
CS 610: False Sharing as a
Performance Bug

Swarnendu Biswas

Semester 2022-2023-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Evaluating an Application

Functional correctness

• Does the application compute/produce what it is supposed to do?

Performance correctness

• Does the application meet the performance requirements?

CS 610 Swarnendu Biswas

Testing for Performance

• No one wants slow and inefficient software
• Leads to reduced throughput, increased latency, and wasted resources

• Leads to poor UX

• Software efficiency is increasingly important
• Hardware is not getting faster (per-core)

• Software is getting more complex

• Saving energy is now a primary concern

Still not
finished?!!!

CS 610 Swarnendu Biswas

What is a Performance Bug?

CS 610 Swarnendu Biswas

Relatively simple modifications to the source code
results in significant performance improvement,
while preserving functionality

Functional and Performance Bugs

Functional Bugs

• Well-defined notion of success and failure

• Correctness requirements usually do not
change over time, other than significant
changes in the specification

• More focus on researched testing
methodologies

• Rate of bugs generally flatten out with
maturity

Performance Bugs

• Difficult to detect because of no failure
symptoms

• Performance requirements may evolve over
time

• Relative lack of formalized testing
methodologies

• Rate of bugs reported have no trends

CS 610 Swarnendu Biswas

Characteristics of Performance Bugs

• Performance bugs can be difficult to fix
• Contradictory requirements – a thread-safe class needs synchronization for

correctness and needs to scale at the same time

• Diminishing returns in fixing performance bugs

CS 610 Swarnendu Biswas

Reasons for Performance Bugs

Inefficient function call combinations (bookmark all (tabs))

Wrong API interpretation

Redundant work (MySQL fastmutex_lock)

• Wrong functional implementation

Resource contention (e.g., suboptimal synchronization, false sharing)

• Many synchronization fixes are just because of performance reasons

Cross core/node data communication

Miscellaneous

• Poor data structure choices, design/algorithm issues, data partitioning, load balancing and task
stealing

CS 610 Swarnendu Biswas

Dealing with False Sharing

CS 610 Swarnendu Biswas

Multicore Parallelism is Easy

int count[8]; // Global array

thread_func(int id) {

for(i = 0; i < M; i++)

count[id]++;

}

CS 610 Swarnendu Biswas

0

10

20

30

40

50

60

70

80

90

1 2 4 8

R
u

n
 t

im
e

(s
)

Number of threads

Expectation

We are expecting
strong scaling

Multicore Parallelism is Easy

int count[8]; // Global array

thread_func(int id) {

for(i = 0; i < M; i++)

count[id]++;

}

CS 610 Swarnendu Biswas

0

20

40

60

80

100

120

140

1 2 4 8

R
u

n
 t

im
e

(s
)

Number of threads

Reality Expectation

reality!!

Shared Memory Multiprocessors

• Processors employ private caching of data to improve performance
• Private copies of shared data must be “coherent”

• Roughly speaking, all copies must have the same value (enough if this holds
eventually)

• For sequential programs, a memory location must return the latest
value written to it

• For parallel programs, we expect the same provided “latest” is well-
defined
• For now, latest value of a location is the latest value “committed” by any

thread/process

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

Cache Coherence

• Multicore processors implement a
cache coherence protocol to keep
private caches in sync

• A cache coherence protocol is a
set of actions that ensure that a
load to address A returns the “last
committed” value to A
• Operates on whole cache lines

(usually 64 bytes)

CS 610 Swarnendu Biswas

Need for Coherence: Example 1

• Assume 3 cores with write-through caches

• C0: reads x from memory, puts it in its cache, and gets the value 5

• C1: reads x from memory, puts it in its cache, and gets the value 5

• C1: writes x=7, updates its cached value and memory value

• C0: reads x from its cache and gets the value 5

• C2: reads x from memory, puts it in its cache, and gets the value 7
(now the system is completely incoherent)

• C2: writes x=10, updates its cached value and memory value

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

Need for Coherence: Example 2 (i)

• Assume 3 cores with write-back caches

• C0: reads x from memory, puts it in its cache, and gets the value 5

• C1: reads x from memory, puts it in its cache, and gets the value 5

• C1: writes x=7, updates its cached value

• C0: reads x from its cache and gets the value 5

• C2: reads x from memory, puts it in its cache, and gets the value 5

• C2: writes x=10, updates its cached value

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

Need for Coherence: Example 2 (ii)

• The lines in C1 and C2 are dirty, while the line is clean in C0

• Eviction of the lines from C1 and C2 will write the data back

• We will lose a store depending on the order of writebacks
• Suppose C2 evicts the line first, and then C1

• Final memory value is 7: we lost the store x=10 from C2

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

What went wrong?

• For write-through cache
• The memory value may be correct if the writes are correctly ordered

• But the system allowed a store to proceed when there is already a cached
copy

• Lesson learned: must invalidate all cached copies before allowing a store to
proceed

• For writeback cache
• Problem is even more complicated: stores are no longer visible to memory

immediately

• Writeback order is important

• Lesson learned: do not allow more than one copy of a cache line in dirty state

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

Solutions
• Must invalidate all cached copies before allowing a store to proceed

• Need to know where the cached copies are

• Solution1: Just tell everyone that you are going to do a store
• Leads to broadcast snoopy protocols

• Popular with small-scale machines

• Typically, the interconnect is a shared bus

• Solution2: Keep track of the sharers and invalidate them when
needed
• Where and how is this information stored?

• Leads to directory-based scalable protocols

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

Solutions
• Directory-based protocols

• Maintain one directory entry per memory block

• Each directory entry contains a sharer bitvector and state bits

• Do not allow more than one copy of a cache line in dirty state
• Need some form of access control mechanism

• Before a processor does a store it must take “permission” from the current
“owner” (if any)

• Need to know who the current owner is: either a processor or main memory

• Earlier solutions apply here also: broadcast to everybody or request the
owner

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

Types of Coherence Protocols

• Two main classes of protocols: dictates what action should be taken
on a store

• Invalidation-based protocols invalidate sharers when a store miss
appears

• Update-based protocols update the sharer caches with new value on
a store

• Advantage of update-based protocols: sharers continue to hit in the
cache while in invalidation-based protocols sharers will miss next time
they try to access the line

• Advantage of invalidation-based protocols: only store misses go on
bus and subsequent stores to the same line are cache hits

CS 610 Swarnendu Biswas

M. Chaudhuri. Cache Coherence. CASS 2018.

MSI Directory Protocol

CS 610 Swarnendu Biswas

Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MSI Directory Protocol

CS 610 Swarnendu Biswas

Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MSI Directory Protocol

CS 610 Swarnendu Biswas

Fig 8.3 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MESI Directory Protocol

CS 610 Swarnendu Biswas

Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MESI Directory Protocol

CS 610 Swarnendu Biswas

Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

MESI Directory Protocol

CS 610 Swarnendu Biswas

Fig 8.6 from D. Sorin et al. A Primer on Memory Consistency and Cache Coherence.

Cache Contention

True Sharing

• Same location is accessed by
multiple cores

• Fixed only by means of
algorithmic changes

False Sharing

• Two unrelated locations share a
cache line

• Fixed by code changes or by
automated repair

CS 610 Swarnendu Biswas

What is False Sharing?

• Performance problem in systems
with coherence caches
• Cores share cache blocks instead

of actual data
• Contention on cache blocks

• Can arise when threads access
global or heap memory
• Thread-local storage and local

variables can be ignored

• False sharing is aggravated by
the size of cache block

CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.
CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

Invalidate

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 610 Swarnendu Biswas

Thread 1

Main Memory

Core 1

Thread 2

Core 2

False Sharing: A Performance Problem

Invalidate

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 610 Swarnendu Biswas

Impact of False Sharing
int array[100];

void *func(void *param) {
int index = *((int*)param);
int i;
for (i = 0; i < 100000000; i++)

array[index]+=1;
}

int main(int argc, char *argv[]) {
int first_elem = 0;
int bad_elem = 1;
int good_elem = 99;

pthread_t thread_1;
pthread_t thread_2;

clock_gettime(CLOCK_REALTIME, …);
func((void*)&first_elem);
func((void*)&bad_elem);
clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);
pthread_create(&thread_1, NULL,func,

(void*)&first_elem);
pthread_create(&thread_2, NULL,func, (void*)&bad_elem);
pthread_join(thread_1, NULL);
pthread_join(thread_2, NULL);
clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);
pthread_create(&thread_1, NULL,func,

(void*)&first_elem);
pthread_create(&thread_2, NULL,func, (void*)&good_elem);
pthread_join(thread_1, NULL);
pthread_join(thread_2, NULL);
clock_gettime(CLOCK_REALTIME, …);

}https://github.com/MJjainam/falseSharing

CS 610 Swarnendu Biswas

Impact of False Sharing
int array[100];

void *func(void *param) {
int index = *((int*)param);
int i;
for (i = 0; i < 100000000; i++)

array[index]+=1;
}

int main(int argc, char *argv[]) {
int first_elem = 0;
int bad_elem = 1;
int good_elem = 99;

pthread_t thread_1;
pthread_t thread_2;

clock_gettime(CLOCK_REALTIME, …);
func((void*)&first_elem);
func((void*)&bad_elem);
clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);
pthread_create(&thread_1, NULL,func,

(void*)&first_elem);
pthread_create(&thread_2, NULL,func, (void*)&bad_elem);
pthread_join(thread_1, NULL);
pthread_join(thread_2, NULL);
clock_gettime(CLOCK_REALTIME, …);

clock_gettime(CLOCK_REALTIME, …);
pthread_create(&thread_1, NULL,func,

(void*)&first_elem);
pthread_create(&thread_2, NULL,func, (void*)&good_elem);
pthread_join(thread_1, NULL);
pthread_join(thread_2, NULL);
clock_gettime(CLOCK_REALTIME, …);

}https://github.com/MJjainam/falseSharing

Millisecond

Sequential computation 351

With false sharing 465

Without false sharing 168

CS 610 Swarnendu Biswas

False Sharing in Real Applications

• Issues reported in Linux kernel, JVM, Boost library, …

CS 610 Swarnendu Biswas

Fixing false sharing
improved a metric of
interest by almost 3X

False Sharing is Everywhere
// Global variables

me = 1;

you = 2;

// Class/struct fields

class X {

int me;

float you;

};

CS 610 Swarnendu Biswas

// Heap objects

me = new Foo();

you = new Bar();

// Array accesses

array[me] = 12;

array[you] = 13;

different
threads

False Sharing Mitigation Techniques

• Compiler optimizations (cache block padding)

• Cache conscious programming

• Coherence at load/store granularity?

• Runtime solutions (e.g., use hardware performance counters)

CS 610 Swarnendu Biswas

Fixing False Sharing is Non-trivial

CS 610 Swarnendu Biswas

Fixing False Sharing is Non-trivial

• Problem is often embedded inside the source code

• Sensitive to
• Object placements on the cache line

• Memory allocation sequence or memory allocator

• Hardware platform with different cache line sizes

CS 610 Swarnendu Biswas

gcc unintentionally eliminates false sharing in Phoenix linear_regression
benchmark at certain optimization levels, while LLVM does not do so at any
optimization level*

*T. Liu et al. PREDATOR: Predictive False Sharing Detection. PPoPP 2014.

Object Alignment Sensitivity

• Plot shows the performance of
the linear_regression
benchmark from the Phoenix
benchmark suite

• Performance is highly sensitive to
the offset of the starting address
of the (potentially) falsely-shared
object from the start of the cache
line

T. Liu et al. PREDATOR: Predictive False Sharing Detection. PPoPP 2014.

CS 610 Swarnendu Biswas

Research on Automated False Sharing
Detection and Repair
Sheriff Liu and Berger, OOPSLA’11 detect and repair

unmanaged languagesPlastic Nanavati et al., EuroSys’13

Laser Luo et al, HPCA’16

Cheetah Liu and Liu, CGO’16

detection only
Predator Liu et al., PPoPP’14

DeFT Venkataramani et al., TACO’11

Intel vTune Amplifier XE

Oracle Java 8 @Contended annotation and repair

REMIX Eizenberg et al., PLDI’16 detect and repair in
managed runtimes

TMI DeLoizer et al., MICRO’17

Huron Khan et al., PLDI’19 Prioritizes static time repair

CS 610 Swarnendu Biswas

False Sharing Problem in JVMs
• JVMs provide automatic layout of class fields at load time

• Sort fields by descending order of size

• Pack reference fields to help GC process a contiguous pack of reference fields

• Padding as in C/C++ may not work in Java since the JVM can remove or
reorder unused fields

• Copying GCs move around objects

• Single-threaded environment
• Fields accessed together in time should be nearby in space

• Multithreaded environment
• Not so straightforward, cannot just aim to reduce capacity misses

CS 610 Swarnendu Biswas

https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing

https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing

Easy Thing First! Java 8 @Contended
• Now that you know about false sharing, use @sun.misc.Contended

in Java to (hopefully) get benefits for free

• @Contended helps avoid false sharing, but does not automatically
detect sources of contention

CS 610 Swarnendu Biswas

https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing

https://blogs.oracle.com/dave/java-contended-annotation-to-help-reduce-false-sharing

Easy Thing First! Java 8 @Contended
@Contended

public static class ContendedTest2 {

private Object plainField1;

private Object plainField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest2: field layout

Entire class is marked contended

@140 --- instance fields start ---

@140 "plainField1" Ljava.lang.Object;

@144 "plainField2" Ljava.lang.Object;

@148 "plainField3" Ljava.lang.Object;

@152 "plainField4" Ljava.lang.Object;

@288 --- instance fields end ---

@288 --- instance ends ---

public static class ContendedTest1 {

@Contended

private Object contendedField1;

private Object plainField1;

private Object plainField2;

private Object plainField3;

private Object plainField4;

}

$ContendedTest1: field layout

@ 12 --- instance fields start ---

@ 12 "plainField1" Ljava.lang.Object;

@ 16 "plainField2" Ljava.lang.Object;

@ 20 "plainField3" Ljava.lang.Object;

@ 24 "plainField4" Ljava.lang.Object;

@156 "contendedField1" Ljava.lang.Object; (contended,
group = 0)

@288 --- instance fields end ---

@288 --- instance ends ---

CS 610 Swarnendu Biswas

http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html
http://mail.openjdk.java.net/pipermail/hotspot-dev/2012-November/007309.html

http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html
http://mail.openjdk.java.net/pipermail/hotspot-dev/2012-November/007309.html

Easy Thing First! Java 8 @Contended

public static class ContendedTest4 {
@Contended
private Object contendedField1;
@Contended
private Object contendedField2;
private Object plainField3;
private Object plainField4;

}

$ContendedTest4: field layout
@ 12 --- instance fields start ---
@ 12 "plainField3" Ljava.lang.Object;
@ 16 "plainField4" Ljava.lang.Object;
@148 "contendedField1" Ljava.lang.Object;
(contended, group = 0)
@280 "contendedField2" Ljava.lang.Object;
(contended, group = 0)
@416 --- instance fields end ---
@416 --- instance ends ---

CS 610 Swarnendu Biswas

http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html
http://mail.openjdk.java.net/pipermail/hotspot-dev/2012-November/007309.html

http://beautynbits.blogspot.com/2012/11/the-end-for-false-sharing-in-java.html
http://mail.openjdk.java.net/pipermail/hotspot-dev/2012-November/007309.html

Sheriff: Precise Detection and Automatic
Mitigation
• Sheriff is a software-only solution that provides

• Per-thread memory protection – allows each thread to track memory
accesses independently of other thread’s accesses

• Memory isolation – allows each thread to read from and write to memory
without interference from other threads

CS 610 Swarnendu Biswas

T. Liu and E. Berger. Sheriff: Precise Detection and Automatic Mitigation of False Sharing. OOPSLA 2011.

Isolated Memory Access

CS 610 Swarnendu Biswas

shared address space

Isolated Memory Access

CS 610 Swarnendu Biswas

shared address space disjoint address space

Tradeoff in Faking Threads with Processes

• Processes are mapped to different CPUs, while threads are mapped to
the same CPU to maximize locality

• Using processes allows Sheriff to use
• Per-thread page protection to detect false conflicts

• Isolates thread’s memory from other threads which implies thread’s do not
write to each other’s cache lines

CS 610 Swarnendu Biswas

Isolated Memory Accesses

• Processes have separate address spaces, implies that updates to
shared memory are not visible

• Challenges
• Sheriff now needs to explicitly manage shared resources like file descriptors

• Uses memory mapped files to share shared data (e.g., globals, heap) across
processes
• Two copies are created – one is read-only and the other (CoW) is for local updates

• Private mapping initially points to the read-only page

CS 610 Swarnendu Biswas

Shared Memory Updates

Updates are made visible only at synchronization points

CS 610 Swarnendu Biswas

Pthreads

Lock();

XXX;

Unlock();

YYY;

Lock();

Begin_isolated_execution

Commit_local_changes

XXX; //isolated execution

Begin_isolated_execution

Commit_local_changes

YYY; //isolated execution

Sheriff

Sheriff in Action!

Initialization

• Create shared and local mappings for heap and global variables

Transaction begin

• Write protect shared pages, future writes will trap

Execution

• Records pages with faulted addresses and unprotects the page

• Creates a twin page for diffing before a page is modified

• Performs CoW to create a private page

Transaction end

• Commits only diffs between the twin and the private pages

CS 610 Swarnendu Biswas

Sheriff-Detect: Detect False Sharing

• Idea
• Any cache line with different contents in the private page and the twin page is

due to false sharing

• Can have high overhead for pages that are unshared

• Insight
• For false sharing, two threads must simultaneously access the page

containing the cache line  Implies the page must be shared

• Sheriff-Detect keeps track of the number of writers to a shared page

• Problem if there is a cache line with one writer and rest are readers

CS 610 Swarnendu Biswas

Sheriff-Protect: Runtime to Avoid False Sharing

• Sheriff-Detect may not work satisfactorily
• Padding may degrade performance due to cache effects and increased

memory consumption

• Source code may not be available to fix false sharing issues

• Insight – Delaying updates can avoid false sharing, accesses will no
longer be concurrent

• Protects small objects
• Benefit of protection is greater than large objects like arrays (relative to the

object size)

• Cost of protection via committing updates is going to be lower

CS 610 Swarnendu Biswas

Drawbacks of Sheriff

Cannot detect read-write false sharing

Can only detect false sharing in the observed
executions

CS 610 Swarnendu Biswas

Predator: Predictive False Sharing Detection

CS 610 Swarnendu Biswas

Compiler

Instrumentation

Runtime System

Uses LLVM-based compiler instrumentation to track
memory accesses
• Iterates over all function definitions to instrument

accesses to global and heap variables
• Inserts calls to an analysis function, with the

memory address and access type

Tracks memory accesses and reports false sharing

T. Liu et al. Predator: Predictive False Sharing Detection. PPoPP 2014.

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: {Thread ID, Access Type}

0 0 0 0

CS 610 Swarnendu Biswas

Rules for Per-Cache-Line History Table

• For each read 𝑅,
• If history table 𝑇 is full, no need to record 𝑅
• If 𝑇 is not full and existing entry has a different thread ID, then record 𝑅

• For each write 𝑊,
• If 𝑇 is full, then 𝑊 can cause a cache invalidation since at least one of two

existing entries has a different thread ID. Record invalidation. Update the
existing entry.

• If 𝑇 is not full, check whether 𝑊 and the existing entry have the same thread
ID

• Same thread ID –𝑊 cannot cause a cache invalidation, update existing entry with 𝑊
• Different thread ID – Record an invalidation on this line caused by 𝑊. Record this

invalidation, and update the existing entry with 𝑊.

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 r 0 0

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w 0 0

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

0

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w T1 r

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

1

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w 0 0

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

2

of invalidations
time

Each Entry: { Thread ID, Access Type}

T1 w 0 0

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

2

of invalidations
time

Each Entry: { Thread ID, Access Type}

T1 w 0 0

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

3

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w 0 0

CS 610 Swarnendu Biswas

Track Cache Invalidations

T2T1

r w r w r w rw

3

of invalidations
time

Each Entry: { Thread ID, Access Type}

T2 w T1 r

CS 610 Swarnendu Biswas

Is that it?

• Well, true sharing also leads to cache invalidations

• Predator maintains precise per-cache-line-offset metadata

CS 610 Swarnendu Biswas

Why do we need to predict false sharing?

• Object alignment impacts the
occurrence of false sharing

CS 610 Swarnendu Biswas

Thread 1 Thread 2

Cache line 1 Cache line 2

Cache line 1 Cache line 2

Cache line 1

larger cache
line size

different
alignment

Impact on Object Alignment

• 32-bit platform  64-bit platform

• Different memory allocator

• Different compiler or optimizations

• Different allocation order by changing the code

• Run on hardware with different cache line sizes

CS 610 Swarnendu Biswas

Prediction in Predator

• Insight
• Only accesses to adjacent lines can lead to potential false sharing

• Virtual cache line
• Contiguous memory range spanning multiple physical cache lines
• Starting address need not be a multiple of the cache line size
• 64-byte line can range from [0, 64) or [8, 72) bytes

• Find “hot” access offsets X and Y
• X in cache line L, and Y in adjacent cache line, and both X and Y are in the

same virtual cache line
• At least one of X and Y is a write
• X and Y are accessed by different threads

CS 610 Swarnendu Biswas

(sz-d)/2(sz-d)/2

d YX

Tracked virtual line

Non-tracked virtual lines

Track Invalidations on Virtual Cache Lines

• d < cache line size (sz)

• X and Y are accesses from different
threads

• One of X and Y accesses is a write

CS 610 Swarnendu Biswas

False Sharing in the JVM

• Less programmer control over memory more vulnerable to
performance bugs
• You might use padding, but unused fields may not be allocated at all

• Furthermore, GC might move around objects

• Runtime has increased control over execution  opportunities for
dynamic optimization

• @Contended helps avoid false sharing, but does not automatically
detect sources of contention

CS 610 Swarnendu Biswas

REMIX System Overview

Java, Scala, etc

JVM

Linux Kernel

CPU w/HITM PEBS HITM events

Application

Runtime system

OS

Hardware

perf API

REMIX

12 Summary Background REMIX Detection Repair Performance

A. Eizenberg et al. Remix: Online Detection and Repair of Cache Contention for the JVM. PLDI 2016.

CS 610 Swarnendu Biswas

Intel PEBS Events

• PEBS – Precise Event-Based Sampling

• Available in recent Intel multiprocessors

• Log detailed information about architectural
events

8 Summary Background REMIX Detection Repair Performance
CS 610 Swarnendu Biswas

PEBS HitM Events

• “Hit-Modified” - A cache miss due to a cache line
in Modified state on a different core

Core

0

L1$ X:M

Core

1

L1$X:I

Load X

MissHit

9 Summary Background REMIX Detection Repair Performance
CS 610 Swarnendu Biswas

Detection

managed heap

HITM

Events
classify track

>threshold

complete

model

$ lines
classify

repair

report

native heap & stack

no

yes

map to

objects

false sharing

true sharing

13 Summary Background REMIX Detection Repair Performance
CS 610 Swarnendu Biswas

Cache Line Modelling

• Cache lines are modelled with 64-bit bitmaps

• HITM event  set the address bit, count hit

• Multiple bits set  potential false sharing

• Repair is cheaper than more complete modelling!

• Repair when counter exceeds threshold

14 Summary Background REMIX Detection Repair Performance
CS 610 Swarnendu Biswas

Top Level Flow

......

......

......

l ong f oo0;

l ong f oo1;

l ong bar 0;

l ong bar 1;

l ong f oo0;

<pad 56B>

l ong f oo1;

<pad 56B>

l ong bar 0;

l ong bar 1;

<pad 48B>

Foo’
......

......

......

Original
Heap

Original
Classes

New
Heap

Modified
Classes

Foo

Bar Bar’

......

......

......

l ong f oo0;

l ong f oo1;

l ong bar 0;

l ong bar 1;

l ong f oo0;

<pad 56B>

l ong f oo1;

<pad 56B>

l ong bar 0;

l ong bar 1;

<pad 48B>

Foo’
......

......

......

Original
Heap

Original
Classes

New
Heap

Modified
Classes

Foo

Bar Bar’

......

......

......

l ong f oo0;

l ong f oo1;

l ong bar 0;

l ong bar 1;

l ong f oo0;

<pad 56B>

l ong f oo1;

<pad 56B>

l ong bar 0;

l ong bar 1;

<pad 48B>

Foo’
......

......

......

Original
Heap

Original
Classes

New
Heap

Modified
Classes

Foo

Bar Bar’

......

......

......

l ong f oo0;

l ong f oo1;

l ong bar 0;

l ong bar 1;

l ong f oo0;

<pad 56B>

l ong f oo1;

<pad 56B>

l ong bar 0;

l ong bar 1;

<pad 48B>

Foo’
......

......

......

Original
Heap

Original
Classes

New
Heap

Modified
Classes

Foo

Bar Bar’

15 Summary Background REMIX Detection Repair Performance
CS 610 Swarnendu Biswas

Padding - Inheritance

class A

header (16b)

byte a1

byte a2

class B

extends A

header (16b)

byte a1

byte a2

byte b

pad 48b

pad 62b

pad 48b

pad 62b

pad 48b

pad 62b

class C

extends A

header (16b)

byte a1

byte a2

byte c

17 Summary Background REMIX Detection Repair Performance
CS 610 Swarnendu Biswas

Repair

• Trace all strong+weak roots in the system

• Traverse heap and find targeted instances

• Live  Relocate & pad, store forwarding pointer

• Dead  Fix size mismatch

• Adjust all pointers to forwarded objects

• Deoptimize all relevant stack frames

18 Summary Background REMIX Detection Repair Performance
CS 610 Swarnendu Biswas

References

• T. Liu and E. Berger. Sheriff: Precise Detection and Automatic Mitigation of False Sharing. OOPSLA 2011.

• T. Liu et al. Predator: Predictive False Sharing Detection. PPoPP 2014.

• A. Eizenberg et al. Remix: Online Detection and Repair of Cache Contention for the JVM. PLDI 2016.

CS 610 Swarnendu Biswas

