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Introduction

What is common in these movies?

What is common in these movies?

... only because they did not test/verify their AI!
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Fundamentals of System Testing What is Testing?

What is Testing?

What is program testing?

Searching for inputs that fail the program. Exciting a program with a set
of inputs—in a search for any input that shows a bug.

What is program verification?

Synthesizing a mathematical proof for the correctness of the program.
Build an argument—that the program behaves correctly on all inputs.
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Fundamentals of System Testing What is Testing?

Testing Ingredients

How to identify a bug?

Test Oracle

When to stop testing? Test Adequacy

How much of the system is visible? System Visibility

What SDLC stage are we in? Testing Stage

How to test? Testing Algorithm
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Fundamentals of System Testing What is Testing?

System Visibility

Black-box testing

White-box testing

Grey-box testing
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Fundamentals of System Testing What is Testing?

SDLC Stage

unit testing

integration testing

system testing

acceptance testing
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Fundamentals of System Testing Test Oracle

Constructing an Oracle

Functional specification

Rigorous mathematical description of the input-output relation, rarely
available
Humans in the loop

Properties as oracles: can be seen as a Hoare Triple {Pre} S {Post}

Robustness, fairness, secure, etc.

Differential testing

Another system for the functional specification
Easy to implement less efficient baseline, regression testing etc.

Emsembles as oracles

Majority voting amongst a group of systems to establish the
ground-truth (eg. random forest)

Metamorphic relation (between inputs) as oracle

Relation between outputs of pair of inputs is often easy to establish;
eg. ADD(x, y) = ADD(x+1, y+1) + 2
Referred to as metamorphic testing
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Fundamentals of System Testing Testing Adequacy

Testing Adequacy

Possibly unbounded number of values (eg. strings as input)

How to select test inputs?

Principle: Test via an equivalence partitioning on inputs

Equivalence classes

Define a partitioning on the input-space

Pick a representative input from each partition
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Fundamentals of System Testing Testing Adequacy

Defining Equivalence Partitions

Semantics of input vector

inputs I1 and I2 belong to different partitions if they are likely to create
different outputs (positive and negative numbers, empty and
non-empty strings etc.)
eg. product of matrices

System behavior

inputs I1 and I2 belong to different partitions if they create different
behaviors in the system S and a mutated system S’

kills a mutatant
Referred to as mutation testing

Coverage metrics

coverage metric is defined on set of control-flow or dataflow entities
(recall metric space)
inputs I1 and I2 belong to different partitions if they cover a different
subset of these entities
the coverage metric quantifies the goodness of a test-suite
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Fundamentals of System Testing Testing Adequacy

Control-flow graph

Primary data-structure for flow analysis of programs.

Each node in the CFG is a basic-block : piece of straight-line code i.e.
a sequence of instructions with single entry and single exit (no jumps
or jump targets) basic block

Any possible control flow from one basic-block to another is
represented by a control-flow edge control-flow edge

Two important blocks: entry block and exit block
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Control-flow coverage a.k.a Code coverage

Statement coverage (Line coverage, Node coverage)

Branch coverage (Decision Coverage)

Condition coverage (Predicate coverage)

Modified condition and decision coverage (MCDC)

Path Coverage
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Fundamentals of System Testing Testing Adequacy

Coverage Metrics

Does 100% statement coverage imply 100% branch coverage?

Does 100% branch coverage imply 100% statement coverage?

Does 100% branch coverage imply 100% path coverage?

Does 100% path coverage means that the program has no bug?
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Fundamentals of System Testing Testing Algorithms

Testing Algorithms

Solves an optimization problem w.r.t. the test goal (eg. coverage metric,
property violation likelihood etc.)

Randomized Algorithms (greedy search, fuzzing)

Symbolic Algorithms (symbolic execution, concolic execution)

Evolutionary Search (genetic algorithms (like differential evolution),
ant colony)

Gradient-based Search (gradient descent)
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Fundamentals of System Testing Testing Algorithms

Symbolic Execution

Analyse this

What inputs cause this program to violate the assertion?

int main(){

input(a,b,c,d);

if ( a <= b){

c++;

}

else {

d++;

if ( c == 2*d)

assert(a > d)

}

}
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Symbolic Execution

Analyze this

OK, let’s answer this!

A customer buys 4 apples and 2 bananas for Rs. 50. Another customer
buys 5 apples and 4 bananas for Rs. 70. What is the cost of each item?

== Use symbols to represent unknowns! ==
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Fundamentals of System Testing Testing Algorithms

Symbolic Execution

Simple idea

Execute a program with symbolic inputs!

int main(){

input(a,b,c,d);

if ( a <= b){

c++;

}

else {

d++;

if ( c == 2*d)

assert(a > d)

}

}

Explore all paths! Symbolic Execution Tree
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Fundamentals of System Testing Testing Algorithms

Concolic Execution

ConcolicExecution

t⃗ := random()
T := {t⃗}
while ¬ goal do

out, φ := ConcolicRun(t⃗)
if TestOracle(t⃗, out) == Error then

fail

end if
φ′ := SearchHeuristic(φ)
t⃗ := Solve(φ′)
T .append(t⃗)

end while
return T

φ symbolically encodes a program path Path Condition (PC)

SearchHeuristic performs test selection/prioritization Search Heuristic
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Fundamentals of System Testing Testing Algorithms

Search Heuristic

int main(){

input(a,b,c,d);

if ( a <= b){

c++;

}

else {

d++;

if ( c == 2*d)

assert(a > d)

}

}

How to modify PCs for next input?

Current: (a0 ≥ b0) ∧ (c0 ̸= 2 ∗ (d0 + 1))

Next: (a0 ≥ b0) ∧ ¬(c0 ̸= 2 ∗ (d0 + 1))
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Fundamentals of System Testing Testing Algorithms

Homework

Design search heuristics for depth-first search and breadth-first search
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Fundamentals of System Testing Testing Algorithms

Fuzzing Algorithm

1 worklist← seedinputs

2 t ← selectNextInput(worklist)1

3 If t is new, result, cov← Run(t)

4 if result is a crash, declare t as Crashing Input

5

if cov increases coverage, declare t as Interesting Inputandaddittoworklist; ifitisalsocrashing ,markasunique crash

6 e ← selectEnergy(t, result, cov)

7 worklist← worklist + mutate(t, e)

8 Goto 2

1t is not removed from worklist
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Fundamentals of System Testing Testing Algorithms

Fuzzing

Fuzzing

worklist← seedinputs
while not timeout do

t ← selectNextInput(worklist) ▷ not removed from worklist
if t is new then

result, cov ← Run(t)

end if
if result is a crash then

declare t as Crashing Input

end if
if cov increases coverage then

declare t as Interesting Input
worklist.add(t)
if it is crashing then

mark as unique crash

end if

end if
e ← selectEnergy(t, result, cov)
worklist← worklist.add(mutate(t, e))

end while
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Fundamentals of System Testing Testing Algorithms

Gradient Descent

Consider optimizing w.r.t. an objective function φ(w⃗)

Gradient Descent

w⃗ := random()
while not converged do

w⃗ := w⃗ − α · ∇w⃗φ

end while
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Fundamentals of System Testing Challenges

Challenges in program testing

Test Generation
optimization problem: minimum tests to find max bugs/generate
highest coverage

Test Prioritization
ranking problem: higher ranked tests more likely to find bugs

Test Selection
selection problem: select ”k” tests that are most likely to catch errors

Differential/Regression testing
constrained optimization: select tests that lead to different behaviors

Testing multithreaded and distributed systems

Testing for security bugs

Bug Localization

Debugging

Repair
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Mathematical preliminaries Algorithmic claims

Properties of an algorithm

Soundness (Precision)

Completeness (Recall)

Termination
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Mathematical preliminaries Algorithmic claims

Soundness versus Completeness

Given a claim C and an algorithm A that attempts to validate the claim:

Soundness: A is sound if whenever A signals YES, C holds

Completeness: A is complete if it always signals YES whenever C
holds
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Mathematical preliminaries Algorithmic claims

Soundness/Completeness of Testing/Verification

If the claim is on the correctness of the program, can you deduce the
soundness/completeness of testing/verification?

Verification is sound but testing is not

Testing is complete but verification is not

Note: If the claim is on the presence of bugs, then testing is sound but not
complete.
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Mathematical preliminaries Multivariate calculus

Properties of a function

Continuity

a function is continuous if a continuous variation of the arguments
induces a continuous variation in the outputvalue of the function, i.e.
no abrupt changes in output (discontinuities)

∀x ∈ Domain(f ). lim
δ→0

f (x + δ) ∼ f (x)

Differentiability

a function is differentiable if derivative exists at all possible values of
the arguments in the function domain

∀x ∈ Domain(f ). lim
δ→0

f ′(x) = f (x+δ)−f (x)
δ

if derivative does not exist at a point, the set of subderivatives is a
non-empty closed interval [a, b], where a, b are the one-sided limits:

a = lim
h→0+

x+h
h , b = lim

h→0−

x+h
h
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Mathematical preliminaries Multivariate calculus

Nicer Properties

Lipshitz continuous

a function is Lipshitz continuous if there exists a bound on how fast
the function can change, i.e. its slope

∀x1, x2. |f (x1)− f (x2)| ≤ K · |x1 − x2|
K is called the Lipshitz constant; the smallest K is the best-Lipshitz
constant

In general, it is defined over two metric spaces (X , dX ) and (Y , dY ),
with f : X → Y :

∃K . dY (f (X ), f (Y )) ≤ K · dX (X ,Y )

Hölder continuous

Continuously differentiable ⊂ Lipschitz continuous ⊂ α-Hölder continuous
⊂ uniformly continuous ⊂ continuous
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Mathematical preliminaries Multivariate calculus

Gradients and more

Piecewise-defined function

defined by multiple subfunctions, each subfunction operating in a
sub-domain; these sub-domains together make the domain the the
function

piecewise continuity and differentiability refer to each ‘piece’ of the
function being continuous or differentiable in its own sub-domain

Multivariate functions

Multivalued functions can be seen as a function with a single
argument, that is nothing but a vector of all its arguments

f (a1, a2, . . . , an) ≡ f (a⃗), a1 ∈ D1, a2 ∈ D2, . . . , an ∈ Dn, a⃗ ∈
D1 × D2 × . . .Dn

Gradient: ∇a⃗f = [∂fa1 ,
∂f
a2
, . . . , ∂fan ]

T

Subgradient: vector of (partial) subderivatives
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argument, that is nothing but a vector of all its arguments

f (a1, a2, . . . , an) ≡ f (a⃗), a1 ∈ D1, a2 ∈ D2, . . . , an ∈ Dn, a⃗ ∈
D1 × D2 × . . .Dn

Gradient: ∇a⃗f = [∂fa1 ,
∂f
a2
, . . . , ∂fan ]

T

Subgradient: vector of (partial) subderivatives
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Mathematical preliminaries Multivariate calculus

Vector of functions

Let f⃗ = [f1, f2, . . . , fk ] be a vector over multiple variables
x⃗ ≡ (x1, x2, . . . , xn)

Jacobian

Jacobian matrix (J) is a n × k matrix: [∇x⃗ f1,∇x⃗ f2, . . . ,∇x⃗ fk ]
T

f⃗ (x⃗) + J(x⃗) · h, for small h is the best linear approximator of f⃗ at x⃗

When n = k, the Jacobian determinent exists and provides ‘local’
information of a function; eg. a function is invertible at a point if the
Jacobian determinent is non-zero
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Mathematical preliminaries Multivariate calculus

Vector of functions

Hessian

Matrix of second-order derivatives:
H(f ) = J(∇(f ))T , i .e.(Hf )i ,j =

∂2f
∂xi∂xj

Hessian matrix of a convex function is positive semi-definite

If the Hessian is positive-definite (negative-definite) at x⃗ , then f
attains an isolated local minimum (maximum) at x⃗ . If the Hessian
has both positive and negative eigenvalues, then it is a saddle point.
Otherwise the test is inconclusive.

We can define Taylor expansion using Jacobians and Hessians.

If the gradient is computed, the Hessian can be approximated by a
linear number of scaler operations
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Mathematical preliminaries Optimizing a function

Optimization strategies

Randomized search

LP, ILP, MILP

Gradient based

Evolutionary algorithms
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Mathematical preliminaries Optimizing a function

MILP

LP relaxation,

branch and bound,

cutting planes
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Mathematical preliminaries metric spaces

Metric Space

definition

distances (L2 norm, L∞, Jaccard index)
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Problems with Neural Networks
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Problems with Neural Networks Neural networks as Programs

Computations in Neural Networks

Fully Connected layer

T⃗ =


w11 w12 . . .
w21 w22 . . .

. . .
b1 b2 . . .

 ◦ ReLU

Multiple layers

Multiple Layers: T1 ◦ T2 ◦ . . .

The last layer: turning to probabilities

(Softmax)

σ(z⃗)i =
ezi

ΣK
j=1e

zj
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Problems with Neural Networks Neural networks as Programs

Neural networks are programs!

Mappings to programs

neurons = variables

affine transformations = computations with variables (neurons)

activation functions = conditional branching (or (cond ? a : b))

multiple layers = sequence of function calls
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Problems with Neural Networks Neural networks as Programs

Applying PL techniques on NNs

Easy programs: no function calls, no array accesses, no pointers. . .

Challenge: modeling the large number of branches (ReLUs)—path
explosion
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Problems with Neural Networks Attacks on Neural Networks

The billboard on adversarial examples

The famous picture2 on adversarial examples:

2Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015”.
(https://arxiv.org/pdf/1412.6572.pdf)
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Problems with Neural Networks Attacks on Neural Networks

Creating Adversarial Examples

The Fast Sign Method (Goodfellow et al. 2015)3

x⃗ + ϵ sgn(∆xJ(θ, x⃗ , y))

Carlini-Wagner (Carlini and Wagner. 2015)4

minimize D(x⃗ + ϵ, x⃗) such that C(x⃗ + ϵ) = t, x + ϵ ∈ [0, 1]n

3Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015.
4Carlini and Wagner. Towards Evaluating the Robustness of Neural Networks, 2016.
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Problems with Neural Networks Attacks on Neural Networks

Adversarial Examples: NLP models

C(x⃗ + ϵ) ̸= C(x⃗)

such that5:

ϵ is small (within some threshold)

adding noise, ‘+’, can be syntactic6 (adding ”typos”) or semantic7

(replace words having low cosine similary on word embeddings for
synonym extraction)

Also, audio adversarial examples for TTS engines.8

5Jin et al. TextFool: Fool your Model with Natural Adversarial Text
6hotflip, pruthi, deepwordbug, morpheus
7lzantot, bert-attack, faster-alzantot, iga, bae, kuleshov, pso, pwws, textfooler
8https://nicholas.carlini.com/code/audio adversarial examples/
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Problems with Neural Networks Attacks on Neural Networks

Adversarial Examples: Code

Source code classification is getting popular for tasks like comment
generation, suggesting method names and code completion;

Attacks on code models attempt to create semantically equivalent
code snippets that make the classifiers behave differently9

9Zhang et al. Generating Adversarial Examples for Holding Robustness of Source
Code Processing Models Authors. AAAI’2020; Yefet et al. Adversarial Examples for
Models of Code. OOPSLA’20; Zhou et al. Adversarial Robustness of Deep Code
Comment Generation, ArXiv 2021, Bielik and Vechev. Adversarial Robustness for Code.
ICML’20
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Problems with Neural Networks Attacks on Neural Networks

Formalizing Robustness

(Local) Robustness

A ”small” perturbation does not change the outcome significantly

∀x ∈ I . ∀e ∈ E . f (x) ≃ f (x + e)

Image Credit: Goodfellow et al. Explaining and Harnessing Adversarial
Examples. 2013.
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Problems with Neural Networks Attacks on Neural Networks

Data Poisoning Attacks

Use of croudsourced data-sets or active/online learning (like spam filters)
opens up an opportunity to affect the learned model via a few specially

crafted data-points

Attacks on availability

Add a few mislabelled data points that change the decision boundary.

Easier to perform on SVMs, as even a single data instance can disturb
the maximum margin hyperplane10.

DNNs seem robust to this attack as their decision boundaries are
more complex.11

10B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial
label noise. In Asian Conference on Machine Learning, 2011.

11Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A
Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE’2020
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Problems with Neural Networks Attacks on Neural Networks

Data Poisoning Attacks (cont.)

Create Backdoors

Insert the backdoor pattern within a few examples from the legitimate
domain labelled to the backdoor class12

12Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A
Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE’2020.
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Problems with Neural Networks Attacks on Neural Networks

Attacks on data privacy

Different types of attacks possible13:

Membership inference attacks (eg. if person p was in training set)

Reconstruction attacks (eg. recreate the training dataset)

Property inference attacks (eg. the gender ratio of the dataset)

Model extraction (or ”stealing”) attacks (eg. train a new classifier)

13Rigaki and Garcia, A Survey of Privacy Attacks in Machine Learning, ArXiv 2021
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Problems with Neural Networks Attacks on Neural Networks

Reverse Engineering or ”Models stealing” attacks

Attempt to “steal” cloud hosted models (MLaaS)

Cloudleak14 uses active learning:

Train a “bootstrap” model (say, use a pre-trained model)

Learn adversarial examples on the bootstrap model

Query the victim model on these examples

Retrain the bootstrap model on these query responses

Significant reduction in the number of queries

14Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through
Adversarial Examples. NDSS’22
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Problems with Neural Networks Attacks on Neural Networks

Is the model even safe to use?

Safety of drones and robots

TwinStream15 (Property: output is positive)

CollisionAvoidance16 (Property: Check if vehicles will collide)

ACAS Xu17 (Property: generate advisories such that aircrafts don’t
collide)

15Rudy Bunel et al. Piecewise linear neural networks verification: A comparative
study. In NeurIPS 2018

16Rüdiger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural
Networks. In arXiv 2017.

17Julian et al. Policy compression for aircraft collision avoidance systems. In DASC
2016.
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Testing neural networks

Outline I

1 Introduction

2 Fundamentals of System Testing
What is Testing?
Test Oracle
Testing Adequacy
Testing Algorithms

Concolic Execution
Fuzzing
Gradient Descent

Challenges

3 Mathematical preliminaries
Algorithmic claims
Multivariate calculus
Optimizing a function
metric spaces

4 Problems with Neural Networks
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Testing neural networks

Outline II

Neural networks as Programs
Attacks on Neural Networks

5 Testing neural networks
Visibility and Stage
Neural Network Oracles
Test Adequacy
Algorithms to achieve high NN coverage

6 Conclusion
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Testing neural networks

Recall

Why test neural networks?

NNs are (conventionally) trained only to achieve high accuracy,
We often want our network to achieve other properties: security,
fairness etc.

Testing ingredients

How to identify a bug?

Test Oracle

When to stop testing? Test Adequacy

How much of the system is visible? System Visibility

What SDLC stage are we in? Testing Stage

How to test? Testing Algorithm
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Testing neural networks Visibility and Stage

Visibility

In most cases, we will assume a white-box setting, or at least a
graybox setting;

Sometimes NNs need a blackbox setting, eg. in MLaaS systems

Prominent strategy in such cases is analysis using local surrogate
models trained using active learning[CloudLeak]

We will consider unit testing stage.
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Testing neural networks Neural Network Oracles

Challenges to creating Oracles

Challenges in formulating preconditions

The input distribution is not well-known; is only specified by a set of
examples

The ground-truths for arbitrary instances are not known

Properties: deterministic, probabilistic

Domain-specific constraints on inputs (g. occlusion, blackout)
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Testing neural networks Neural Network Oracles

Solution #1: Using a “closeness” assumption

Given a neural network N : F → L, classifying features x ∈ F to labels
l ∈ L, an annotated example set E , any data-point x that is “close” to a

given example, e ∈ E is valid and has the same label as e i.e.,

Valid(⟨x , l⟩) = {⟨x , l⟩ | ||x − e|| < ϵ ∧ l = N (e), e ∈ E , x ∈ F}

Closeness Assumption

DeepConcolic divides the input-space into (overlapping) subspaces,
S(D, ϵ) where D is a distance metric and ϵ is a given threshold such
that if ||x1 − x2|| ≤ ϵ then there exists a valid subspace X ∈ S(D, ϵ)
s.t. x1, x2 ∈ X . All analysis is only restricted to such valid subspaces
{X | X ∈ S(D, ϵ)};
DeepSafe uses k-means to cluster the input-space into valid-clusters
and attempts to find robustness regions
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Testing neural networks Neural Network Oracles

Solution #2: Using domain-specific mutations

Well-designed mutations can be used such that muatations on the
provided examples, e ∈ E , are likely to maintain the validity of the input

with the same label as N (e).

Use of mutations

DeepXplore uses domain-specific mutations on the provided input
images like lighting modifications (simulating different times of the
day), introducing occlusion (cars blocking view), a small-fraction of
pixels blackened (effect of dirt on camera);

Deep test uses nine different realistic image transformations
(changing brightness, changing contrast, translation, scaling,
horizontal shearing, rotation, blurring, fog effect, and rain
effect)—comprising linear, affine, and convolutional transformations.
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Testing neural networks Neural Network Oracles

Solution #3: Using generative models

Generative models are capable of learning a target distribution, and have
been used to synthesize new points in the input-space:

Use of Generative models

Dola et al. use variational autoencoders (VAE) to learn the
input-distribution;

DeepRoad uses Generative Advarsarial Networks (GAN) to generative
realistic road scenes to test self-driving controller DNNs.
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Testing neural networks Neural Network Oracles

Solution #4: Using ensembles

Assumes that networks mostly work well and ensembles are effective
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establish ground-truth
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Testing neural networks Neural Network Oracles

Properties

(Local) Robustness

”small” perturbations don’t alter outcome significantly at x0

∀ϵ ∈ Noise. N (x0) ≃ N (x0 + ϵ)

(Global) Robustness

”small” perturbations don’t alter outcome significantly anywhere

∀x ∈ X . ∀ϵ ∈ Noise. N (x) ≃ N (x + ϵ)

Image Credit: Goodfellow et al. 2013.

Subhajit (subhajit) The Science and Engineering of Testing 67 / 82



Testing neural networks Neural Network Oracles

Properties

(Local) Robustness

”small” perturbations don’t alter outcome significantly at x0

∀ϵ ∈ Noise. N (x0) ≃ N (x0 + ϵ)

(Global) Robustness

”small” perturbations don’t alter outcome significantly anywhere

∀x ∈ X . ∀ϵ ∈ Noise. N (x) ≃ N (x + ϵ)

Image Credit: Goodfellow et al. 2013.

Subhajit (subhajit) The Science and Engineering of Testing 67 / 82



Testing neural networks Neural Network Oracles

Properties

(Local) Robustness

”small” perturbations don’t alter outcome significantly at x0

∀ϵ ∈ Noise. N (x0) ≃ N (x0 + ϵ)

(Global) Robustness

”small” perturbations don’t alter outcome significantly anywhere

∀x ∈ X . ∀ϵ ∈ Noise. N (x) ≃ N (x + ϵ)

Image Credit: Goodfellow et al. 2013.

Subhajit (subhajit) The Science and Engineering of Testing 67 / 82



Testing neural networks Neural Network Oracles

Properties

(Local) Robustness

”small” perturbations don’t alter outcome significantly at x0

∀ϵ ∈ Noise. N (x0) ≃ N (x0 + ϵ)

(Global) Robustness

”small” perturbations don’t alter outcome significantly anywhere

∀x ∈ X . ∀ϵ ∈ Noise. N (x) ≃ N (x + ϵ)

Image Credit: Goodfellow et al. 2013.
Subhajit (subhajit) The Science and Engineering of Testing 67 / 82



Testing neural networks Neural Network Oracles

Properties

Independence-based Fairness (CARE)

∀l ∈ L. P(Y = l |F(s))− P(Y = l |F ̸= s) ≤ ϵ

s ∈ F is a sensitive attribute.

Backdoor attack success rate (CARE)

SR(t) = P(N (x) = t | x ∈ Z ,Z ⊆ X ) ≤ ϵ

t ∈ X is the target label, Z ⊆ X is the set of adversarial inputs.

Safety property violation rate (CARE)

VR(ρ) = P(N ̸|= ρ | x ∈ X ) ≤ ϵ

ρ is a critical safety property.
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Testing neural networks Test Adequacy

Neural Network Coverage Metrics

Lipshitz Continuity (LC): all neurons are within a provided Lipshitz
constant bound (DeepConcolic)

Neuron Coverage (NC): all neurons that have been activated in some
test; similar to statement coverage (DeepConcolic)

Sign Sign Coverage (SSC): have we seen all possible
activation/deactivation combinations of all pairs of neurons in
adjacent layers; similar to MC/DC (DeepConcolic)

Neuron Boundary Coverage (NBC): all neuron activation values that
exceed a given bound (DeepConcolic)
Neuron Contribution Coverage (NCC): contribution of each edge on

the value of a neuron activation value (DeepCon),

uih,j(x) = w i
h,j ·fi−1,h(x) U i

j (x) = {uih,j(x) | 0 ≤ h ≤ si−i}

nuih,j =
uih,j(x)−min(U i

j (x))

max(U i
j (x))−min(U i

j (x))
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Testing neural networks Algorithms

Algorithm Summary

Greedy search (DeepTest),

Gradient Descent (DeepGauge, DiffAI, DSE, DeepXplore, DeepCon),

Concolic Execution (DeepConcolic, DeepCover, NeuroSPF,
DeepCheck),

Coverage-guided Graybox Fuzzing (DLFuzz, TensorFuzz)
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Testing neural networks Algorithms

Compile to program (DeepCheck)

As already discussed, a neural network can be compiled to a program:

DeepCheck

The i th output neuron:

yi = Ci ,0 · x0 + Ci ,1 · x1 + · · ·+ Ci ,n−1 · xn−1 + Bi

Using concolic execution, this coefficient can be assembled as:

Ci ,j =
∑

p∈paths(i ,j)

(
∏

e∈edges(p)

w(e))
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Testing neural networks Algorithms

Compile to program (DeepCheck)

DeepCheck

Use the value of the coefficients to identify the most important input
(assign importance scores) to be mutated (akin to gradient-based
approaches)

Attack generation: output of j th neuron, fj(X ) = Bj +
∑t

i=1 Cj ,i · Xi ,
so attack constraint is:

∃X . ∧j=1,j ̸=l ′ fj(X ) < fl ′(X ) ∧ PathCond

where PC = ∧Aj=1(Bj +
∑t

i=1 Cj ,i · Xi{≤, >}0), A is the number of
activation functions; the symbolic constraints can be limited to the
important neurons for efficiency
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Testing neural networks Algorithms

Concolic Execution (DeepConcolic, SpaceScanner)

Activation Tree

activation pattern (ap) of a test t, ap[t], is a bitvector recording the
activation state of all neurons; ap[t](i) (or ap[t]k1,k2) is the activation
neuron for the i th neuron (or k2 neuron on k1 layer) for test t

Activation (Pattern)

ap[t](i)= Wi · X [t] + Bi{≤, >}0 Activation of a neuron
Wi : incoming edge-wts. of neuron i , X [t]: input vector for test t

AC: ∧|N |i=0NeuronActivate(i) Activation condition (AC)

NN unfolded as a tree, each neuron is a prefix of the activation
bitvector till that neuron Activation Tree
Keeps track of which activations have been seen.

DC: ∧i ̸=koi > ok , for desired class i Decision Condition (DC)

Same AC with different DCs search all decisions with same activation
Amplification
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NN unfolded as a tree, each neuron is a prefix of the activation
bitvector till that neuron Activation Tree
Keeps track of which activations have been seen.

DC: ∧i ̸=koi > ok , for desired class i Decision Condition (DC)

Same AC with different DCs search all decisions with same activation
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Testing neural networks Algorithms

Coverage guided concolic execution

DeepConcolic

Classic concolic execution: start with seed tests (examples) E , and
maximize coverage metrics (NC, SSC, NBC, Lipshitz Test) to
generate new tests, eg.

ap′[t]k,i = ¬ap[t]k,i ∧ ∀
k1<k

∧
0≤iq≤sk1

ap′[t]k1,ii = ap[t]k1,i1

Neuron Cov.

{∃x1, x2. (||o[x1]−o[x2]||−c ·||x1−x2|| > 0)∧x1, x2 ∈ X | X ∈ S(D, b)}
X ∈ S(D, b) is any of the valid regions, o(x) is the output layer value

corresponding to input x Lipshitz coverage

Given coverage requirememts, R, return test with highest score:

t = argmax
r
{val(t) | r ∈ R}
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Testing neural networks Algorithms

Probabilistic Symbolic Execution (SpaceScanner)

SpaceScanner

Probability of a Decision (by volume computation):

Decision Probability

Pr(D) =
∑

φ∈AC∧DC

∫
x

1x |=φ · p(x)dx (1)

=
∑

φ∈AC∧DC

Vol(ϕ ∧ si )

si
·
∑
x

p(si ) (2)

Assuming that the input distribution is discretized into a histogram,
H : si 7→ Pr(si ) p(x) is the input distribution
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Testing neural networks Algorithms

Gradient-guided Optimization

DeepXplore

(
∑
i ̸=j

Ni (x)[c]− λ1 · Nj(x)[c]) + λ2 · fn(x)

It attempts to maximize (1) differential behavior amonst an ensemble
of networks (first term), (2) neuron coverage (second term)

A network Nj is selected at random, and its differential behavior from
others is maximized to draw out faulty behaviors

A deactivated neuron fn is selected at random, and we attempt to
activate it
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Testing neural networks Algorithms

Data-driven + Symbolic solvers

Solvers like Reluplex can effectively solve local robustness at x0:

∃x ,x0 . Symbolic[N](x)−N (x0) > ϵ ∧ ||x − x0|| ≤ δ

(note: N (x0) is a constant)

they can be used to solve global robustness by:

∃x1,x2 . Symbolic[N](x1)− Symbolic(N (x2) > ϵ ∧ ||x1 − x2|| ≤ δ

However, it is not efficient:

Symbolically encoding two copies of the network does not scale

Reluplex like solvers work best when the check is restricted to small
neighborhoods
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Testing neural networks Algorithms

Data-driven + Symbolic solvers

DeepSafe

Cluster the examples E via k-means: each cluster identifies a region
characterized by a centroid (x0), radius (r) and label (l);

Use the local robustness check with Reluplex on each region;

for each region r :

if no adversarial example is found, r is robust
if an adversarial example x is found, r is shrunk to eliminate x
if a region size reduces to zero, N is non-robust
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Testing neural networks Metamorphic Testing

Metamorphic Testing

Metamorphic Testing (HOMRS)
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Conclusion

Conclusion

Application and impact of these techniques, other works on verification,
repair, interpretation, explanation,
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