
CS 610: Loop
Transformations

Swarnendu Biswas

Semester 2022-2023-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Enhancing Program Performance

Fundamental issues
• Adequate fine-grained parallelism

• Multiple pipelined functional units in each core

• Exploit vector instruction sets (SSE, AVX, AVX-512)

• Adequate parallelism for SMP-type systems
• Keep multiple asynchronous processors busy with work

• Minimize cost of memory accesses

CS 610 Swarnendu Biswas

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

• Code restructuring optimizations

• Prefetching optimizations

• Data layout optimizations

• Code layout optimizations

CS 610 Swarnendu Biswas

Loop Optimizations

• Loops are one of most commonly used constructs in HPC program

• Compiler performs many of loop optimization techniques
automatically
• In some cases source code modifications enhance optimizer’s ability to

transform code

CS 610 Swarnendu Biswas

Reordering Transformations

• A reordering transformation does not add or remove statements from
a loop nest
• Only reorders the execution of the statements that are already in the loop

CS 610 Swarnendu Biswas

Do not add or remove
statements

Do not add or remove
any new dependences

Reordering Transformations

• A reordering transformation does not add or remove statements from
a loop nest
• Only reorders the execution of the statements that are already in the loop

CS 610 Swarnendu Biswas

Do not add or remove
statements

Do not add or remove
any new dependences

A reordering transformation is valid if it preserves all existing
dependences in the loop

Iteration Reordering and Parallelization

• A transformation that reorders the iterations of a level-k loop,
without making any other changes, is valid if the loop carries no
dependence

• Each iteration of a loop may be executed in parallel if it carries no
dependences

CS 610 Swarnendu Biswas

Data Dependence Graph and Parallelization

• If the Data Dependence Graph (DDG) is acyclic, then vectorization of
the program is possible and is straightforward

• Otherwise, try to transform the DDG to an acyclic graph

CS 610 Swarnendu Biswas

Enhancing Fine-Grained
Parallelism
Focus on Parallelization of Inner Loops

CS 610 Swarnendu Biswas

System Setup

• Setup: vector or superscalar architectures

• Focus is mostly on parallelizing the inner loops

• We will see optimizations for coarse-grained parallelism later

CS 610 Swarnendu Biswas

Loop Interchange (Loop Permutation)

• Switch the nesting order of loops
in a perfect loop nest

• Can increase parallelism, can
improve spatial locality

• Dependence is now carried by
the outer loop
• Inner-loop can be vectorized

DO I = 1, N

DO J = 1, M

S A(I,J+1) = A(I,J) + B

ENDDO

ENDDO

CS 610 Swarnendu Biswas

DO J = 1, M

DO I = 1, N

S A(I,J+1) = A(I,J) + B

ENDDO

ENDDO

Interchange of Non-rectangular Loops

for (i=0; i<n; i++)

for (j=0; j<i; j++)

y[i] = y[i] + A[i][j]*x[j];

???

CS 610 Swarnendu Biswas

Interchange of Non-rectangular Loops

for (i=0; i<n; i++)

for (j=0; j<i; j++)

y[i] = y[i] + A[i][j]*x[j];

for (j=0; j<n; j++)

for (i=j+1; i<n; i++)

y[i] = y[i] + A[i][j]*x[j];

CS 610 Swarnendu Biswas

Example of Loop Interchange

do i = 1, n

do j = 1, n

C(i, j) = C(i+1, j-1)

enddo

enddo

do j = 1, n

do i = 1, n

C(i,j) = C(i+1,j-1)

enddo

enddo

CS 610 Swarnendu Biswas

Valid?

Validity of Loop Interchange

1. Construct direction vectors for all possible dependences in the loop
• Also called a direction matrix

• Identical direction vectors are represented by a single row in the matrix

2. Compute direction vectors after permutation

3. Permutation of the loops in a perfect nest is legal iff there are no “-”
direction as the leftmost non–“0” direction in any direction vector

CS 610 Swarnendu Biswas

Legality of Loop Interchange

(0, 0)

• Dependence is loop-independent

(0, +)

• Dependence is carried by the jth loop, which remains the same after interchange

(+, 0)

• Dependence is carried by the ith loop, relations do not change after interchange

(+, +)

• Dependence relations remain positive in both dimensions

(+, -)

• Dependence is carried by ith loop, interchange results in an illegal direction vector

(0, +)

• Dependence is carried by the jth loop, which remains the same after interchange

(0, -) (-, *)

• Such direction vectors are illegal, should not appear in the original loop

CS 610 Swarnendu Biswas

Validity of Loop Interchange

• Loop interchange is valid for a 2D
loop nest if none of the dependence
vectors has any negative
components

• Interchange is legal: (1,1), (2,1),
(0,1), (3,0)

• Interchange is not legal: (1,-1), (3,-2)

CS 610 Swarnendu Biswas

DO J = 1, M

DO I = 1, N

A(I,J+1) = A(I+1,J) + B

ENDDO

ENDDO

Validity of Loop Permutation

• Generalization to higher-dimensional loops

• Permute all dependence vectors exactly the same way as the
intended loop permutation

• If any permuted vector is lexicographically negative, permutation is
illegal

• Example: d1 = (1,-1,1) and d2 = (0,2,-1)
• ijk -> jik? (1,-1,1) -> (-1,1,1): illegal
• ijk -> kij? (0,2,-1) -> (-1,0,2): illegal
• ijk -> ikj? (0,2,-1) -> (0,-1,2): illegal
• No valid permutation:

• j cannot be outermost loop (-1 component in d1)
• k cannot be outermost loop (-1 component in d2)

CS 610 Swarnendu Biswas

Valid or Invalid Loop Interchange?

DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

Benefits from Loop Permutation

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k]*B[k][j];

Stride ikj kij jik ijk jki kji

C[i][j] 1 1 0 0 n n

A[i][k] 0 0 1 1 n n

B[k][j] 1 1 n n 0 0

CS 610 Swarnendu Biswas

Understanding Loop Interchange

Pros

• Goal is to improve locality of
reference or allow vectorization

Cons

• Need to careful about the
iteration order, order of array
accesses, and data involved

CS 610 Swarnendu Biswas

Does Loop Interchange/Permutation Always
Help?
do i = 1, 10000

do j = 1, 1000

a[i] = a[i] + b[j,i] * c[i]

end do

end do

CS 610 Swarnendu Biswas

do I = 1, N

do J = 1, M

do K = 1, L

A(I+1,J+1,K) = A(I,J,K) + B

end do

end do

end do

• Type and benefit from loop interchange depends on the target machine, the data structures accessed,
memory layout and stride patterns

• Optimization choices for the snippet on the right
• Vectorize J and K, Vectorize I assuming column-major layout, Parallelize K with threads

Loop Shifting

• In a perfect loop nest, if loops at level i, i+1,…, i+n carry no
dependence—that is, all dependences are carried by loops at level
less than i or greater than i+n—it is always legal to shift these loops
inside of loop i+n+1.

• These loops will not carry any dependences in their new position.

CS 610 Swarnendu Biswas

+ 0 + 0 0 0

0 + - + + 0

0 0 0 0 + +

0 0 0 0 0 +

Loops i to i+n

Dependence carried
by outer loops

Dependence carried
by inner loops

Loop Shift for Matrix Multiply

DO I = 1, N

DO J = 1, N

DO K = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

We can move
loops I and J inside

Is the loop nest
vectorizable as is?

Loop Shift for Matrix Multiply

DO I = 1, N

DO J = 1, N

DO K = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO

DO K = 1, N

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

Scalar Expansion

DO I = 1, N

S1 T = A(I)

S2 A(I) = B(I)

S3 B(I) = T

ENDDO

CS 610 Swarnendu Biswas

S1

S2

S3

Scalar Expansion

DO I = 1, N

S1 $T(I) = A(I)

S2 A(I) = B(I)

S3 B(I) = $T(I)

ENDDO

T = $T(N)

CS 610 Swarnendu Biswas

S1

S2

S3

Eliminate dependences that arise from reuse of
memory locations at the cost of extra memory

Scalar Expansion

DO I = 1, N

T = T + A(I) + A(I-1)

A(I) = T

ENDDO

$T(0) = T

DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)

A(I) = $T(I)

ENDDO

T = $T(N)

CS 610 Swarnendu Biswas

Can we parallelize the I loop?
Check the dependence graph.

Understanding Scalar Expansion

Pros

• Eliminates dependences due to
reuse of memory locations

• Helps with uncovering
parallelism

Cons

• Increases memory overhead

• Complicates addressing

CS 610 Swarnendu Biswas

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

ENDDO

DO I = 1, N, 64
DO i = 0, 63

T = A(I+i) + A(I+1+i)
A(I+i) = T + B(I+i)

ENDDO

DO I = 1, N, 64
DO i = 0, 63

$T(i) = A(I+i) + A(I+1+i)
A(I+i) = $T(i) + B(I+i)

ENDDO

Strip-mining Strip loop

Can also try forward
substitution

Limits of Scalar Expansion

DO I = 1, 100

S1 T = A(I) + B(I)

S2 C(I) = T + T

S3 T = D(I) - B(I)

S4 A(I+1) = T * T

ENDDO

DO I = 1, 100

S1 $T(I) = A(I) + B(I)

S2 C(I) = $T(I) + $T(I)

S3 $T(I) = D(I) - B(I)

S4 A(I+1) = $T(I) * $T(I)

ENDDO

CS 610 Swarnendu Biswas

Can we vectorize this loop
nest? Draw the dependence

graphs to check.

Scalar Renaming

DO I = 1, 100

S1 T = A(I) + B(I)

S2 C(I) = T + T

S3 T = D(I) - B(I)

S4 A(I+1) = T * T

ENDDO

CS 610 Swarnendu Biswas

DO I = 1, 100

S1 T1 = A(I) + B(I)

S2 C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2

ENDDO

T = T2

Can we vectorize this
loop nest given as is?

Allow Vectorization with Statement Interchange

CS 610 Swarnendu Biswas

DO I = 1, 100

S1 T1 = A(I) + B(I)

S2 C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2

ENDDO

T = T2

DO I = 1, 100

S3 T2 = D(I) - B(I)

S4 A(I+1) = T2 * T2

S1 T1 = A(I) + B(I)

S2 C(I) = T1 + T1

ENDDO

T = T2

S3 T2[1:100] = D(1:100) - B(1:100)

S4 A[2:101] = T2[1:100] * T2[1:100]

S1 T1[1:100] = A[1:100] + B[1:100]

S2 C[1:100] = T1[1:100] + T1[1:100]

T = T2[100]

Array Renaming

CS 698L Swarnendu Biswas

DO I = 1, 100

S1 A(I) = A(I-1) + X

S2 Y(I) = A(I) + Z

S3 A(I) = B(I) + C

ENDDO

DO I = 1, 100

S1 $A(I) = A(I-1) + X

S2 Y(I) = $A(I) + Z

S3 A(I) = B(I) + C

ENDDO

Supporting array renaming requires sophisticated
analysis

Node Splitting

CS 610 Swarnendu Biswas

DO I = 1, 100

S1 A(I) = X(I+1) + X(I)

S2 X(I+1) = B(I) + 10

ENDDO

S1 S2
anti
𝛿0
−1

flow
𝛿1

DO I = 1, 100

S0 $X(I) = X(I+1)

S1 A(I) = $X(I) + X(I)

S2 X(I+1) = B(I) + 10

ENDD0

Index-Set Splitting

CS 698L Swarnendu Biswas

An index-set splitting transformation subdivides the loop into different iteration
ranges

DO I = 1, 100

A(I+20) = A(I) + B

ENDDO

DO I = 1, 100, 20

DO i = I, I+19

A(i+20) = A(i) + B

ENDDO

ENDDO

strip-
mining

Loop Peeling
• Splits any problematic iterations from the loop body

• Could be first, middle, or last few iterations

• Change from a loop-carried dependence to loop-independent
dependence

• Transformed loop carries no dependence, can be parallelized

CS 610 Swarnendu Biswas

DO I = 1, N
A(I) = A(I) + A(1)

ENDDO

A(1) = A(1) + A(1)
DO I = 2, N
A(I) = A(I) + A(1)

ENDDO

Loop Peeling

• Splits any problematic iterations from the loop body
• Could be first, middle, or last few iterations

• Change from a loop-carried dependence to loop-independent
dependence

CS 610 Swarnendu Biswas

int p = 10;
for (int i = 0; i < 10; ++i) {

y[i] = x[i] + x[p];
p = i;

}

y[0] = x[0] + x[10];
for (int i = 1; i < 10; ++i) {

y[i] = x[i] + x[i-1];
}

https://en.wikipedia.org/wiki/Loop_splitting

Loop Splitting

DO I = 1, N

A(I) = A(N/2) + B(I)

ENDDO

M = N/2

DO I = 1, M-1

A(I) = A(N/2) + B(I)

ENDDO

A(M) = A(N/2) + B(I)

DO I = M+1, N

A(I) = A(N/2) + B(I)

ENDDO

CS 610 Swarnendu Biswas

assume N is
divisible by 2

Section-Based Splitting

DO I = 1,N

DO J = 1, N/2

S1 B(J,I) = A(J,I) + C

ENDDO

DO J = 1,N

S2 A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

DO I = 1,N

DO J = 1, N/2

S1 B(J,I) = A(J,I) + C

ENDDO

DO J = 1,N/2

S2 A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

CS 698L Swarnendu Biswas

𝛿0

𝛿1
−1

S3 is
independent

Enabling Vectorization with Section-Based Splitting

CS 698L Swarnendu Biswas

DO I = 1,N

DO J = 1, N/2

S1 B(J,I) = A(J,I) + C

ENDDO

DO J = 1,N/2

S2 A(J,I+1) = B(J,I) + D

ENDDO

DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

DO I = 1,N
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D
ENDDO

DO I = 1,N
DO J = 1,N/2

S1 B(J,I) = A(J,I) + C
ENDDO
DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D
ENDDO

ENDDO

Enabling Vectorization with Section-Based Splitting

CS 698L Swarnendu Biswas

DO I = 1,N

DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D

ENDDO

DO I = 1,N

DO J = 1,N/2

S1 B(J,I) = A(J,I) + C

ENDDO

DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D

ENDDO

ENDDO

M = N/2

S3 A(M+1:N,2:N+1) = B(M+1:N,1:N) + D

DO I = 1, N

S1 B(1:M,I) = A(1:M,I) + C

S2 A(1:M,I+1) = B(1:M,I) + D

ENDDO

cannot
vectorize I

Draw the Dependence Graph

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

ENDDO

ENDDO

CS 610 Swarnendu Biswas

Which loops carry
dependences?

Loop Skewing

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

ENDDO

ENDDO

CS 610 Swarnendu Biswas

I+J is same

Loop Skewing

DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO

CS 610 Swarnendu Biswas

j = I+J

• What are the dependences now?
• Which loop carries the dependence?

Perform Loop Interchange

DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO

DO j = 2, N+N

DO I = max(1,j-N), min(N,j-1)

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO

CS 610 Swarnendu Biswas

Are the loops
vectorizable?

Use Fourier-
Motzkin elimination

Understanding Loop Skewing

Pros

• Reshapes the iteration space to
find possible parallelism

• Allows for loop interchange in
future

Cons

• Resulting iteration space can be
trapezoidal

• Irregular loops are not very
amenable for vectorization

• Need to be careful about load
imbalance

CS 610 Swarnendu Biswas

Loop Unrolling (Loop Unwinding)

for (i = 0; i < n; i++) {

a[i] = a[i−1] + a[i] + a[i+1];

}

for (i = 0; i < n; i += 4) {

a[i] = a[i−1] + a[i] + a[i+1];

a[i+1] = a[i] + a[i+1] + a[i+2];

a[i+2] = a[i+1] + a[i+2] + a[i+3];

a[i+3] = a[i+2] + a[i+3] + a[i+4];

}

int f = n % 4;

for (i = n − f; i < n; i++) {

a[i] = a[i−1] + a[i] + a[i+1];

}

CS 610 Swarnendu Biswas

Loop Unrolling (Loop Unwinding)

• Reduce number of iterations of loops
• Add statement(s) to do work of missing iterations

• JIT compilers try to perform unrolling at run-time

CS 610 Swarnendu Biswas

for (i = 0; i < n; i++) {
for (j = 0; j < 2*m; j++) {
loop-body(i, j);

}
}

for (i = 0; i < n; i++) {
for (j = 0; j < 2*m; j+=2) {
loop-body(i, j);
loop-body(i, j+1);

}
} 2-way unrolled

Inner Loop Unrolling

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

y[i] = y[i] + a[i][j]*x[j];

}

}

for (i=0; i<n; i++) {

for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j];

y[i] = y[i] + a[i][j+1]*x[j+1];

y[i] = y[i] + a[i][j+2]*x[j+2];

y[i] = y[i] + a[i][j+3]*x[j+3];

}

}

CS 610 Swarnendu Biswas

Inner Loop Unrolling

for (i=0; i<n; i++) {

for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j];

y[i] = y[i] + a[i][j+1]*x[j+1];

y[i] = y[i] + a[i][j+2]*x[j+2];

y[i] = y[i] + a[i][j+3]*x[j+3];

}

}

for (i=0; i<n; i++) {

for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j]

+ a[i][j+1]*x[j+1]

+ a[i][j+2]*x[j+2]

+ a[i][j+3]*x[j+3];

}

}

CS 610 Swarnendu Biswas

Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++) {

for(j=0; j<m; j++) {

loop-body(i,j);

}

}

for (i=0; i<2*n; i+=2) {

for(j=0; j<m; j++) {

loop-body(i,j)

}

for(j=0; j<m; j++) {

loop-body(i+1,j)

}

}

CS 610 Swarnendu Biswas

for (i=0; i<2*n; i+=2) {

for(j=0; j<m; j++) {

loop-body(i,j)

loop-body(i+1,j)

}

}

2-way outer unroll does
not increase operation-

level parallelism

Is Unroll and Jam Legal?

DO I = 1, N

DO J = 1, M

A(I,J) = A(I-1,J+1)+C

ENDDO

ENDDO

DO I = 1, N, 2

DO J = 1, M

A(I,J) = A(I-1,J+1)+C

A(I+1,J) = A(I,J+1)+C

ENDDO

ENDDO

CS 610 Swarnendu Biswas

Validity Condition for Loop Unroll/Jam

• Sufficient condition can be obtained by observing that complete
unroll/jam of a loop is equivalent to a loop permutation that moves
that loop innermost, without changing order of other loops

• If such a loop permutation is valid, unroll/jam of the loop is valid

• Example: 4D loop ijkl; d1 = (1,-1,0,2), d2 = (1,1,-2,-1)
• i: d1-> (-1,0,2,1) => invalid to unroll/jam

• j: d1-> (1,0,2,-1); d2 -> (1,-2,-1,1) => valid to unroll/jam

• k: d1 -> (1,-1,2,0); d2 -> (1,1,-1,-2) => valid to unroll/jam

• l: d1 and d2 are unchanged; innermost loop always unrollable

CS 610 Swarnendu Biswas

Understanding Loop Unrolling

Pros

• Small loop bodies are problematic,
reduces control overhead of loops

• Increases operation-level parallelism
in loop body

• Allows other optimizations like reuse
of temporaries across iterations

Cons

• Increases the executable size

• Increases register usage

• May prevent function inlining

CS 610 Swarnendu Biswas

Loop Tiling

• Improve data reuse by chunking the data in to smaller blocks (tiles)
• The block is supposed to fit in the cache

• Tries to exploit spatial and temporal locality of data

CS 610 Swarnendu Biswas

for (i = 0; i < N; i++) {
…

}

for (j = 0; j < N; j +=B) {
for (i = j; i < min(N, j+B); j++) {

…
}

}

MVM with 2x2 Blocking
int i, j, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i++) {

c[i] = 0;

for (j = 0; j < n; j++) {

c[i] = c[i] + a[i][j] * b[j];

}

}

int i, j, x, y, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i += 2) {

c[i] = 0;

c[i + 1] = 0;

for (j = 0; j < n; j += 2) {

for (x = i; x < min(i + 2, n); x++) {

for (y = j; y < min(j + 2, n); y++) {

c[x] = c[x] + a[x][y] * b[y];

}

}

}

}

https://en.wikipedia.org/wiki/Loop_nest_optimization

Loop Tiling

• Determining the tile size
• Requires accurate estimate of array accesses and the cache size of the target

machine

• Loop nest order also influences performance

• Difficult theoretical problem, usually heuristics are applied

• Cache-oblivious algorithms make efficient use of cache without explicit
blocking

CS 610 Swarnendu Biswas

Validity Condition for Loop Tiling

• A contiguous band of loops can be
tiled if they are fully permutable

• A band of loops is fully permutable
if all permutations of the loops in
that band are legal

• Example: d = (1,2,-3)
• Tiling all three loops ijk is not valid,

since the permutation kij is invalid

• 2D tiling of band ij is valid

• 2D tiling of band jk is valid

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

loop_body(i,j,k)

CS 610 Swarnendu Biswas

for (it = 0; it < n; it+=T)

for (jt = 0; tj < n; j+=T)

for (i = it; i < it+T; i++)

for (j = jt; j < jt+T; j++)

for (k = 0; k < n; k++)

loop_body(i,j,k)

Creating Coarse-Grained
Parallelism

CS 610 Swarnendu Biswas

Find Work For Threads

• Setup
• Symmetric multiprocessors with shared-memory
• Threads are running on each core and are coordinating execution with

occasional synchronization

• A basic synchronization element is a barrier
• A barrier in a program forces all processes to reach a certain point before

execution continues

• Challenge: Balance the granularity of parallelism with communication
overheads

CS 610 Swarnendu Biswas

Challenges in Coarse-Grained Parallelism

• Running everything on one processor
achieves minimal communication and
synchronization overhead

• Very fine-grained parallelism achieves
good load balance, but benefits may
be outweighed by frequent
communication and synchronization

CS 610 Swarnendu Biswas

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Challenges in Coarse-Grained Parallelism

• Running everything on one processor
achieves minimal communication and
synchronization overhead

• Very fine-grained parallelism achieves
good load balance, but benefits may
be outweighed by frequent
communication and synchronization

CS 610 Swarnendu Biswas

Minimize communication and synchronization overhead while evenly
load balancing across the processors

One expectation from an
optimizing compiler is to

find the sweet spot

Few Ideas to Try

• Single loop
• Carries a dependence ➔ Try transformations to eliminate the loop-carried

dependence
• For example, loop distribution and scalar expansion

• Decide on the granularity of the new parallel loop

• Perfect loop nests
• Try loop interchange to see if the dependence level can be changed

CS 610 Swarnendu Biswas

Privatization

• Privatization is similar in flavor to scalar expansion

• Temporaries can be made local to each iteration

CS 610 Swarnendu Biswas

DO I = 1,N

S1 T = A(I)

S2 A(I) = B(I)

S3 B(I) = T

ENDDO

PARALLEL DO I = 1,N

PRIVATE t

S1 t = A(I)

S2 A(I) = B(I)

S3 B(I) = t

ENDDO

Privatization

• A scalar variable x in a loop L is privatizable if every path from the
entry of L to a use of x in the loop passes through a definition of x
• No use of the variable is upward exposed, i.e., the use never reads a value

that was assigned outside the loop

• No use of the variable is from an assignment in an earlier iteration

• Computing upward-exposed variables from a block 𝑥

• Computing privatizable variables for a loop body 𝐵 where 𝑏0 is the
entry block

CS 610 Swarnendu Biswas

𝑢𝑝 𝑥 = 𝑢𝑠𝑒 𝑥 ∪ (¬ 𝑑𝑒𝑓 𝑥 ∩ ራ

𝑦∈𝑠𝑢𝑐𝑐(𝑥)

𝑢𝑝(𝑦))

𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝐵 = ¬𝑢𝑝 𝑏0 ∩ (ራ

𝑦∈𝐵

𝑑𝑒𝑓(𝑦))

Privatization

• If all dependences carried by a loop involve a privatizable variable,
then loop can be parallelized by making the variables private

• Preferred compared to scalar expansion
• Less memory requirement

• Scalar expansion may suffer from false sharing

• However, there can be situations where scalar expansion works but
privatization does not

CS 610 Swarnendu Biswas

Comparing Privatization and Scalar Expansion
DO I = 1, N

T = A(I) + B(I)

A(I-1) = T

ENDDO

PARALLEL DO I = 1, N

T$(I) = A(I) + B(I)

A(I-1) = T$(I)

ENDDO

CS 610 Swarnendu Biswas

DO I = 1, N

PRIVATE T

T = A(I) + B(I)

A(I-1) = T

ENDDO

PARALLEL DO I = 1, N

T$(I) = A(I) + B(I)

ENDDO

PARALLEL DO I = 1, N

A(I-1) = T$(I)

ENDDO

Loop Distribution (Loop Fission)

DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

S2 D(I,J) = A(I,J-1) * 2.0

ENDDO

ENDDO

DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

ENDDO

DO J = 1, 100

S2 D(I,J) = A(I,J-1) * 2.0

ENDDO

ENDDO

CS 610 Swarnendu Biswas

Eliminates loop-carried
dependences

Validity Condition for Loop Distribution

• Sufficient (but not necessary) condition: A loop with two statements
can be distributed if there are no dependences from any instance of
the later statement to any instance of the earlier one
• Generalizes to more statements

CS 610 Swarnendu Biswas

Validity Condition for Loop Distribution

• Example: Loop distribution is not
valid (executing all S1 first and
then all S2)

• Example: Loop distribution is
valid

For I = 1, N

S1 A(I) = B(I) + C(I)

S2 E(I) = A(I+1) * D(I)

EndFor

CS 610 Swarnendu Biswas

For I = 1, N

S1 A(I) = B(I) + C(I)

S2 E(I) = A(I-1) * D(I)

EndFor

Understanding Loop Distribution

Pros

• Execute source of a dependence
before the sink

• Reduces the memory footprint of the
original loop
• For both data and code

Cons

• Can increase the synchronization
required between dependence points

CS 610 Swarnendu Biswas

Loop Alignment

• Unlike loop distribution, realign the loop to compute and use the
values in the same iteration

CS 610 Swarnendu Biswas

DO I = 2, N

S1 A(I) = B(I) + C(I)

S2 D(I) = A(I-1) * 2.0

ENDDO

Cannot be
parallelized DO i = 1, N+1

if i > 1 && i < N+1

S1 A(i) = B(i) + C(i)

if i < N

S2 D(i+1) = A(i) * 2.0

ENDDO
carried dependence

becomes a loop
independent

More on Loop Alignment

CS 698L Swarnendu Biswas

DO I = 1, N

S1 A(I) = B(I) + C

S2 B(I+1) = A(I) + D

ENDDO

DO i = 1, N+1

if i > 1

S1 B(i) = A(i-1) + D

if i < N+1

S2 A(i) = B(i) + C

ENDDO

A is aligned, B
is misaligned

DO I = 1, N

S1 A(I+1) = B(I) + C

S2 X(I) = A(I+1) + A(I)

ENDDO

DO i = 0, N

if i > 0

S1 A(i+1) = B(i) + C

if i < N

S2 X(i+1) = A(i+2) + A(i+1)

ENDDO

Loop Fusion (Loop Jamming)

DO I = 1, N

S1 A(I) = B(I) + 1

S2 C(I) = A(I) + C(I-1)

S3 D(I) = A(I) + X

ENDDO

L1 DO I = 1, N

A(I) = B(I) + 1

ENDDO

L2 DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO

L3 DO I = 1, N

D(I) = A(I) + X

ENDDO

CS 610 Swarnendu Biswas

loop-carried
dependence

Loop Fusion (Loop Jamming)

L1 DO I = 1, N

A(I) = B(I) + 1

ENDDO

L2 DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO

L3 DO I = 1, N

D(I) = A(I) + X

ENDDO

L13 PARALLEL DO I = 1, N

A(I) = B(I) + 1

D(I) = A(I) + X

ENDDO

L2 DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO

CS 610 Swarnendu Biswas

Validity Condition for Loop Fusion

• Consider a loop-independent dependence between statements in
two different loops (i.e., from S1 to S2)

• A dependence is fusion-preventing if fusing the two loops causes the
dependence to be carried by the combined loop in the reverse
direction (from S2 to S1)

CS 610 Swarnendu Biswas

DO I = 1, N

S1 A(I) = B(I) + C

ENDDO

DO I = 1, N

S2 D(I) = A(I+1) + E

ENDDO

DO I = 1, N

S1 A(I) = B(I) + C

S2 D(I) = A(I+1) + E

ENDDO No
Loop independent
flow dependence

Backward loop-carried
anti dependence

Understanding Loop Fusion

Pros

• Reduce overhead of loops

• May improve temporal locality

Cons

• May decrease data locality in the
fused loop

CS 610 Swarnendu Biswas

DO I = 1, N

S1 A(I) = B(I) + C

ENDDO

DO I = 1, N

S2 D(I) = A(I-1) + E

ENDDO

DO I = 1, N

S1 A(I) = B(I) + C

S2 D(I) = A(I-1) + E

ENDDO

Yes

Loop Interchange

DO I = 1, N

DO J = 1, M

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO

CS 610 Swarnendu Biswas

Loop I carries
a dependence

Parallelizing J is good for vectorization, but not
from coarse-grained parallelism

Loop Interchange

DO I = 1, N

DO J = 1, M

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO

DO J = 1, M

DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO

CS 610 Swarnendu Biswas

PARALLEL DO J = 1, M

DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

END PARALLEL DO

Dependence-free loops
should move to the

outermost level

Loop Interchange

Vectorization

• Move dependence-free loops to
innermost level

Coarse-grained Parallelism

• Move dependence-free loops to
outermost level

CS 610 Swarnendu Biswas

Condition for Loop Interchange

• In a perfect loop nest, a loop can be parallelized at the outermost
level if and only if the column of the direction matrix for that nest
contains only “0” entries

CS 610 Swarnendu Biswas

DO I = 1, N

DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)

ENDDO

ENDDO

Code Generation Strategy

1. Continue till there are no more columns to move
• Choose a loop from the direction matrix that has all “0” entries in the column

• Move it to the outermost position

• Eliminate the column from the direction matrix

2. Pick loop with most “+” entries, move to the next outermost
position
• Generate a sequential loop

• Eliminate the column

• Eliminate any rows that represent dependences carried by this loop

3. Repeat from Step 1

CS 610 Swarnendu Biswas

Code Generation Example

DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

• What is the direction matrix?
• Can we permute the loops?

Code Generation Example

DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

+ 0 0

0 0 +

+ + +

Since there are no columns with all
“0” entries, none of the loops can be
parallelized at the outermost level

Generated Code

DO I = 1, N

PARALLEL DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

END PARALLEL DO

ENDDO

CS 610 Swarnendu Biswas

How did we
pick loop J?

+ 0 0

0 0 +

+ + +

How can we parallelize this loop?

DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

0 + -

+ 0 -

No single loop carries all the dependences,
so we can only parallelize loop K

Loop Reversal
DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO

DO I = 2, N+1

DO J = 2, M+1

DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

0 + -

+ 0 -

0 + +

+ 0 +

Loop Reversal

• When the iteration space of a loop is reversed, the direction of
dependences within that reversed iteration space are also
reversed
• A “+" dependence becomes a “-" dependence, and vice versa

• We cannot perform loop reversal if the loop carries a
dependence

CS 610 Swarnendu Biswas

Perform Interchange after Loop Reversal

DO K = L, 1, -1

DO I = 2, N+1

DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas

+ 0 +

+ + 0

Parallelize
loops I and J

Increases options for performing other
optimizations

Which Transformations are Most Important?

• Selecting the best loops for parallelization
is a NP-complete problem

• Flow dependences by nature are difficult
to remove
• Try to reorder statements as in loop peeling,

loop distribution

• Techniques like scalar expansion,
privatization can be useful
• Loops often use scalars for temporary values

CS 610 Swarnendu Biswas

+ + 0 0

+ 0 + 0

+ 0 0 +

0 + 0 0

0 0 + 0

0 0 0 +

Carries most
dependences!

Challenges for Real-World Compilers

• Conditional execution

• Symbolic loop bounds

• Indirect memory accesses

• …

CS 610 Swarnendu Biswas

References

• R. Allen and K. Kennedy – Optimizing Compilers for Multicore Architectures, Chapters 5-6.

• S. Midkiff – Automatic Parallelization: An Overview of Fundamental Compiler Techniques.

• P. Sadayappan and A. Sukumaran Rajam – CS 5441: Parallel Computing, Ohio State University.

CS 610 Swarnendu Biswas

