without making any other changes, is valid if the loop carries no dependence
- Each iteration of a loop may be executed in parallel if it carries no dependences

Data Dependence Graph and Parallelization

- If the Data Dependence Graph (DDG) is acyclic, then vectorization of the program is possible and is straightforward
- Otherwise, try to transform the DDG to an acyclic graph

Enhancing Fine-Grained Parallelism

Focus on Parallelization of Inner Loops

System Setup

- Setup: vector or superscalar architectures
- Focus is mostly on parallelizing the inner loops
- We will see optimizations for coarse-grained parallelism later

Loop Interchange (Loop Permutation)

- Switch the nesting order of loops in a perfect loop nest
- Can increase parallelism, can improve spatial locality
- Dependence is now carried by the outer loop
- Inner-loop can be vectorized

$$
\begin{aligned}
& \text { DO } \mathrm{I}=1, \mathrm{~N} \\
& \mathrm{DO} \mathrm{~J}=1, \mathrm{M} \\
& \mathrm{~S} \quad \mathrm{~A}(\mathrm{I}, \mathrm{~J}+1)=\mathrm{A}(\mathrm{I}, \mathrm{~J})+\mathrm{B} \\
& \text { ENDDO } \\
& \text { ENDDO } \\
& \text { DO J }=1, \mathrm{M} \\
& \text { DO } \mathrm{I}=1, \mathrm{~N} \\
& \mathrm{~S} \quad \mathrm{~A}(\mathrm{I}, \mathrm{~J}+1)=\mathrm{A}(\mathrm{I}, \mathrm{~J})+\mathrm{B} \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

S

Interchange of Non-rectangular Loops

```
for (i=0; i<n; i++)
???
    for (j=0; j<i; j++)
    y[i] = y[i] + A[i][j]*x[j];
```


Interchange of Non-rectangular Loops

```
for (i=0; i<n; i++)
    for (j=0; j<i; j++)
    y[i] = y[i] + A[i][j]*x[j];
```

```
for (j=0; j<n; j++)
    for (i=j+1; i<n; i++)
    y[i] = y[i] + A[i][j]*x[j];
```


Example of Loop Interchange

```
do i = 1, n
    do j = 1, n
        C(i, j) = C(i+1, j-1)
    enddo
enddo
```

```
do j = 1, n
    do i = 1, n
        C(i,j) = C(i+1,j-1)
    enddo
enddo
```

Valid?

Validity of Loop Interchange

1. Construct direction vectors for all possible dependences in the loop

- Also called a direction matrix
- Identical direction vectors are represented by a single row in the matrix

2. Compute direction vectors after permutation
3. Permutation of the loops in a perfect nest is legal iff there are no "-" direction as the leftmost non-" 0 " direction in any direction vector

Legality of Loop Interchange

$(0,0)$

- Dependence is loop-independent
$(0,+)$
- Dependence is carried by the $j^{\text {th }}$ loop, which remains the same after interchange
$(+, 0)$
- Dependence is carried by the $\mathrm{i}^{\text {th }}$ loop, relations do not change after interchange
$(+,+)$
- Dependence relations remain positive in both dimensions

(+, -)

- Dependence is carried by $\mathrm{i}^{\text {th }}$ loop, interchange results in an illegal direction vector
($0,+$)
- Dependence is carried by the $j^{\text {th }}$ loop, which remains the same after interchange

(0, -) (-, *)

- Such direction vectors are illegal, should not appear in the original loop

Validity of Loop Interchange

- Loop interchange is valid for a 2D loop nest if none of the dependence vectors has any negative components
- Interchange is legal: $(1,1),(2,1)$,

```
DO J = 1, M
    DO I = 1, N
        A(I,J+1) = A(I+1,J) + B
    ENDDO
ENDDO
``` \((0,1),(3,0)\)
- Interchange is not legal: \((1,-1),(3,-2)\)

\section*{Validity of Loop Permutation}
- Generalization to higher-dimensional loops
- Permute all dependence vectors exactly the same way as the intended loop permutation
- If any permuted vector is lexicographically negative, permutation is illegal
- Example: d1 = (1,-1,1) and d2 = (0,2,-1)
- ijk -> jik? \((1,-1,1)\)-> (-1,1,1): illegal
- ijk -> kij? \((0,2,-1)\)-> (-1,0,2): illegal
- ijk -> ikj? \((0,2,-1)\)-> (\(0,-1,2\)): illegal
- No valid permutation:
- j cannot be outermost loop (-1 component in d1)
- k cannot be outermost loop (-1 component in d2)

\section*{Valid or Invalid Loop Interchange?}
```

DO I = 1, N
DO J = 1, M
DO K = 1, L
A(I+1,J+1,K)=A(I,J,K) + A(I,J+1,K+1)
ENDDO
ENDDO
ENDDO

```

\section*{Benefits from Loop Permutation}
```

for (i=0; i<n; i++)
for (j=0; j<n; j++)
for (k=0; k<n; k++)
C[i][j] += A[i][k]*B[k][j];

```
\begin{tabular}{llllllll}
Stride & \(\mathbf{i k j}\) & \(\mathbf{k i j}\) & \(\mathbf{j i k}\) & \(\mathbf{i j k}\) & \(\mathbf{j k i}\) & \(\mathbf{k j i}\) \\
\(\mathrm{C}[\mathrm{i}][\mathrm{j}]\) & 1 & 1 & 0 & 0 & n & n \\
\(\mathrm{A}[\mathrm{i}][\mathrm{k}]\) & 0 & 0 & 1 & 1 & n & n \\
\(\mathrm{B}[\mathrm{k}][\mathrm{j}]\) & 1 & 1 & n & n & 0 & 0
\end{tabular}

\section*{Understanding Loop Interchange}

\section*{Pros}
- Goal is to improve locality of reference or allow vectorization

\section*{Cons}
- Need to careful about the iteration order, order of array accesses, and data involved

\section*{Does Loop Interchange/Permutation Always Help?}
```

do i = 1, 10000
do j = 1, 1000
a[i] = a[i] + b[j,i] * c[i]
end do
end do

```
```

do I = 1, N
do J = 1, M
do K = 1, L
A(I+1,J+1,K) = A(I,J,K) + B
end do
end do
end do

```
- Type and benefit from loop interchange depends on the target machine, the data structures accessed, memory layout and stride patterns
- Optimization choices for the snippet on the right
- Vectorize J and K, Vectorize I assuming column-major layout, Parallelize K with threads

\section*{Loop Shifting}
- In a perfect loop nest, if loops at level \(i, i+1, \ldots, i+n\) carry no dependence-that is, all dependences are carried by loops at level less than \(i\) or greater than \(i+n\)-it is always legal to shift these loops inside of loop \(i+n+1\).
- These loops will not carry any dependences in their new position.

Loops \(i\) to \(i+n\)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multirow{3}{*}{} & + & 0 & + & 0 & 0 & 0 & \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Dependence carried \\
by outer loops
\end{tabular}} & 0 & + & - & + & + & 0 & \\
\hline & 0 & 0 & 0 & 0 & + & + & Dependence carried \\
\hline
\end{tabular}

\section*{Loop Shift for Matrix Multiply}
```

DO I = 1, N
DO J = 1, N
DO K = 1, N
A(I,J) = A(I,J) + B(I,K)*C(K,J)
ENDDO
ENDDO
ENDDO
ENDDO

```
S

We can move loops I and J inside

\section*{Loop Shift for Matrix Multiply}
```

DO I = 1, N
DO J = 1, N
DO K = 1, N
A(I,J) = A(I,J) + B(I,K)*C(K,J)
ENDDO
ENDDO
ENDDO

```
```

DO K = 1, N
DO I = 1, N
DO J = 1, N
S
A(I,J) = A(I,J) + B(I,K)*C(K,J)
ENDDO
ENDDO
ENDDO

```

\section*{Scalar Expansion}
\begin{tabular}{cc}
& DO \(I=1, N\) \\
S1 & \(T=A(I)\) \\
S2 & \(A(I)=B(I)\) \\
S3 & \(B(I)=T\) \\
& ENDDO
\end{tabular}

\section*{Scalar Expansion}

\section*{Scalar Expansion}

\section*{Understanding Scalar Expansion}

\section*{Pros}
- Eliminates dependences due to reuse of memory locations
- Helps with uncovering
parallelism
DO \(\mathrm{I}=1, \mathrm{~N}\)
DO \(\mathrm{I}=1, \mathrm{~N}\)
 \(T=A(I)+A(I+1)\)
 \(T=A(I)+A(I+1)\)
 \(A(I)=T_{0}+B(I)\)
 \(A(I)=T_{0}+B(I)\)
ENDDO
ENDDO
Can also try forward substitution
```

DO I = 1, N, }6

```
 DO i \(=0,63\)
 \(\mathrm{T}=\mathrm{A}(\mathrm{I}+\mathrm{i})+\mathrm{A}(\mathrm{I}+1+\mathrm{i})\)
 \(A(I+i)=T+B(I+i)\)
ENDDO

\section*{Cons}
- Increases memory overhead
- Complicates addressing

\section*{Limits of Scalar Expansion}
\begin{tabular}{lc}
& DO \(I=1,100\) \\
S1 & \(T=A(I)+B(I)\) \\
S2 & \(C(I)=T+T\) \\
S3 & \(T=D(I)-B(I)\) \\
S4 & \(A(I+1)=T * T\) \\
& ENDDO
\end{tabular}
\begin{tabular}{cc}
& \(D 0 I=1,100\) \\
S1 & \(\$ T(I)=A(I)+B(I)\) \\
\(S 2\) & \(C(I)=\$ T(I)+\$ T(I)\) \\
\(S 3\) & \(\$ T(I)=D(I)-B(I)\) \\
\(S 4\) & \(A(I+1)=\$ T(I) * \$ T(I)\) \\
ENDDO
\end{tabular}

\section*{Scalar Renaming}
\begin{tabular}{ll}
& \(\mathrm{DO} I=1,100\) \\
S1 & \(\mathrm{T}=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I})\) \\
S 2 & \(\mathrm{C}(\mathrm{I})=\mathrm{T}+\mathrm{T}\) \\
S 3 & \(\mathrm{~T}=\mathrm{D}(\mathrm{I})-\mathrm{B}(\mathrm{I})\) \\
S 4 & \(\mathrm{~A}(\mathrm{I}+1)=\mathrm{T} * \mathrm{~T}\) \\
& ENDDO
\end{tabular}

\section*{Allow Vectorization with Statement Interchange}
```

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
T2 = D(I) - B(I)
A(I+1) = T2 * T2
ENDDO
T = T2

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{DO \(\mathrm{I}=1,100\)} \\
\hline S3 & T2 = \(\mathrm{D}(\mathrm{I})-\mathrm{B}(\mathrm{I})\) \\
\hline S4 & \(A(\mathrm{I}+1)=\mathrm{T} 2\) * T2 \\
\hline S1 & T1 \(=A(I)+B(I)\) \\
\hline S2 & \(C(I)=T 1+\mathrm{T} 1\) \\
\hline & DDO \\
\hline & = T 2 \\
\hline
\end{tabular}
\begin{tabular}{rl}
& S 3 \\
S 4 & \(\mathrm{~T} 2[1: 100]=\mathrm{D}(1: 100)-\mathrm{B}(1: 100)\) \\
\(\Rightarrow \mathrm{S} 1\) & \(\mathrm{~T} 1[1: 100]=\mathrm{A}[1: 100]+\mathrm{B}[1: 100]\) \\
S 2 & \(\mathrm{C}[1: 100]=\mathrm{T} 1[1: 100]+\mathrm{T} 1[1: 100]\) \\
& \\
& \(\mathrm{T}=\mathrm{T} 2[100]\)
\end{tabular}

\section*{Array Renaming}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{DO \(\mathrm{I}=1,100\)} \\
\hline S1 & \(A(I)=A(I-1)+X\) \\
\hline S2 & \(Y(I)=A(I)+Z\) \\
\hline S3 & \(A(I)=B(I)+C\) \\
\hline & NDDO \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { DO } I=1,100 \\
& \$ A(I)=A(I-1)+X \\
& Y(I)=\$ A(I)+Z \\
& A(I)=B(I)+C
\end{aligned}
\]

Supporting array renaming requires sophisticated analysis

\section*{Node Splitting}
\[
\begin{array}{ll}
& \text { DO } I=1,100 \\
\text { S1 } & A(I)=X(I+1)+X(I) \\
\text { S2 } \quad X(I+1)=B(I)+10 \\
& \text { ENDDO }
\end{array}
\]
\begin{tabular}{ll}
& DO \(I=1,100\) \\
S0 & \(\$ X(I)=X(I+1)\) \\
S1 & \(A(I)=\$ X(I)+X(I)\) \\
S2 & \(X(I+1)=B(I)+10\)
\end{tabular}

ENDD0

\section*{Index-Set Splitting}
DO \begin{tabular}{rl}
\(I=1,100\) \\
\(A(I+20)\) & \(=A(I)+B\)
\end{tabular}

ENDDO

An index-set splitting transformation subdivides the loop into different iteration ranges

\section*{Loop Peeling}
- Splits any problematic iterations from the loop body
- Could be first, middle, or last few iterations
- Change from a loop-carried dependence to loop-independent dependence
- Transformed loop carries no dependence, can be parallelized
```

DO I = 1, N
A(I) = A(I) + A(1)
ENDDO

```
```

A(1) = A(1) + A(1)
DO I = 2, N
A(I) = A(I) + A(1)
ENDDO

```

\section*{Loop Peeling}
- Splits any problematic iterations from the loop body
- Could be first, middle, or last few iterations
- Change from a loop-carried dependence to loop-independent dependence
```

int p = 10;
for (int i = 0; i < 10; ++i) {
y[i] = x[i] + x[p];
p = i;
}

```
```

y[0] = x[0] + x[10];
for (int i = 1; i < 10; ++i) {
y[i] = x[i] + x[i-1];
}

```

\section*{Loop Splitting}
```

DO I = 1, N
A(I) = A(N/2) + B(I)

```
ENDDO
\[
\begin{aligned}
& M=N / 2 \\
& D O I=1, M-1 \\
& \quad A(I)=A(N / 2)+B(I) \\
& \text { ENDDO } \\
& A(M)=A(N / 2)+B(I) \\
& D O I=M+1, N \\
& \quad A(I)=A(N / 2)+B(I) \\
& E N D D O
\end{aligned}
\]

\section*{Section-Based Splitting}

\[
\begin{aligned}
& \text { DO } I=1, N \\
& \text { DO J }=1, N / 2 \\
& B(J, I)=A(J, I)+C \\
& \text { ENDDO } \\
& \text { DO J }=1, N / 2 \\
& A(J, I+1)=B(J, I)+D \\
& E N D D O \\
& D O J=N / 2+1, N \\
& A(J, I+1)=B(J, I)+D \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
\]

\section*{Enabling Vectorization with Section-Based Splitting}

\section*{Enabling Vectorization with Section-Based Splitting}
```

DO I = 1,N
DO J = N/2+1, N
$A(J, I+1)=B(J, I)+D$
ENDDO
DO $\mathrm{I}=1, \mathrm{~N}$
DO J = 1,N/2
$B(J, I)=A(J, I)+C$
ENDDO
DO J = 1, N/2
$A(J, I+1)=B(J, I)+D$
ENDDO
ENDDO

```
S1
S2

\section*{Draw the Dependence Graph}

\section*{Loop Skewing}

DO \(\mathrm{I}=1, \mathrm{~N}\)
DO J = 1, \(N\)
S
\[
A(I, J)=A(I-1, J)+A(I, J-1)
\]

ENDDO
ENDDO

\section*{Loop Skewing}

\section*{Perform Loop Interchange}

ENDDO
ENDDO

\section*{Understanding Loop Skewing}

\section*{Pros}
- Reshapes the iteration space to find possible parallelism
- Allows for loop interchange in future

\section*{Cons}
- Resulting iteration space can be trapezoidal
- Irregular loops are not very amenable for vectorization
- Need to be careful about load imbalance

\section*{Loop Unrolling (Loop Unwinding)}
```

for (i = 0; i < n; i++) {
a[i] = a[i-1] + a[i] + a[i+1];
}

```
```

for (i = 0; $\mathrm{i}<\mathrm{n}$; i += 4) \{
$a[i]=a[i-1]+a[i]+a[i+1] ;$
$a[i+1]=a[i]+a[i+1]+a[i+2] ;$
$a[i+2]=a[i+1]+a[i+2]+a[i+3] ;$
$a[i+3]=a[i+2]+a[i+3]+a[i+4] ;$
\}
int $f=n \% 4 ;$
for (i = n - f; i < n; i++) \{
$a[i]=a[i-1]+a[i]+a[i+1] ;$
\}

```

\section*{Loop Unrolling (Loop Unwinding)}
- Reduce number of iterations of loops
- Add statement(s) to do work of missing iterations
- JIT compilers try to perform unrolling at run-time
```

for (i = 0; i < n; i++) {
for (j = 0; j < 2*m; j++) {
loop-body(i, j);
}
}

```


\section*{Inner Loop Unrolling}
```

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
y[i] = y[i] + a[i][j]*x[j];
}
}

```
```

for (i=0; i<n; i++) {
for (j=0; j<n; j+=4) {
y[i] = y[i] + a[i][j]*x[j];
y[i] = y[i] + a[i][j+1]*x[j+1];
y[i] = y[i] + a[i][j+2]*x[j+2];
y[i] = y[i] + a[i][j+3]*x[j+3];
}
}

```

\section*{Inner Loop Unrolling}
```

for (i=0; i<n; i++) {
for (j=0; j<n; j+=4) {
y[i] = y[i] + a[i][j]*x[j];
y[i] = y[i] + a[i][j+1]*x[j+1];
y[i] = y[i] + a[i][j+2]*x[j+2];
y[i] = y[i] + a[i][j+3]*x[j+3];
}
}

```
```

for (i=0; i<n; i++) {
for (j=0; j<n; j+=4) {
y[i] = y[i] + a[i][j]*x[j]
+ a[i][j+1]*x[j+1]
+ a[i][j+2]*x[j+2]
+ a[i][j+3]*x[j+3];
}
}

```

\section*{Outer Loop Unrolling + Inner Loop Jamming}
```

for (i=0; i<2*n; i++) {
for(j=0; j<m; j++) {
loop-body(i,j);
}
}

```


\section*{Is Unroll and Jam Legal?}
```

DO I = 1, N
DO J = 1, M
A(I,J) = A(I-1,J+1 )+C
ENDDO
ENDDO

```
\[
\begin{aligned}
& \text { DO } I=1, N, 2 \\
& \text { DO J = } 1, M \\
& \quad A(I, J)=A(I-1, J+1)+C \\
& \quad A(I+1, J)=A(I, J+1)+C \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
\]

\section*{Validity Condition for Loop Unroll/Jam}
- Sufficient condition can be obtained by observing that complete unroll/jam of a loop is equivalent to a loop permutation that moves that loop innermost, without changing order of other loops
- If such a loop permutation is valid, unroll/jam of the loop is valid
- Example: 4D loop ijkl; d1 = (1,-1,0,2), d2 = (1,1,-2,-1)
- i: d1-> (-1,0,2,1) => invalid to unroll/jam
- j: d1-> (1,0,2,-1); d2 -> (1,-2,-1,1) => valid to unroll/jam
- k: d1 -> (1,-1,2,0); d2 -> (1,1,-1,-2) => valid to unroll/jam
- l: d1 and d2 are unchanged; innermost loop always unrollable

\section*{Understanding Loop Unrolling}

\section*{Pros}
- Small loop bodies are problematic, reduces control overhead of loops
- Increases operation-level parallelism in loop body
- Allows other optimizations like reuse of temporaries across iterations

\section*{Cons}
- Increases the executable size
- Increases register usage
- May prevent function inlining

\section*{Loop Tiling}
- Improve data reuse by chunking the data in to smaller blocks (tiles)
- The block is supposed to fit in the cache
- Tries to exploit spatial and temporal locality of data
```

for (i = 0; i < N; i++) {
}

```
```

for (j = 0; j < N; j +=B) {
for (i = j; i < min(N, j+B); j++) {
}
}

```

\section*{MVM with 2x2 Blocking}
```

int i, j, a[100][100], b[100], c[100]; int i, j, x, y, a[100][100], b[100], c[100];
int n = 100;
int n = 100;
for (i = 0; i < n; i++) {
c[i] = 0;
for (j = 0; j < n; j++) {
c[i] = c[i] + a[i][j] * b[j];
}
}

```
```

for (i = 0; i < n; i += 2) {

```
for (i = 0; i < n; i += 2) {
 c[i] = 0;
 c[i] = 0;
 c[i + 1] = 0;
 c[i + 1] = 0;
 for (j = 0; j < n; j += 2) {
 for (j = 0; j < n; j += 2) {
 for (x = i; x < min(i + 2, n); x++) {
 for (x = i; x < min(i + 2, n); x++) {
 for (y = j; y < min(j + 2, n); y++) {
 for (y = j; y < min(j + 2, n); y++) {
 c[x] = c[x] + a[x][y] * b[y];
 c[x] = c[x] + a[x][y] * b[y];
 }
 }
 }
 }
 }
 }
 }
```

    }
    ```

\section*{Loop Tiling}
- Determining the tile size
- Requires accurate estimate of array accesses and the cache size of the target machine
- Loop nest order also influences performance
- Difficult theoretical problem, usually heuristics are applied
- Cache-oblivious algorithms make efficient use of cache without explicit blocking

\section*{Validity Condition for Loop Tiling}
- A contiguous band of loops can be tiled if they are fully permutable
- A band of loops is fully permutable if all permutations of the loops in that band are legal
- Example: \(\mathrm{d}=(1,2,-3)\)
- Tiling all three loops ijk is not valid, since the permutation kij is invalid
- 2D tiling of band ij is valid
- 2D tiling of band \(j k\) is valid
```

```
for (i = 0; i < n; i++)
```

```
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 for (k = 0; k < n; k++)
 loop_body(i,j,k)
 loop_body(i,j,k)
```

for (it = 0; it < n; it+=T)

```
for (it = 0; it < n; it+=T)
```

for (it = 0; it < n; it+=T)

```
for (it = 0; it < n; it+=T)
 for (jt = 0; tj < n; j+=T)
 for (i = it; i < it+T; i++)
 for (j = jt; j < jt+T; j++)
 for (k = 0; k < n; k++)
 loop_body(i,j,k)
```

```
```

                        loop_body(i,j,k)
    ```
```

```
 loop_body(i,j,k)
```

```
```

                        loop_body(i,j,k)
    ```
```

```

Creating Coarse-Grained Parallelism

\section*{Find Work For Threads}
- Setup
- Symmetric multiprocessors with shared-memory
- Threads are running on each core and are coordinating execution with occasional synchronization
- A basic synchronization element is a barrier
- A barrier in a program forces all processes to reach a certain point before execution continues
- Challenge: Balance the granularity of parallelism with communication overheads

\section*{Challenges in Coarse-Grained Parallelism}

Minimize communication and synchronization overhead while evenly load balancing across the processors
- Running everything on one processor achieves minimal communication and synchronization overhead
- Very fine-grained parallelism achieves good load balance, but benefits may be outweighed by frequent communication and synchronization

\section*{Challenges in Coarse-Grained Parallelism}

Minimize communication \(\mathrm{ar}^{\prime} \quad \mathrm{hrr}\) load balancir
- Runnin \({ }_{5}\) achieves synchron..

One expectation from an optimizing compiler is to find the sweet spot
' while evenly
\(\qquad\)
achieves
-refits may
equent
anicauvir and synchronization

\section*{Few Ideas to Try}

\section*{- Single loop}
- Carries a dependence \(\rightarrow\) Try transformations to eliminate the loop-carried dependence
- For example, loop distribution and scalar expansion
- Decide on the granularity of the new parallel loop
- Perfect loop nests
- Try loop interchange to see if the dependence level can be changed

\section*{Privatization}
- Privatization is similar in flavor to scalar expansion
- Temporaries can be made local to each iteration
\begin{tabular}{lc}
& DO \(I=1, N\) \\
S1 & \(T=A(I)\) \\
S2 & \(A(I)=B(I)\) \\
S3 & \(B(I)=T\)
\end{tabular}
S1 t = A(I)
S2
S3
```

```
```

PARALLEL DO I = 1,N

```
```

PARALLEL DO I = 1,N
PRIVATE t
PRIVATE t

```
 A(I) = B(I)
```

    A(I) = B(I)
    B(I) = t
    B(I) = t
    ENDDO

```
ENDDO
```


## Privatization

- A scalar variable $x$ in a loop $L$ is privatizable if every path from the entry of $L$ to a use of $x$ in the loop passes through a definition of $x$
- No use of the variable is upward exposed, i.e., the use never reads a value that was assigned outside the loop
- No use of the variable is from an assignment in an earlier iteration
- Computing upward-exposed variables from a block $x$

$$
u p(x)=u \operatorname{se}(x) \cup\left(\neg \operatorname{def}(x) \cap \bigcup_{y \in \operatorname{succ}(x)} u p(y)\right)
$$

- Computing privatizable variables for a loop body $B$ where $b_{0}$ is the entry block

$$
\text { private }(B)=\neg u p\left(b_{0}\right) \cap\left(\bigcup_{y \in B} \operatorname{def}(y)\right)
$$

## Privatization

- If all dependences carried by a loop involve a privatizable variable, then loop can be parallelized by making the variables private
- Preferred compared to scalar expansion
- Less memory requirement
- Scalar expansion may suffer from false sharing
- However, there can be situations where scalar expansion works but privatization does not


## Comparing Privatization and Scalar Expansion

```
DO I = 1, N
 T = A(I) + B(I)
 A(I-1) = T
ENDDO
```



ENDDO

```
PARALLEL DO I = 1, N
 T$(I) = A(I) + B(I)
 A(I-1) = T$(I)
ENDDO
```

```
 |
PARALLEL DO I = 1, N
 T$(I) = A(I) + B(I)
ENDDO
PARALLEL DO I = 1, N
 A(I-1) = T$(I)
ENDDO
```


## Loop Distribution (Loop Fission)

| DO I = 1, 100 |  |
| :---: | :---: |
| DO J = 1, 100 |  |
| S1 | $A(I, J)=B(I, J)+C(I, J)$ |
| S2 | $D(I, J)=A(I, J-1) * 2.0$ |
|  | NDDO |
|  |  |


| DO I = 1, 100 |  |
| :---: | :---: |
| S1 | DO J = 1, 100 |
|  | $A(I, J)=B(I, J)+C(I, J)$ |
|  | ENDDO |
| S2 | DO J = 1, 100 |
|  | $D(I, J)=A(I, J-1) * 2.0$ |
|  | ENDDO |
|  | ENDDO |
|  | Eliminates loop-carried dependences |

## Validity Condition for Loop Distribution

- Sufficient (but not necessary) condition: A loop with two statements can be distributed if there are no dependences from any instance of the later statement to any instance of the earlier one
- Generalizes to more statements


## Validity Condition for Loop Distribution

- Example: Loop distribution is not valid (executing all S1 first and then all S2)
- Example: Loop distribution is valid

|  | For $I=1, N$ |
| :--- | :--- |
| S1 | $A(I)=B(I)+C(I)$ |
| S2 | $E(I)=A(I+1) * D(I)$ |

EndFor

|  | For $I=1, N$ |
| :--- | :--- |
| S1 | $A(I)=B(I)+C(I)$ |
| S2 | $E(I) \xlongequal{=} A(I-1) * D(I)$ |

EndFor

## Understanding Loop Distribution

## Pros

- Execute source of a dependence before the sink
- Reduces the memory footprint of the original loop
- For both data and code


## Loop Alignment

- Unlike loop distribution, realign the loop to compute and use the values in the same iteration



## More on Loop Alignment

DO $I=1, N$
S1
$A(I)=B(I)+C$
$B(I+1)=A(I)+D$
ENDDO


DO $\mathrm{I}=1, \mathrm{~N}$
S1
S2

$$
A(I+1)=B(I)+C
$$

$$
X(I)=A(I+1)+A(I)
$$

ENDDO
S1

```
DO i = 1, N+1
```

DO i = 1, N+1
if i > 1
if i > 1
B(i) = A(i-1) + D
B(i) = A(i-1) + D
if i < N+1
if i < N+1
A(i) = B(i) + C
A(i) = B(i) + C
ENDDO

```
 ENDDO
```

```
DO i = 0, N
```

DO i = 0, N
if i > 0
if i > 0
A(i+1) = B(i) +C
A(i+1) = B(i) +C
if i < N
if i < N
X(i+1) = A(i+2) + A(i+1)
X(i+1) = A(i+2) + A(i+1)
ENDDO

```
 ENDDO
```


## Loop Fusion (Loop Jamming)



```
L1 DO I = 1, N
 \(A(I)=B(I)+1\)
 ENDDO
 L2 DO \(\mathrm{I}=1\), N
 \(C(I)=A(I)+C(I-1)\)
 ENDDO
 L3 DO I = 1, N
 \(D(I)=A(I)+X\)
 ENDDO
```


## Loop Fusion (Loop Jamming)

```
L1 DO I = 1, N
 \(A(I)=B(I)+1\)
 ENDDO
L2 DO I = 1, N
 \(C(I)=A(I)+C(I-1)\)
 ENDDO
L3 DO I = 1, N
 \(D(I)=A(I)+X\)
 ENDDO
```

L13 PARALLEL DO I = 1, N $A(I)=B(I)+1$ $D(I)=A(I)+X$
ENDDO
L2 DO I = 1, N

$$
C(I)=A(I)+C(I-1)
$$

ENDDO

## Validity Condition for Loop Fusion

- Consider a loop-independent dependence between statements in two different loops (i.e., from S1 to S2)
- A dependence is fusion-preventing if fusing the two loops causes the dependence to be carried by the combined loop in the reverse direction (from S2 to S1)



## Understanding Loop Fusion

## Pros

- Reduce overhead of loops
- May improve temporal locality


## Cons

- May decrease data locality in the fused loop



## Loop Interchange



## Loop Interchange

DO I = 1, N
DO J = 1, M $A(I+1, J)=A(I, J)+B(I, J)$
ENDDO
ENDDO

$$
\begin{aligned}
& \text { DO } J=1, M \\
& \text { DO } I=1, N \\
& \quad A(I+1, J)=A(I, J)+B(I, J) \\
& \quad \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$



PARALLEL DO J = 1, M
DO $\mathrm{I}=1, \mathrm{~N}$
$A(I+1, J)=A(I, J)+B(I, J)$
ENDDO
END PARALLEL DO

## Loop Interchange

## Vectorization

- Move dependence-free loops to innermost level

Coarse-grained Parallelism

- Move dependence-free loops to outermost level


## Condition for Loop Interchange

- In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only " 0 " entries

```
DO I = 1, N
 DO J = 1, M
 A(I+1,J+1) = A(I,J) + B(I,J)
 ENDDO
ENDDO
```


## Code Generation Strategy

1. Continue till there are no more columns to move

- Choose a loop from the direction matrix that has all " 0 " entries in the column
- Move it to the outermost position
- Eliminate the column from the direction matrix

2. Pick loop with most " + " entries, move to the next outermost position

- Generate a sequential loop
- Eliminate the column
- Eliminate any rows that represent dependences carried by this loop

3. Repeat from Step 1

## Code Generation Example

```
DO I = 1, N
 DO J = 1, M
 DO K = 1, L
 A(I+1,J,K) = A(I,J,K) + X1
 B(I,J,K+1) = B(I,J,K) + X2
 C(I+1,J+1,K+1) = C(I,J,K) + X3
 ENDDO
 ENDDO
ENDDO
```


## Code Generation Example

DO $\mathrm{I}=1, \mathrm{~N}$
DO J = 1, M
DO $K=1, L$
$A(I+1, J, K)=A(I, J, K)+X 1$
$B(I, J, K+1)=B(I, J, K)+X 2$ $C(I+1, J+1, K+1)=C(I, J, K)+X 3$ ENDDO
ENDDO
ENDDO

## Generated Code

```
DO I = 1, N
 PARALLEL DO J = 1, M }\mp@subsup{}{}{\circ
 DO K = 1, L
 ENDDO
 END PARALLEL DO
ENDDO
```

        \(A(I+1, J, K)=A(I, J, K)+X 1\)
        \(B(I, J, K+1)=B(I, J, K)+X 2\)
        \(C(I+1, J+1, K+1)=C(I, J, K)+X 3\)
    | + | 0 | 0 |
| :---: | :---: | :---: |
| 0 | $\mathbf{0}$ | + |
| + | + | + |

## How can we parallelize this loop?



## Loop Reversal

```
DO I = 2, N+1
 DO J = 2, M+1
 DO K = 1, L
 A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
 ENDDO
 ENDDO
ENDDO

\section*{ENDDO}
```

DO I = 2, N+1

```
DO I = 2, N+1
 DO J = 2, M+1
 DO J = 2, M+1
 DO K = L, 1, -1
 DO K = L, 1, -1
 A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
 A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
 ENDDO
```

        ENDDO
    ```
```

    ENDDO
    ```
 ENDDO
ENDDO
```

ENDDO

```
\begin{tabular}{|l|l|l|}
\hline \(\mathbf{0}\) & \(\boldsymbol{+}\) & - \\
\hline \(\boldsymbol{+}\) & \(\mathbf{0}\) & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 0 & + & + \\
\hline+ & 0 & + \\
\hline
\end{tabular}

\section*{Loop Reversal}
- When the iteration space of a loop is reversed, the direction of dependences within that reversed iteration space are also reversed
- A " + " dependence becomes a "-" dependence, and vice versa
- We cannot perform loop reversal if the loop carries a dependence

\section*{Perform Interchange after Loop Reversal}

\section*{Which Transformations are Most Important?}
- Selecting the best loops for parallelization is a NP-complete problem
- Flow dependences by nature are difficult to remove
- Try to reorder statements as in loop peeling, loop distribution
- Techniques like scalar expansion, privatization can be useful
- Loops often use scalars for temporary values

\section*{Challenges for Real-World Compilers}
- Conditional execution
- Symbolic loop bounds
- Indirect memory accesses
-...

\section*{References}
- R. Allen and K. Kennedy - Optimizing Compilers for Multicore Architectures, Chapters 5-6.
- S. Midkiff - Automatic Parallelization: An Overview of Fundamental Compiler Techniques.
- P. Sadayappan and A. Sukumaran Rajam - CS 5441: Parallel Computing, Ohio State University.```

