# The Science and Engineering of Testing Software 1.0 and 2.0

Subhajit Roy subhajit@iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology Kanpur

### Outline I

#### Introduction



Fundamentals of System Testing

- What is *Testing*?
- Test Oracle
- Testing Adequacy
- Testing Algorithms
  - Concolic Execution
  - Fuzzing
  - Gradient Descent
- Challenges
- Mathematical preliminaries
  - Algorithmic claims
  - Multivariate calculus
  - Optimizing a function
  - metric spaces

#### Problems with Neural Networks

Subhajit (subhajit)

## Outline II

- Neural networks as Programs
- Attacks on Neural Networks

#### Testing neural networks

- Visibility and Stage
- Neural Network Oracles
- Test Adequacy
- Algorithms to achieve high NN coverage

#### 6 Conclusion

Introduction



Introduction

















#### What is common in these movies?

#### ... only because they did not test/verify their Al!

Image credits: http://imdb.com

#### Our Dream Engine



#### Our Dream Engine



#### Impossible for a Turing-complete system!

#### Life is all about compromises

### Life is all about compromises



### Life is all about compromises



# Outline I

#### Introduction



- Fundamentals of System Testing
- What is *Testing*?
- Test Oracle
- Testing Adequacy
- Testing Algorithms
  - Concolic Execution
  - Fuzzing
  - Gradient Descent
- Challenges
- Mathematical preliminaries
  - Algorithmic claims
  - Multivariate calculus
  - Optimizing a function
  - metric spaces

#### Problems with Neural Networks

Subhajit (subhajit)

## Outline II

- Neural networks as Programs
- Attacks on Neural Networks

#### Testing neural networks

- Visibility and Stage
- Neural Network Oracles
- Test Adequacy
- Algorithms to achieve high NN coverage

#### 6 Conclusion

What is program testing?

Searching for inputs that fail the program.

What is program testing?

Searching for inputs that fail the program.

#### What is program testing?

Searching for inputs that *fail* the program. Exciting a program with a set of inputs—in a search for *any* input that shows a bug.

#### What is program testing?

Searching for inputs that *fail* the program. Exciting a program with a set of inputs—in a search for *any* input that shows a bug.

#### What is program verification?

Synthesizing a mathematical proof for the correctness of the program.

#### What is program testing?

Searching for inputs that *fail* the program. Exciting a program with a set of inputs—in a search for *any* input that shows a bug.

#### What is program verification?

Synthesizing a mathematical proof for the correctness of the program.

#### What is program testing?

Searching for inputs that *fail* the program. Exciting a program with a set of inputs—in a search for *any* input that shows a bug.

#### What is program verification?

Synthesizing a mathematical proof for the *correctness* of the program. Build an argument—that the program behaves correctly on *all* inputs.

• How to identify a bug?

• How to identify a bug?

- How to identify a bug?
- When to stop testing?



- How to identify a bug?
- When to stop testing?



- How to identify a bug?
- When to stop testing?
- How much of the system is visible?



- How to identify a bug?
- When to stop testing?
- How much of the system is visible?



- How to identify a bug?
- When to stop testing?
- How much of the system is visible?
- What SDLC stage are we in?

Test Oracle Test Adequacy System Visibility

- How to identify a bug?
- When to stop testing?
- How much of the system is visible?
- What SDLC stage are we in?

Test Oracle Test Adequacy System Visibility

- How to identify a bug?
- When to stop testing?
- How much of the system is visible?
- What SDLC stage are we in?
- How to test?

Test Oracle Test Adequacy System Visibility Testing Stage

- How to identify a bug?
- When to stop testing?
- How much of the system is visible?
- What SDLC stage are we in?
- How to test?

Test Oracle Test Adequacy System Visibility Testing Stage
#### What is Testing?

# Testing Ingredients

- How to identify a bug?
- When to stop testing?
- How much of the system is visible?
- What SDLC stage are we in?
- How to test?



#### Black-box testing

- Black-box testing
- White-box testing

- Black-box testing
- White-box testing

- Black-box testing
- White-box testing
- Grey-box testing

#### • unit testing

- unit testing
- integration testing

- unit testing
- integration testing
- system testing

- unit testing
- integration testing
- system testing
- acceptance testing

• Functional specification

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available

#### Test Oracle

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing
  - Another system for the functional specification

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing
  - Another system for the functional specification
  - Easy to implement less efficient baseline, regression testing etc.

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing
  - Another system for the functional specification
  - Easy to implement less efficient baseline, regression testing etc.
- Emsembles as oracles

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing
  - Another system for the functional specification
  - Easy to implement less efficient baseline, regression testing etc.
- Emsembles as oracles
  - Majority voting amongst a group of systems to establish the ground-truth (eg. random forest)

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing
  - Another system for the functional specification
  - Easy to implement less efficient baseline, regression testing etc.
- Emsembles as oracles
  - Majority voting amongst a group of systems to establish the ground-truth (eg. random forest)
- Metamorphic relation (between inputs) as oracle

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing
  - Another system for the functional specification
  - Easy to implement less efficient baseline, regression testing etc.
- Emsembles as oracles
  - Majority voting amongst a group of systems to establish the ground-truth (eg. random forest)
- Metamorphic relation (between inputs) as oracle
  - Relation between outputs of pair of inputs is often easy to establish; eg. ADD(x, y) = ADD(x+1, y+1) + 2

- Functional specification
  - Rigorous mathematical description of the input-output relation, rarely available
  - Humans in the loop
- Properties as oracles: can be seen as a Hoare Triple {*Pre*} *S* {*Post*}
  - Robustness, fairness, secure, etc.
- Differential testing
  - Another system for the functional specification
  - Easy to implement less efficient baseline, regression testing etc.
- Emsembles as oracles
  - Majority voting amongst a group of systems to establish the ground-truth (eg. random forest)
- Metamorphic relation (between inputs) as oracle
  - Relation between outputs of pair of inputs is often easy to establish; eg. ADD(x, y) = ADD(x+1, y+1) + 2
  - Referred to as metamorphic testing

#### Possibly unbounded number of values (eg. strings as input)

#### Possibly unbounded number of values (eg. strings as input)

How to select test inputs?

Possibly unbounded number of values (eg. strings as input)

How to select test inputs?

Principle: Test via an equivalence partitioning on inputs

Possibly unbounded number of values (eg. strings as input)

How to select test inputs?

Principle: Test via an equivalence partitioning on inputs

Equivalence classes

Possibly unbounded number of values (eg. strings as input)

How to select test inputs?

Principle: Test via an equivalence partitioning on inputs

Equivalence classes

Define a partitioning on the input-space

Possibly unbounded number of values (eg. strings as input)

How to select test inputs?

Principle: Test via an equivalence partitioning on inputs

#### Equivalence classes

- Define a partitioning on the input-space
- Pick a representative input from each partition

# **Defining Equivalence Partitions**

• Semantics of input vector

- Semantics of input vector
  - inputs *l*<sub>1</sub> and *l*<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)

- Semantics of input vector
  - inputs *l*<sub>1</sub> and *l*<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior
  - inputs  $I_1$  and  $I_2$  belong to different partitions if they create different behaviors in the system S and a *mutated* system S'

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior
  - inputs  $I_1$  and  $I_2$  belong to different partitions if they create different behaviors in the system S and a *mutated* system S'

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior
  - inputs  $l_1$  and  $l_2$  belong to different partitions if they create different behaviors in the system S and a *mutated* system S' *kills* a mutatant
  - Referred to as mutation testing

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior
  - inputs  $l_1$  and  $l_2$  belong to different partitions if they create different behaviors in the system S and a *mutated* system S' *kills* a mutatant
  - Referred to as mutation testing
- Coverage metrics
# Defining Equivalence Partitions

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior
  - inputs  $l_1$  and  $l_2$  belong to different partitions if they create different behaviors in the system S and a *mutated* system S' *kills* a mutatant
  - Referred to as mutation testing
- Coverage metrics
  - coverage metric is defined on set of control-flow or dataflow entities (recall *metric space*)

# Defining Equivalence Partitions

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior
  - inputs  $l_1$  and  $l_2$  belong to different partitions if they create different behaviors in the system S and a *mutated* system S' *kills* a mutatant
  - Referred to as mutation testing
- Coverage metrics
  - coverage metric is defined on set of control-flow or dataflow entities (recall *metric space*)
  - inputs  $l_1$  and  $l_2$  belong to different partitions if they *cover* a different subset of these entities

# Defining Equivalence Partitions

- Semantics of input vector
  - inputs l<sub>1</sub> and l<sub>2</sub> belong to different partitions if they are *likely* to create different outputs (positive and negative numbers, empty and non-empty strings etc.)
  - eg. product of matrices
- System behavior
  - inputs  $l_1$  and  $l_2$  belong to different partitions if they create different behaviors in the system S and a *mutated* system S' *kills* a mutatant
  - Referred to as mutation testing
- Coverage metrics
  - coverage metric is defined on set of control-flow or dataflow entities (recall *metric space*)
  - inputs  $l_1$  and  $l_2$  belong to different partitions if they *cover* a different subset of these entities
  - the coverage metric quantifies the goodness of a test-suite

Primary data-structure for flow analysis of programs.

• Each node in the CFG is a basic-block : piece of straight-line code i.e. a sequence of instructions with single entry and single exit (no jumps or jump targets)

Primary data-structure for flow analysis of programs.

• Each node in the CFG is a basic-block : piece of straight-line code i.e. a sequence of instructions with single entry and single exit (no jumps or jump targets)

- Each node in the CFG is a basic-block : piece of straight-line code i.e. a sequence of instructions with single entry and single exit (no jumps or jump targets)
   basic block
- Any possible control flow from one basic-block to another is represented by a control-flow edge

- Each node in the CFG is a basic-block : piece of straight-line code i.e. a sequence of instructions with single entry and single exit (no jumps or jump targets)
   basic block
- Any possible control flow from one basic-block to another is represented by a control-flow edge

- Each node in the CFG is a basic-block : piece of straight-line code i.e. a sequence of instructions with single entry and single exit (no jumps or jump targets)
   basic block
- Any possible control flow from one basic-block to another is represented by a control-flow edge control-flow edge
- Two important blocks: entry block and exit block

• Statement coverage (Line coverage, Node coverage)

• Statement coverage (Line coverage, Node coverage)

- Statement coverage (Line coverage, Node coverage)
- Branch coverage (Decision Coverage)

- Statement coverage (Line coverage, Node coverage)
- Branch coverage (Decision Coverage)

- Statement coverage (Line coverage, Node coverage)
- Branch coverage (Decision Coverage)
- Condition coverage (Predicate coverage)

- Statement coverage (Line coverage, Node coverage)
- Branch coverage (Decision Coverage)
- Condition coverage (Predicate coverage)

- Statement coverage (Line coverage, Node coverage)
- Branch coverage (Decision Coverage)
- Condition coverage (Predicate coverage)
- Modified condition and decision coverage (MCDC)

- Statement coverage (Line coverage, Node coverage)
- Branch coverage (Decision Coverage)
- Condition coverage (Predicate coverage)
- Modified condition and decision coverage (MCDC)

- Statement coverage (Line coverage, Node coverage)
- Branch coverage (Decision Coverage)
- Condition coverage (Predicate coverage)
- Modified condition and decision coverage (MCDC)
- Path Coverage

#### Does 100% statement coverage imply 100% branch coverage?

Does 100% statement coverage imply 100% branch coverage?

Does 100% branch coverage imply 100% statement coverage?

Does 100% statement coverage imply 100% branch coverage?

Does 100% branch coverage imply 100% statement coverage?

Does 100% branch coverage imply 100% path coverage?

Does 100% statement coverage imply 100% branch coverage?

Does 100% branch coverage imply 100% statement coverage?

Does 100% branch coverage imply 100% path coverage?

Does 100% path coverage means that the program has no bug?

Solves an *optimization problem* w.r.t. the test goal (eg. coverage metric, property violation likelihood etc.)

• Randomized Algorithms (greedy search, fuzzing)

- Randomized Algorithms (greedy search, fuzzing)
- Symbolic Algorithms (symbolic execution, concolic execution)

- Randomized Algorithms (greedy search, fuzzing)
- Symbolic Algorithms (symbolic execution, concolic execution)
- Evolutionary Search (genetic algorithms (like differential evolution), ant colony)

- Randomized Algorithms (greedy search, fuzzing)
- Symbolic Algorithms (symbolic execution, concolic execution)
- Evolutionary Search (genetic algorithms (like differential evolution), ant colony)
- Gradient-based Search (gradient descent)

# Symbolic Execution

#### Analyse this

What inputs cause this program to violate the assertion?

# Symbolic Execution

Analyze this

OK, let's answer this!

# Symbolic Execution

Analyze this

OK, let's answer this!

# Symbolic Execution

#### Analyze this

OK, let's answer this!

A customer buys 4 apples and 2 bananas for Rs. 50. Another customer buys 5 apples and 4 bananas for Rs. 70. What is the cost of each item?

# Symbolic Execution

#### Analyze this

OK, let's answer this!

A customer buys 4 apples and 2 bananas for Rs. 50. Another customer buys 5 apples and 4 bananas for Rs. 70. What is the cost of each item?

Use symbols to represent unknowns!

# Symbolic Execution

#### Simple idea

Execute a program with symbolic inputs!

# Symbolic Execution

#### Simple idea

Execute a program with symbolic inputs!

# Symbolic Execution

#### Simple idea

Execute a program with symbolic inputs!

#### Explore all paths!

Subhajit (subhajit)

# Symbolic Execution

#### Simple idea

Execute a program with symbolic inputs!

```
int main(){
    input(a,b,c,d);
    if ( a <= b){
        c++;
    }
    else {
        d++;
        if ( c == 2*d)
            assert(a > d)
    }
}
```

#### Explore all paths!
# Symbolic Execution

## Simple idea

Execute a program with symbolic inputs!

```
int main(){
  input(a,b,c,d);
  if ( a <= b){
    c++;
  }
  else {
    d++;
    if ( c == 2*d)
        assert(a > d)
  }
}
```



## Explore all paths!

# Symbolic Execution

## Simple idea

Execute a program with symbolic inputs!

```
int main(){
  input(a,b,c,d);
  if ( a <= b){
    c++;
  }
  else {
    d++;
    if ( c == 2*d)
        assert(a > d)
  }
}
```



## Explore all paths!

# Symbolic Execution

## Simple idea

Execute a program with symbolic inputs!

```
int main(){
  input(a,b,c,d);
  if ( a <= b){
    c++;
  }
  else {
    d++;
    if ( c == 2*d)
        assert(a > d)
  }
}
```



Symbolic Execution Tree

Explore all paths!

## Concolic Execution

# Concolic Execution

## ConcolicExecution

 $\vec{t} := random()$ 

# Concolic Execution

## ConcolicExecution

 $\vec{t} := random()$  $T := \{\vec{t}\}$ 

# Concolic Execution

## ConcolicExecution

 $\vec{t} := random()$  $T := \{\vec{t}\}$ while  $\neg$  goal do

# Concolic Execution

## ConcolicExecution

 $\vec{t} := random()$   $T := \{\vec{t}\}$ while  $\neg$  goal do  $out, \varphi := ConcolicRun(\vec{t})$ 

# Concolic Execution

## ConcolicExecution

 $\vec{t} := random()$   $T := \{\vec{t}\}$ while  $\neg$  goal do  $out, \varphi := ConcolicRun(\vec{t})$ if TestOracle $(\vec{t}, out) ==$  Error then

# Concolic Execution

```
 \vec{t} := random() 
 T := \{\vec{t}\} 
  while \neg goal do 
  out, \varphi := ConcolicRun(\vec{t}) 
  if TestOracle(\vec{t}, out) == Error then 
  fail
```

# Concolic Execution

```
 \vec{t} := random() 
 T := \{\vec{t}\} 
  while \neg goal do 
  out, <math>\varphi := \text{ConcolicRun}(\vec{t}) 
  if TestOracle(\vec{t}, out) == \text{Error then} 
  fail
  end if
```

# Concolic Execution

```
\vec{t} := random()

T := \{\vec{t}\}

while \neg goal do

out, \varphi := ConcolicRun(\vec{t})

if TestOracle(\vec{t}, out) == Error then

fail

end if

\varphi' := SearchHeuristic(\varphi)
```

# Concolic Execution

```
\vec{t} := random()

T := \{\vec{t}\}

while \neg goal do

out, \varphi := ConcolicRun(\vec{t})

if TestOracle(\vec{t}, out) == Error then

fail

end if

\varphi' := SearchHeuristic(\varphi)

\vec{t} := Solve(\varphi')
```

# Concolic Execution

```
\vec{t} := random()

T := \{\vec{t}\}

while \neg goal do

out, \varphi := ConcolicRun(\vec{t})

if TestOracle(\vec{t}, out) == Error then

fail

end if

\varphi' := SearchHeuristic(\varphi)

\vec{t} := Solve(\varphi')

T.append(\vec{t})
```

# Concolic Execution

```
\vec{t} := random()

T := \{\vec{t}\}

while \neg goal do

out, \varphi := ConcolicRun(\vec{t})

if TestOracle(\vec{t}, out) == Error then

fail

end if

\varphi' := SearchHeuristic(\varphi)

\vec{t} := Solve(\varphi')

T.append(\vec{t})

end while
```

# Concolic Execution

```
\vec{t} := random()
T := \{\vec{t}\}
while ¬ goal do
    out, \varphi := \text{ConcolicRun}(\vec{t})
   if TestOracle(\vec{t}, out) == Error then
       fail
   end if
    \varphi' := \text{SearchHeuristic}(\varphi)
   \vec{t} := \text{Solve}(\varphi')
    T.append(\vec{t})
end while
return T
```

# Concolic Execution

```
\vec{t} := random()
T := \{\vec{t}\}
while ¬ goal do
    out, \varphi := \text{ConcolicRun}(\vec{t})
   if TestOracle(\vec{t}, out) == Error then
       fail
   end if
    \varphi' := \text{SearchHeuristic}(\varphi)
   \vec{t} := \text{Solve}(\varphi')
    T.append(\vec{t})
end while
return T
```

# Concolic Execution

## ConcolicExecution

```
\vec{t} := random()
T := \{\vec{t}\}
while ¬ goal do
   out, \varphi := ConcolicRun(\vec{t})
   if TestOracle(\vec{t}, out) == Error then
       fail
   end if
   \varphi' := \text{SearchHeuristic}(\varphi)
   \vec{t} := \text{Solve}(\varphi')
   T.append(\vec{t})
end while
return T
```

 $\varphi$  symbolically encodes a program path

# Concolic Execution

## ConcolicExecution

```
\vec{t} := random()
T := \{\vec{t}\}
while ¬ goal do
   out, \varphi := ConcolicRun(\vec{t})
   if TestOracle(\vec{t}, out) == Error then
       fail
   end if
   \varphi' := \text{SearchHeuristic}(\varphi)
   \vec{t} := \mathsf{Solve}(\varphi')
    T.append(\vec{t})
end while
return T
```

 $\varphi$  symbolically encodes a program path

## Path Condition (PC)

# Concolic Execution

## ConcolicExecution

```
\vec{t} := random()
T := \{\vec{t}\}
while ¬ goal do
   out, \varphi := ConcolicRun(\vec{t})
   if TestOracle(\vec{t}, out) == Error then
       fail
   end if
   \varphi' := \text{SearchHeuristic}(\varphi)
   \vec{t} := \text{Solve}(\varphi')
    T.append(\vec{t})
end while
return T
```

 $\varphi$  symbolically encodes a program path

Path Condition (PC)

SearchHeuristic performs test selection/prioritization

# Concolic Execution

## ConcolicExecution

```
\vec{t} := random()
T := \{\vec{t}\}
while ¬ goal do
   out, \varphi := ConcolicRun(\vec{t})
   if TestOracle(\vec{t}, out) == Error then
       fail
   end if
   \varphi' := \text{SearchHeuristic}(\varphi)
   \vec{t} := \text{Solve}(\varphi')
    T.append(\vec{t})
end while
return T
```

 $\varphi$  symbolically encodes a program path

SearchHeuristic performs test selection/prioritization



Search Heuristic

# Search Heuristic

# Search Heuristic

```
int main(){
    input(a,b,c,d);
    if ( a <= b){
        c++;
    }
    else {
        d++;
        if ( c == 2*d)
            assert(a > d)
    }
}
```

# Search Heuristic

```
int main(){
    input(a,b,c,d);
    if ( a <= b){
        c++;
    }
    else {
        d++;
        if ( c == 2*d)
            assert(a > d)
    }
```



}

# Search Heuristic

```
int main(){
                                                             s0
 input(a,b,c,d);
                                                                      (a0 >= b0)
                                                 (a0 \le b0)
 if (a \le b){
     c++:
                                                                       s2
                                                  s1
 }
                                                      (c0 == 2^{*}(d0 + 1))
                                                                              (c0 != 2*(d0 + 1))
 else {
     d++:
                                                                             s6
                                                                  s3
     if (c == 2*d)
                                                    (a0 != d0 + 1)
                                                                         (a0 != d0 + 1)
           assert(a > d)
 }
                                                                       s5
                                                             s4
ł
```

## How to modify PCs for next input?

## Current: $(a_0 \ge b_0) \land (c_0 \ne 2 * (d_0 + 1))$

# Search Heuristic

```
int main(){
                                                             s0
 input(a,b,c,d);
                                                                      (a0 >= b0)
                                                 (a0 \le b0)
 if (a \le b){
     c++:
                                                                       s2
                                                  s1
 }
                                                      (c0 == 2^{*}(d0 + 1))
                                                                              (c0 != 2*(d0 + 1))
 else {
     d++:
                                                                             s6
                                                                  s3
     if (c == 2*d)
                                                    (a0 != d0 + 1)
                                                                         (a0 != d0 + 1)
           assert(a > d)
 }
                                                                       s5
                                                             s4
ł
```

## How to modify PCs for next input?

## Current: $(a_0 \ge b_0) \land (c_0 \ne 2 * (d_0 + 1))$

# Search Heuristic

```
int main(){
    input(a,b,c,d);
    if ( a <= b){
        c++;
    }
    else {
        d++;
        if ( c == 2*d)
            assert(a > d)
    }
}
```



## How to modify PCs for next input?

Current:  $(a_0 \ge b_0) \land (c_0 \ne 2 * (d_0 + 1))$ Next:  $(a_0 \ge b_0) \land \neg (c_0 \ne 2 * (d_0 + 1))$ 

## Homework

## Design search heuristics for depth-first search and breadth-first search

# Fuzzing Algorithm

 $\textbf{0} worklist \leftarrow seedinputs$ 

 $^{1}t$  is not removed from worklist

# Fuzzing Algorithm

- **1** worklist  $\leftarrow$  seedinputs
- 2  $t \leftarrow selectNextInput(worklist)^1$

 $^{1}t$  is not removed from worklist

# Fuzzing Algorithm

- worklist  $\leftarrow$  seedinputs
- 2  $t \leftarrow selectNextInput(worklist)^1$
- **3** If t is new, result,  $cov \leftarrow Run(t)$

 $<sup>^{1}</sup>t$  is not removed from worklist

# Fuzzing Algorithm

- worklist  $\leftarrow$  seedinputs
- 2  $t \leftarrow selectNextInput(worklist)^1$
- If t is new, result,  $cov \leftarrow Run(t)$
- If result is a crash, declare t as Crashing Input

 $t^{1}$  is not removed from worklist

- $\textbf{0} \quad \text{worklist} \leftarrow \text{seedinputs}$
- 2  $t \leftarrow selectNextInput(worklist)^1$
- If t is new, result,  $cov \leftarrow Run(t)$
- If result is a crash, declare t as Crashing Input
- 5

if cov increases coverage, declare t as Interesting Input and addittoworklis

 $t^{1}$  is not removed from worklist

- worklist  $\leftarrow$  seedinputs
- 2  $t \leftarrow selectNextInput(worklist)^1$
- If t is new, result,  $cov \leftarrow Run(t)$
- If result is a crash, declare t as Crashing Input
- 5

if cov increases coverage, declare t as Interesting Input and addittoworklis

•  $e \leftarrow selectEnergy(t, result, cov)$ 

 $t^{1}$  is not removed from worklist

- $\texttt{0} \quad \mathsf{worklist} \leftarrow \mathsf{seedinputs}$
- 2  $t \leftarrow selectNextInput(worklist)^1$
- If t is new, result,  $cov \leftarrow Run(t)$
- If result is a crash, declare t as Crashing Input

## 5

if cov increases coverage, declare t as Interesting Input and addittoworklis

- $e \leftarrow selectEnergy(t, result, cov)$
- worklist  $\leftarrow$  worklist + mutate(t, e)

 $t^{1}$  is not removed from worklist

- $\texttt{0} \quad \mathsf{worklist} \leftarrow \mathsf{seedinputs}$
- 2  $t \leftarrow selectNextInput(worklist)^1$
- If t is new, result,  $cov \leftarrow Run(t)$
- If result is a crash, declare t as Crashing Input

## 5

if cov increases coverage, declare t as Interesting Input and addittoworklis

- $e \leftarrow selectEnergy(t, result, cov)$
- worklist  $\leftarrow$  worklist + mutate(t, e)
- 6 Goto 2

 $t^{1}$  is not removed from worklist
## Fuzzing

 $\mathsf{worklist} \gets \mathsf{seedinputs}$ 

#### Fuzzing

 $worklist \gets seedinputs \\ \textbf{while not timeout do}$ 

#### Fuzzing

worklist  $\leftarrow$  seedinputs while not timeout do  $t \leftarrow$  selectNextInput(worklist)

 $\triangleright$  not removed from worklist

#### Fuzzing

worklist  $\leftarrow$  seedinputs while not timeout do  $t \leftarrow$  selectNextInput(worklist) if t is new then

▷ not removed from worklist

#### Fuzzing

```
worklist \leftarrow seedinputs

while not timeout do

t \leftarrow selectNextInput(worklist)

if t is new then

result, cov \leftarrow Run(t)
```

▷ not removed from worklist

```
worklist \leftarrow seedinputs

while not timeout do

t \leftarrow selectNextInput(worklist) \triangleright not removed from worklist

if t is new then

result, cov \leftarrow Run(t)

end if
```

```
worklist \leftarrow seedinputs

while not timeout do

t \leftarrow selectNextInput(worklist) \triangleright not removed from worklist

if t is new then

result, cov \leftarrow Run(t)

end if

if result is a crash then
```

```
worklist \leftarrow seedinputs

while not timeout do

t \leftarrow selectNextInput(worklist) \triangleright not removed from worklist

if t is new then

result, cov \leftarrow Run(t)

end if

if result is a crash then

declare t as Crashing Input
```

```
worklist \leftarrow seedinputs

while not timeout do

t \leftarrow selectNextInput(worklist) \triangleright not removed from worklist

if t is new then

result, cov \leftarrow \operatorname{Run}(t)

end if

if result is a crash then

declare t as Crashing Input

end if
```

```
worklist \leftarrow seedinputs

while not timeout do

t \leftarrow selectNextInput(worklist) \triangleright not removed from worklist

if t is new then

result, cov \leftarrow \operatorname{Run}(t)

end if

if result is a crash then

declare t as Crashing Input

end if

if cov increases coverage then
```

```
worklist ← seedinputs
while not timeout do
    t ← selectNextInput(worklist) ▷ not removed from worklist
    if t is new then
        result, cov ← Run(t)
    end if
    if result is a crash then
        declare t as Crashing Input
    end if
    if cov increases coverage then
        declare t as Interesting Input
```

```
worklist \leftarrow seedinputs

while not timeout do

t \leftarrow selectNextInput(worklist) \triangleright not removed from worklist

if t is new then

result, cov \leftarrow Run(t)

end if

if result is a crash then

declare t as Crashing Input

end if

if cov increases coverage then

declare t as Interesting Input

worklist.add(t)
```

```
worklist ← seedinputs
while not timeout do
    t ← selectNextInput(worklist) ▷ not removed from worklist
    if t is new then
        result, cov ← Run(t)
    end if
    if result is a crash then
        declare t as Crashing Input
    end if
    if cov increases coverage then
        declare t as Interesting Input
        worklist.add(t)
        if it is crashing then
```

```
worklist ← seedinputs
while not timeout do
    t ← selectNextInput(worklist) ▷ not removed from worklist
    if t is new then
        result, cov ← Run(t)
    end if
    if result is a crash then
        declare t as Crashing Input
    end if
    if cov increases coverage then
        declare t as Interesting Input
        worklist.add(t)
        if it is crashing then
            mark as unique crash
```

```
worklist \leftarrow seedinputs
while not timeout do
                                          > not removed from worklist
   t \leftarrow \text{selectNextInput(worklist)}
   if t is new then
       result, cov \leftarrow Run(t)
   end if
   if result is a crash then
      declare t as Crashing Input
   end if
   if cov increases coverage then
      declare t as Interesting Input
      worklist.add(t)
      if it is crashing then
          mark as unique crash
      end if
```

```
worklist \leftarrow seedinputs
while not timeout do
                                          > not removed from worklist
   t \leftarrow \text{selectNextInput(worklist)}
   if t is new then
       result, cov \leftarrow Run(t)
   end if
   if result is a crash then
      declare t as Crashing Input
   end if
   if cov increases coverage then
      declare t as Interesting Input
      worklist.add(t)
      if it is crashing then
          mark as unique crash
      end if
   end if
```

```
worklist \leftarrow seedinputs
while not timeout do
   t \leftarrow \text{selectNextInput(worklist)}
                                             b not removed from worklist
   if t is new then
       result, cov \leftarrow Run(t)
   end if
   if result is a crash then
       declare t as Crashing Input
   end if
   if cov increases coverage then
       declare t as Interesting Input
       worklist.add(t)
       if it is crashing then
           mark as unique crash
       end if
   end if
   e \leftarrow \text{selectEnergy}(t, \text{result}, \text{cov})
```

```
worklist \leftarrow seedinputs
while not timeout do
   t \leftarrow \text{selectNextInput(worklist)}
                                             b not removed from worklist
   if t is new then
       result, cov \leftarrow Run(t)
   end if
   if result is a crash then
       declare t as Crashing Input
   end if
   if cov increases coverage then
       declare t as Interesting Input
       worklist.add(t)
       if it is crashing then
          mark as unique crash
       end if
   end if
   e \leftarrow \text{selectEnergy}(t, \text{result}, \text{cov})
   worklist \leftarrow worklist.add(mutate(t, e))
```

```
worklist \leftarrow seedinputs
while not timeout do
   t \leftarrow \text{selectNextInput(worklist)}
                                             b not removed from worklist
   if t is new then
       result, cov \leftarrow Run(t)
   end if
   if result is a crash then
       declare t as Crashing Input
   end if
   if cov increases coverage then
       declare t as Interesting Input
       worklist.add(t)
       if it is crashing then
           mark as unique crash
       end if
   end if
   e \leftarrow \text{selectEnergy}(t, \text{result}, \text{cov})
   worklist \leftarrow worklist.add(mutate(t, e))
end while
```

## Consider optimizing w.r.t. an objective function $\varphi(\vec{w})$



## Consider optimizing w.r.t. an objective function $\varphi(\vec{w})$

# Gradient Descent $\vec{w} := random()$

Consider optimizing w.r.t. an objective function  $\varphi(\vec{w})$ 

## Gradient Descent

 $\vec{w} := random()$ while not converged **do** 

Consider optimizing w.r.t. an objective function  $\varphi(\vec{w})$ 

## Gradient Descent

 $\vec{w} := random()$ while not converged do  $\vec{w} := \vec{w} - \alpha \cdot \nabla_{\vec{w}} \varphi$ 

Consider optimizing w.r.t. an objective function  $\varphi(\vec{w})$ 

## Gradient Descent

 $\vec{w} := random()$ while not converged do  $\vec{w} := \vec{w} - \alpha \cdot \nabla_{\vec{w}} \varphi$ end while

## • Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

## • Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

selection problem: select "k" tests that are most likely to catch errors

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

selection problem: select "k" tests that are most likely to catch errors

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

selection problem: select  $"\,k"$  tests that are most likely to catch errors

• Differential/Regression testing

constrained optimization: select tests that lead to different behaviors

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

selection problem: select  $"\,k"$  tests that are most likely to catch errors

• Differential/Regression testing

constrained optimization: select tests that lead to different behaviors

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

selection problem: select  $"\,k"$  tests that are most likely to catch errors

- Differential/Regression testing constrained optimization: select tests that lead to different behaviors
- Testing multithreaded and distributed systems

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

selection problem: select  $"\,k"$  tests that are most likely to catch errors

- Differential/Regression testing constrained optimization: select tests that lead to different behaviors
- Testing multithreaded and distributed systems
- Testing for security bugs

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

selection problem: select  $"\,k"$  tests that are most likely to catch errors

- Differential/Regression testing constrained optimization: select tests that lead to different behaviors
- Testing multithreaded and distributed systems
- Testing for security bugs
- Bug Localization
• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

- Differential/Regression testing constrained optimization: select tests that lead to different behaviors
- Testing multithreaded and distributed systems
- Testing for security bugs
- Bug Localization

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

- Differential/Regression testing constrained optimization: select tests that lead to different behaviors
- Testing multithreaded and distributed systems
- Testing for security bugs
- Bug Localization
- Debugging

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

- Differential/Regression testing constrained optimization: select tests that lead to different behaviors
- Testing multithreaded and distributed systems
- Testing for security bugs
- Bug Localization
- Debugging

• Test Generation

optimization problem: minimum tests to find max bugs/generate highest coverage

• Test Prioritization

ranking problem: higher ranked tests more likely to find bugs

• Test Selection

- Differential/Regression testing constrained optimization: select tests that lead to different behaviors
- Testing multithreaded and distributed systems
- Testing for security bugs
- Bug Localization
- Debugging
- Repair

# Outline I

- Introduction
- Fundamentals of System Testing
  - What is *Testing*?
  - Test Oracle
  - Testing Adequacy
  - Testing Algorithms
    - Concolic Execution
    - Fuzzing
    - Gradient Descent
  - Challenges
- 3 Mathematical preliminaries
  - Algorithmic claims
  - Multivariate calculus
  - Optimizing a function
  - metric spaces

### Problems with Neural Networks

Subhajit (subhajit)

# Outline II

- Neural networks as Programs
- Attacks on Neural Networks

### Testing neural networks

- Visibility and Stage
- Neural Network Oracles
- Test Adequacy
- Algorithms to achieve high NN coverage

### 6 Conclusion

Algorithmic claims

Properties of an algorithm

• Soundness (Precision)

Properties of an algorithm

- Soundness (Precision)
- Completeness (Recall)

Algorithmic claims

### Properties of an algorithm

- Soundness (Precision)
- Completeness (Recall)
- Termination

### Soundness versus Completeness

Given a claim  ${\mathcal C}$  and an algorithm  ${\mathcal A}$  that attempts to validate the claim:

### Soundness versus Completeness

Given a claim  ${\mathcal C}$  and an algorithm  ${\mathcal A}$  that attempts to validate the claim:

• **Soundness:** A is sound if whenever A signals YES, C holds

### Soundness versus Completeness

Given a claim  ${\mathcal C}$  and an algorithm  ${\mathcal A}$  that attempts to validate the claim:

- **Soundness:** A is sound if whenever A signals YES, C holds
- Completeness:  $\mathcal{A}$  is complete if it always signals YES whenever  $\mathcal{C}$  holds

#### Algorithmic claims

### Soundness/Completeness of Testing/Verification

If the claim is on the *correctness* of the program, can you deduce the soundness/completeness of testing/verification?

If the claim is on the *correctness* of the program, can you deduce the soundness/completeness of testing/verification?

• Verification is sound but testing is not

If the claim is on the *correctness* of the program, can you deduce the soundness/completeness of testing/verification?

- Verification is sound but testing is not
- Testing is complete but verification is not

If the claim is on the *correctness* of the program, can you deduce the soundness/completeness of testing/verification?

- Verification is sound but testing is not
- Testing is complete but verification is not

If the claim is on the *correctness* of the program, can you deduce the soundness/completeness of testing/verification?

- Verification is sound but testing is not
- Testing is complete but verification is not

Note: If the claim is on the presence of bugs, then testing is sound but not complete.

#### Continuity

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f(x + \delta) \sim f(x)$ 

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f(x + \delta) \sim f(x)$ 

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f(x + \delta) \sim f(x)$ 

#### Differentiability

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f(x + \delta) \sim f(x)$ 

#### Differentiability

 a function is differentiable if derivative exists at all possible values of the arguments in the function domain

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f(x + \delta) \sim f(x)$ 

#### Differentiability

 a function is differentiable if derivative exists at all possible values of the arguments in the function domain

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f'(x) = \frac{f(x+\delta) - f(x)}{\delta}$ 

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f(x + \delta) \sim f(x)$ 

#### Differentiability

- a function is differentiable if derivative exists at all possible values of the arguments in the function domain
- $\forall x \in Domain(f)$ .  $\lim_{\delta \to 0} f'(x) = \frac{f(x+\delta) f(x)}{\delta}$
- if derivative does not exist at a point, the set of *subderivatives* is a non-empty closed interval [*a*, *b*], where *a*, *b* are the one-sided limits:

#### Continuity

• a function is continuous if a continuous variation of the arguments induces a continuous variation in the outputvalue of the function, i.e. no abrupt changes in output (discontinuities)

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f(x + \delta) \sim f(x)$ 

#### Differentiability

• a function is differentiable if derivative exists at all possible values of the arguments in the function domain

• 
$$\forall x \in Domain(f)$$
.  $\lim_{\delta \to 0} f'(x) = \frac{f(x+\delta) - f(x)}{\delta}$ 

• if derivative does not exist at a point, the set of *subderivatives* is a non-empty closed interval [a, b], where a, b are the one-sided limits:

• 
$$a = \lim_{h \to 0^+} \frac{x+h}{h}$$
,  $b = \lim_{h \to 0^-} \frac{x+h}{h}$ 

#### Lipshitz continuous

Continuously differentiable  $\subset$  Linschitz continuous  $\subset \alpha$ -Hölder continuous Subhajit (subhajit) The Science and Engineering of Testing 36/82

#### Lipshitz continuous

• a function is Lipshitz continuous if there exists a bound on how fast the function can change, i.e. its slope

Continuously differentiable  $\subset$  Lipschitz continuous  $\subset \alpha$ -Hölder continuous Subhajit (subhajit) The Science and Engineering of Testing 36/82

#### Lipshitz continuous

- a function is Lipshitz continuous if there exists a bound on how fast the function can change, i.e. its slope
- $\forall x_1, x_2$ .  $|f(x_1) f(x_2)| \le K \cdot |x_1 x_2|$

Continuously differentiable  $\subset$  Linschitz continuous Subhajit (subhajit) The Science and Engineering of Testing  $\sim \alpha$ -Hölder continuous 36/82

#### Lipshitz continuous

- a function is Lipshitz continuous if there exists a bound on how fast the function can change, i.e. its slope
- $\forall x_1, x_2$ .  $|f(x_1) f(x_2)| \le K \cdot |x_1 x_2|$
- *K* is called the Lipshitz constant; the smallest *K* is the best-Lipshitz constant

Continuously differentiable  $\subset$  Linschitz continuous Subhajit (subhajit) The Science and Engineering of Testing 36/82

#### Lipshitz continuous

- a function is Lipshitz continuous if there exists a bound on how fast the function can change, i.e. its slope
- $\forall x_1, x_2. |f(x_1) f(x_2)| \le K \cdot |x_1 x_2|$
- *K* is called the Lipshitz constant; the smallest *K* is the best-Lipshitz constant
- In general, it is defined over two metric spaces  $(X, d_X)$  and  $(Y, d_Y)$ , with  $f: X \to Y$ :

$$\exists K. \ d_Y(f(X), f(Y)) \leq K \cdot d_X(X, Y)$$

Continuously differentiable  $\subset$  Linschitz continuous  $\subset \alpha$ -Hölder continuous Subhajit (subhajit) The Science and Engineering of Testing 36/82

#### Lipshitz continuous

- a function is Lipshitz continuous if there exists a bound on how fast the function can change, i.e. its slope
- $\forall x_1, x_2. |f(x_1) f(x_2)| \le K \cdot |x_1 x_2|$
- *K* is called the Lipshitz constant; the smallest *K* is the best-Lipshitz constant
- In general, it is defined over two metric spaces (X, d<sub>X</sub>) and (Y, d<sub>Y</sub>), with f : X → Y:

$$\exists K. \ d_Y(f(X), f(Y)) \leq K \cdot d_X(X, Y)$$

#### Hölder continuous

 $\underbrace{\text{Continuously differentiable } \sub{Linschitz continuous}_{\text{Subhajit (subhajit)}} \sub{A+Holder continuous}_{\text{The Science and Engineering of Testing}} \sub{A+Holder continuous}_{36/82}$ 

#### Piecewise-defined function

#### Piecewise-defined function

• defined by multiple subfunctions, each subfunction operating in a sub-domain; these sub-domains together make the domain the the function

#### Piecewise-defined function

- defined by multiple subfunctions, each subfunction operating in a sub-domain; these sub-domains together make the domain the the function
- piecewise continuity and differentiability refer to each 'piece' of the function being continuous or differentiable in its own sub-domain

#### Piecewise-defined function

- defined by multiple subfunctions, each subfunction operating in a sub-domain; these sub-domains together make the domain the the function
- piecewise continuity and differentiability refer to each 'piece' of the function being continuous or differentiable in its own sub-domain

#### Multivariate functions
#### Piecewise-defined function

- defined by multiple subfunctions, each subfunction operating in a sub-domain; these sub-domains together make the domain the the function
- piecewise continuity and differentiability refer to each 'piece' of the function being continuous or differentiable in its own sub-domain

#### Multivariate functions

• Multivalued functions can be seen as a function with a single argument, that is nothing but a *vector* of all its arguments

#### Piecewise-defined function

- defined by multiple subfunctions, each subfunction operating in a sub-domain; these sub-domains together make the domain the the function
- piecewise continuity and differentiability refer to each 'piece' of the function being continuous or differentiable in its own sub-domain

### Multivariate functions

- Multivalued functions can be seen as a function with a single argument, that is nothing but a *vector* of all its arguments
- $f(a_1, a_2, \ldots, a_n) \equiv f(\vec{a}), a_1 \in D_1, a_2 \in D_2, \ldots, a_n \in D_n, \vec{a} \in D_1 \times D_2 \times \ldots D_n$

### Piecewise-defined function

- defined by multiple subfunctions, each subfunction operating in a sub-domain; these sub-domains together make the domain the the function
- piecewise continuity and differentiability refer to each 'piece' of the function being continuous or differentiable in its own sub-domain

### Multivariate functions

- Multivalued functions can be seen as a function with a single argument, that is nothing but a *vector* of all its arguments
- $f(a_1, a_2, \ldots, a_n) \equiv f(\vec{a}), a_1 \in D_1, a_2 \in D_2, \ldots, a_n \in D_n, \vec{a} \in D_1 \times D_2 \times \ldots D_n$
- Gradient:  $\nabla_{\vec{a}} f = [\frac{\partial f}{a_1}, \frac{\partial f}{a_2}, \dots, \frac{\partial f}{a_n}]^T$

### Piecewise-defined function

- defined by multiple subfunctions, each subfunction operating in a sub-domain; these sub-domains together make the domain the the function
- piecewise continuity and differentiability refer to each 'piece' of the function being continuous or differentiable in its own sub-domain

### Multivariate functions

- Multivalued functions can be seen as a function with a single argument, that is nothing but a *vector* of all its arguments
- $f(a_1, a_2, \ldots, a_n) \equiv f(\vec{a}), a_1 \in D_1, a_2 \in D_2, \ldots, a_n \in D_n, \vec{a} \in D_1 \times D_2 \times \ldots D_n$
- Gradient:  $\nabla_{\vec{a}} f = [\frac{\partial f}{a_1}, \frac{\partial f}{a_2}, \dots, \frac{\partial f}{a_n}]^T$
- Subgradient: vector of (partial) subderivatives

Let 
$$\vec{f} = [f_1, f_2, \dots, f_k]$$
 be a vector over multiple variables  
 $\vec{x} \equiv (x_1, x_2, \dots, x_n)$ 

#### Jacobian

Let 
$$\vec{f} = [f_1, f_2, \dots, f_k]$$
 be a vector over multiple variables  
 $\vec{x} \equiv (x_1, x_2, \dots, x_n)$ 

#### Jacobian

• Jacobian matrix (J) is a  $n \times k$  matrix:  $[\nabla_{\vec{x}} f_1, \nabla_{\vec{x}} f_2, \dots, \nabla_{\vec{x}} f_k]^T$ 

Let  $\vec{f} = [f_1, f_2, \dots, f_k]$  be a vector over multiple variables  $\vec{x} \equiv (x_1, x_2, \dots, x_n)$ 

#### Jacobian

- Jacobian matrix (J) is a  $n \times k$  matrix:  $[\nabla_{\vec{x}} f_1, \nabla_{\vec{x}} f_2, \dots, \nabla_{\vec{x}} f_k]^T$
- $\vec{f}(\vec{x}) + J(\vec{x}) \cdot h$ , for small *h* is the best linear approximator of  $\vec{f}$  at  $\vec{x}$

Let  $\vec{f} = [f_1, f_2, \dots, f_k]$  be a vector over multiple variables  $\vec{x} \equiv (x_1, x_2, \dots, x_n)$ 

#### Jacobian

- Jacobian matrix (J) is a  $n \times k$  matrix:  $[\nabla_{\vec{x}} f_1, \nabla_{\vec{x}} f_2, \dots, \nabla_{\vec{x}} f_k]^T$
- $\vec{f}(\vec{x}) + J(\vec{x}) \cdot h$ , for small h is the best linear approximator of  $\vec{f}$  at  $\vec{x}$
- When *n* = *k*, the Jacobian determinent exists and provides 'local' information of a function; eg. a function is invertible at a point if the Jacobian determinent is non-zero

#### Hessian

• Matrix of second-order derivatives:  $H(f) = J(\nabla(f))^T, i.e.(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$ 

- Matrix of second-order derivatives:  $H(f) = J(\nabla(f))^T, i.e.(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$
- Hessian matrix of a convex function is positive semi-definite

- Matrix of second-order derivatives:  $H(f) = J(\nabla(f))^T, i.e.(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$
- Hessian matrix of a convex function is positive semi-definite
- If the Hessian is positive-definite (negative-definite) at  $\vec{x}$ , then f attains an isolated local minimum (maximum) at  $\vec{x}$ . If the Hessian has both positive and negative eigenvalues, then it is a saddle point. Otherwise the test is inconclusive.

- Matrix of second-order derivatives:  $H(f) = J(\nabla(f))^T, i.e.(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$
- Hessian matrix of a convex function is positive semi-definite
- If the Hessian is positive-definite (negative-definite) at  $\vec{x}$ , then f attains an isolated local minimum (maximum) at  $\vec{x}$ . If the Hessian has both positive and negative eigenvalues, then it is a saddle point. Otherwise the test is inconclusive.
- We can define Taylor expansion using Jacobians and Hessians.

- Matrix of second-order derivatives:  $H(f) = J(\nabla(f))^T, i.e.(H_f)_{i,j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$
- Hessian matrix of a convex function is positive semi-definite
- If the Hessian is positive-definite (negative-definite) at  $\vec{x}$ , then f attains an isolated local minimum (maximum) at  $\vec{x}$ . If the Hessian has both positive and negative eigenvalues, then it is a saddle point. Otherwise the test is inconclusive.
- We can define Taylor expansion using Jacobians and Hessians.
- If the gradient is computed, the Hessian can be approximated by a linear number of scaler operations

#### • Randomized search

- Randomized search
- LP, ILP, MILP

- Randomized search
- LP, ILP, MILP
- Gradient based

- Randomized search
- LP, ILP, MILP
- Gradient based
- Evolutionary algorithms



### • LP relaxation,

### MILP

- LP relaxation,
- branch and bound,

### MILP

- LP relaxation,
- branch and bound,
- cutting planes

# Metric Space

### definition

# Metric Space

- definition
- distances ( $L_2$  norm,  $L_\infty$ , Jaccard index)

# Outline I

- Introduction
- Fundamentals of System Testing
  - What is *Testing*?
  - Test Oracle
  - Testing Adequacy
  - Testing Algorithms
    - Concolic Execution
    - Fuzzing
    - Gradient Descent
  - Challenges
- Mathematical preliminaries
  - Algorithmic claims
  - Multivariate calculus
  - Optimizing a function
  - metric spaces

### Problems with Neural Networks

# Outline II

- Neural networks as Programs
- Attacks on Neural Networks

### Testing neural networks

- Visibility and Stage
- Neural Network Oracles
- Test Adequacy
- Algorithms to achieve high NN coverage

### 6 Conclusion

### Fully Connected layer

$$\vec{T} = \begin{pmatrix} w_{11} & w_{12} & \dots \\ w_{21} & w_{22} & \dots \\ \dots & \dots \\ b_1 & b_2 & \dots \end{pmatrix} \circ ReLU$$

### Fully Connected layer

$$\vec{T} = \begin{pmatrix} w_{11} & w_{12} & \dots \\ w_{21} & w_{22} & \dots \\ \dots & \dots \\ b_1 & b_2 & \dots \end{pmatrix} \circ ReLU$$

Ť

#### Fully Connected layer

$$= \begin{pmatrix} w_{11} & w_{12} & \dots \\ w_{21} & w_{22} & \dots \\ \dots & \dots & \\ b_1 & b_2 & \dots \end{pmatrix} \circ ReLU$$

#### Multiple layers

### Multiple Layers: $T_1 \circ T_2 \circ \ldots$

Ť

#### Fully Connected layer

$$= \begin{pmatrix} w_{11} & w_{12} & \dots \\ w_{21} & w_{22} & \dots \\ \dots & \dots & \\ b_1 & b_2 & \dots \end{pmatrix} \circ ReLU$$

#### Multiple layers

### Multiple Layers: $T_1 \circ T_2 \circ \ldots$

Ť

#### Fully Connected layer

$$= \begin{pmatrix} w_{11} & w_{12} & \dots \\ w_{21} & w_{22} & \dots \\ \dots & \dots & \\ b_1 & b_2 & \dots \end{pmatrix} \circ ReLU$$

#### Multiple layers

Multiple Layers: 
$$T_1 \circ T_2 \circ \ldots$$

#### The last layer: turning to probabilities

(Softmax)

$$\sigma(\vec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Subhajit (subhajit)

### Mappings to programs

• neurons = variables

- neurons = variables
- affine transformations = computations with variables (neurons)

- neurons = variables
- affine transformations = computations with variables (neurons)
- activation functions = conditional branching (or (cond ? a : b))

- neurons = variables
- affine transformations = computations with variables (neurons)
- activation functions = conditional branching (or (cond ? a : b))
- multiple layers = sequence of function calls

## Applying PL techniques on NNs

Easy programs: no function calls, no array accesses, no pointers...
# Applying PL techniques on NNs

Easy programs: no function calls, no array accesses, no pointers...

# Challenge: modeling the large number of branches (ReLUs)—path explosion

### The billboard on adversarial examples

### The famous picture<sup>2</sup> on adversarial examples:



<sup>2</sup>Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015". (https://arxiv.org/pdf/1412.6572.pdf)

### Creating Adversarial Examples

### The Fast Sign Method (Goodfellow et al. 2015)<sup>3</sup>

 $\vec{x} + \epsilon \operatorname{sgn}(\Delta_x J(\theta, \vec{x}, y))$ 

<sup>3</sup>Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015. <sup>4</sup>Carlini and Wagner. Towards Evaluating the Robustness of Neural Networks, 2016.

# Creating Adversarial Examples

### The Fast Sign Method (Goodfellow et al. $2015)^3$

 $\vec{x} + \epsilon \operatorname{sgn}(\Delta_x J(\theta, \vec{x}, y))$ 

### Carlini-Wagner (Carlini and Wagner. 2015)<sup>4</sup>

minimize  $\mathcal{D}(\vec{x} + \epsilon, \vec{x})$  such that  $\mathcal{C}(\vec{x} + \epsilon) = t, x + \epsilon \in [0, 1]^n$ 

<sup>&</sup>lt;sup>3</sup>Goodfellow et al. Explaining and Harnessing Adversarial Examples, ICLR 2015. <sup>4</sup>Carlini and Wagner. Towards Evaluating the Robustness of Neural Networks, 2016.

$$\mathcal{C}(\vec{x} + \epsilon) \neq \mathcal{C}(\vec{x})$$

such that<sup>5</sup>:

•  $\epsilon$  is small (within some threshold)

<sup>5</sup>Jin et al. TextFool: Fool your Model with Natural Adversarial Text <sup>6</sup>hotflip, pruthi, deepwordbug, morpheus <sup>7</sup>Izantot, bert-attack, faster-alzantot, iga, bae, kuleshov, pso, pwws, textfooler <sup>8</sup>https://nicholas.carlini.com/code/audio\_adversarial\_examples/

 $\mathcal{C}(\vec{x} + \epsilon) \neq \mathcal{C}(\vec{x})$ 

such that<sup>5</sup>:

- $\epsilon$  is small (within some threshold)
- adding noise, '+', can be syntactic<sup>6</sup> (adding "typos") or semantic<sup>7</sup> (replace words having low cosine similary on word embeddings for synonym extraction)

<sup>5</sup> Jin et al. TextFool: Fool your Model with Natural Adversarial Text
 <sup>6</sup>hotflip, pruthi, deepwordbug, morpheus
 <sup>7</sup>Izantot, bert-attack, faster-alzantot, iga, bae, kuleshov, pso, pwws, textfooler

<sup>8</sup>https://nicholas.carlini.com/code/audio\_adversarial\_examples/

 $\mathcal{C}(\vec{x} + \epsilon) \neq \mathcal{C}(\vec{x})$ 

such that<sup>5</sup>:

- $\epsilon$  is small (within some threshold)
- adding noise, '+', can be syntactic<sup>6</sup> (adding "typos") or semantic<sup>7</sup> (replace words having low cosine similary on word embeddings for synonym extraction)

<sup>5</sup> Jin et al. TextFool: Fool your Model with Natural Adversarial Text
 <sup>6</sup>hotflip, pruthi, deepwordbug, morpheus
 <sup>7</sup>Izantot, bert-attack, faster-alzantot, iga, bae, kuleshov, pso, pwws, textfooler

<sup>8</sup>https://nicholas.carlini.com/code/audio\_adversarial\_examples/

 $\mathcal{C}(\vec{x} + \epsilon) \neq \mathcal{C}(\vec{x})$ 

such that<sup>5</sup>:

- $\epsilon$  is small (within some threshold)
- adding noise, '+', can be syntactic<sup>6</sup> (adding "typos") or semantic<sup>7</sup> (replace words having low cosine similary on word embeddings for synonym extraction)

Also, audio adversarial examples for TTS engines.<sup>8</sup>

<sup>5</sup> Jin et al. TextFool: Fool your Model with Natural Adversarial Text <sup>6</sup> hotflip, pruthi, deepwordbug, morpheus

<sup>7</sup>Izantot, bert-attack, faster-alzantot, iga, bae, kuleshov, pso, pwws, textfooler <sup>8</sup>https://nicholas.carlini.com/code/audio\_adversarial\_examples/

### Adversarial Examples: Code

• Source code classification is getting popular for tasks like comment generation, suggesting method names and code completion;

<sup>&</sup>lt;sup>9</sup>Zhang et al. Generating Adversarial Examples for Holding Robustness of Source Code Processing Models Authors. AAAI'2020; Yefet et al. Adversarial Examples for Models of Code. OOPSLA'20; Zhou et al. Adversarial Robustness of Deep Code Comment Generation, ArXiv 2021, Bielik and Vechev. Adversarial Robustness for Code. ICML'20

### Adversarial Examples: Code

- Source code classification is getting popular for tasks like comment generation, suggesting method names and code completion;
- Attacks on code models attempt to create semantically equivalent code snippets that make the classifiers behave differently<sup>9</sup>

<sup>&</sup>lt;sup>9</sup>Zhang et al. Generating Adversarial Examples for Holding Robustness of Source Code Processing Models Authors. AAAI'2020; Yefet et al. Adversarial Examples for Models of Code. OOPSLA'20; Zhou et al. Adversarial Robustness of Deep Code Comment Generation, ArXiv 2021, Bielik and Vechev. Adversarial Robustness for Code. ICML'20

# Formalizing Robustness

(Local) Robustness

A "small" perturbation does not change the outcome significantly

 $\forall x \in I. \ \forall e \in E. \ f(x) \simeq f(x+e)$ 

# Formalizing Robustness

(Local) Robustness

A "small" perturbation does not change the outcome significantly

 $\forall x \in I. \ \forall e \in E. \ f(x) \simeq f(x+e)$ 

# Formalizing Robustness

(Local) Robustness

A "small" perturbation does not change the outcome significantly

 $\forall x \in I. \ \forall e \in E. \ f(x) \simeq f(x+e)$ 



Image Credit: Goodfellow et al. Explaining and Harnessing Adversarial Examples. 2013.

Use of croudsourced data-sets or active/online learning (like spam filters) opens up an opportunity to affect the learned model via a few specially crafted data-points

<sup>&</sup>lt;sup>10</sup>B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise. In Asian Conference on Machine Learning, 2011.

<sup>&</sup>lt;sup>11</sup>Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE'2020

Use of croudsourced data-sets or active/online learning (like spam filters) opens up an opportunity to affect the learned model via a few specially crafted data-points

Attacks on availability

<sup>&</sup>lt;sup>10</sup>B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise. In Asian Conference on Machine Learning, 2011.

<sup>&</sup>lt;sup>11</sup>Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE'2020

Use of croudsourced data-sets or active/online learning (like spam filters) opens up an opportunity to affect the learned model via a few specially crafted data-points

Attacks on availability

• Add a few mislabelled data points that change the decision boundary.

<sup>&</sup>lt;sup>10</sup>B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise. In Asian Conference on Machine Learning, 2011.

<sup>&</sup>lt;sup>11</sup>Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE'2020

Use of croudsourced data-sets or active/online learning (like spam filters) opens up an opportunity to affect the learned model via a few specially crafted data-points

#### Attacks on availability

- Add a few mislabelled data points that change the decision boundary.
- Easier to perform on SVMs, as even a single data instance can disturb the maximum margin hyperplane<sup>10</sup>.

<sup>&</sup>lt;sup>10</sup>B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise. In Asian Conference on Machine Learning, 2011.

<sup>&</sup>lt;sup>11</sup>Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE'2020

Use of croudsourced data-sets or active/online learning (like spam filters) opens up an opportunity to affect the learned model via a few specially crafted data-points

#### Attacks on availability

- Add a few mislabelled data points that change the decision boundary.
- Easier to perform on SVMs, as even a single data instance can disturb the maximum margin hyperplane<sup>10</sup>.
- DNNs seem robust to this attack as their decision boundaries are more complex.<sup>11</sup>

<sup>&</sup>lt;sup>10</sup>B. Biggio, B. Nelson, and P. Laskov. Support vector machines under adversarial label noise. In Asian Conference on Machine Learning, 2011.

<sup>&</sup>lt;sup>11</sup>Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE'2020

# Data Poisoning Attacks (cont.)

#### Create Backdoors

Insert the backdoor pattern within a few examples from the legitimate domain labelled to the backdoor class  $^{12}$ 

<sup>12</sup>Miller et al. Adversarial Learning Targeting Deep Neural Network Classification: A Comprehensive Review of Defenses Against Attacks. Proceedings of IEEE'2020.

### Different types of attacks possible<sup>13</sup>:

• Membership inference attacks (eg. if person p was in training set)

<sup>13</sup>Rigaki and Garcia, A Survey of Privacy Attacks in Machine Learning, ArXiv 2021 <u>Subhajit (subhajit)</u> The Science and Engineering of Testing 55 / 82

Different types of attacks possible<sup>13</sup>:

- Membership inference attacks (eg. if person p was in training set)
- Reconstruction attacks (eg. recreate the training dataset)

<sup>13</sup>Rigaki and Garcia, A Survey of Privacy Attacks in Machine Learning, ArXiv 2021 <u>Subhajit (subhajit)</u> The Science and Engineering of Testing 55 / 82

Different types of attacks possible<sup>13</sup>:

- Membership inference attacks (eg. if person p was in training set)
- Reconstruction attacks (eg. recreate the training dataset)
- Property inference attacks (eg. the gender ratio of the dataset)

<sup>13</sup>Rigaki and Garcia, A Survey of Privacy Attacks in Machine Learning, ArXiv 2021 Subhalit (subhalit) The Science and Engineering of Testing 55 / 82

Different types of attacks possible<sup>13</sup>:

- Membership inference attacks (eg. if person p was in training set)
- Reconstruction attacks (eg. recreate the training dataset)
- Property inference attacks (eg. the gender ratio of the dataset)
- Model extraction (or "stealing") attacks (eg. train a new classifier)

<sup>13</sup>Rigaki and Garcia, A Survey of Privacy Attacks in Machine Learning, ArXiv 2021 <u>Subhajit (subhajit)</u> The Science and Engineering of Testing 55 / 82

Attempt to "steal" cloud hosted models (MLaaS)

<sup>14</sup>Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples. NDSS'22

Attempt to "steal" cloud hosted models (MLaaS)

Cloudleak<sup>14</sup> uses active learning:
Train a "bootstrap" model (say, use a pre-trained model)

<sup>14</sup>Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples. NDSS'22

Attempt to "steal" cloud hosted models (MLaaS)

Cloudleak<sup>14</sup> uses active learning:

- Train a "bootstrap" model (say, use a pre-trained model)
- Learn adversarial examples on the bootstrap model

<sup>&</sup>lt;sup>14</sup>Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples. NDSS'22

Attempt to "steal" cloud hosted models (MLaaS)

Cloudleak<sup>14</sup> uses active learning:

- Train a "bootstrap" model (say, use a pre-trained model)
- Learn adversarial examples on the bootstrap model
- Query the victim model on these examples

<sup>14</sup>Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples. NDSS'22

Attempt to "steal" cloud hosted models (MLaaS)

Cloudleak<sup>14</sup> uses active learning:

- Train a "bootstrap" model (say, use a pre-trained model)
- Learn adversarial examples on the bootstrap model
- Query the victim model on these examples
- Retrain the bootstrap model on these query responses

<sup>&</sup>lt;sup>14</sup>Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples. NDSS'22

Attempt to "steal" cloud hosted models (MLaaS)

Cloudleak<sup>14</sup> uses active learning:

- Train a "bootstrap" model (say, use a pre-trained model)
- Learn adversarial examples on the bootstrap model
- Query the victim model on these examples
- Retrain the bootstrap model on these query responses

<sup>&</sup>lt;sup>14</sup>Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples. NDSS'22

Attempt to "steal" cloud hosted models (MLaaS)

Cloudleak<sup>14</sup> uses active learning:

- Train a "bootstrap" model (say, use a pre-trained model)
- Learn adversarial examples on the bootstrap model
- Query the victim model on these examples
- Retrain the bootstrap model on these query responses

### Significant reduction in the number of queries

<sup>&</sup>lt;sup>14</sup>Yu et al. CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples. NDSS'22

Safety of drones and robots

<sup>&</sup>lt;sup>15</sup>Rudy Bunel et al. Piecewise linear neural networks verification: A comparative study. In NeurIPS 2018

<sup>&</sup>lt;sup>16</sup>Rüdiger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In arXiv 2017.

<sup>&</sup>lt;sup>17</sup> Julian et al. Policy compression for aircraft collision avoidance systems. In DASC 2016.

Safety of drones and robots

• TwinStream<sup>15</sup> (Property: output is positive)

<sup>&</sup>lt;sup>15</sup>Rudy Bunel et al. Piecewise linear neural networks verification: A comparative study. In NeurIPS 2018

<sup>&</sup>lt;sup>16</sup>Rüdiger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In arXiv 2017.

<sup>&</sup>lt;sup>17</sup> Julian et al. Policy compression for aircraft collision avoidance systems. In DASC 2016.

Safety of drones and robots

- TwinStream<sup>15</sup> (Property: output is positive)
- CollisionAvoidance<sup>16</sup> (Property: Check if vehicles will collide)

<sup>&</sup>lt;sup>15</sup>Rudy Bunel et al. Piecewise linear neural networks verification: A comparative study. In NeurIPS 2018

<sup>&</sup>lt;sup>16</sup>Rüdiger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In arXiv 2017.

<sup>&</sup>lt;sup>17</sup> Julian et al. Policy compression for aircraft collision avoidance systems. In DASC 2016.

Safety of drones and robots

- TwinStream<sup>15</sup> (Property: output is positive)
- CollisionAvoidance<sup>16</sup> (Property: Check if vehicles will collide)
- ACAS Xu<sup>17</sup> (Property: generate advisories such that aircrafts don't collide)

<sup>&</sup>lt;sup>15</sup>Rudy Bunel et al. Piecewise linear neural networks verification: A comparative study. In NeurIPS 2018

<sup>&</sup>lt;sup>16</sup>Rüdiger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In arXiv 2017.

<sup>&</sup>lt;sup>17</sup> Julian et al. Policy compression for aircraft collision avoidance systems. In DASC 2016.

# Outline I

- Introduction
- Fundamentals of System Testing
  - What is *Testing*?
  - Test Oracle
  - Testing Adequacy
  - Testing Algorithms
    - Concolic Execution
    - Fuzzing
    - Gradient Descent
  - Challenges
- Mathematical preliminaries
  - Algorithmic claims
  - Multivariate calculus
  - Optimizing a function
  - metric spaces

### 4 Problems with Neural Networks

# Outline II

- Neural networks as Programs
- Attacks on Neural Networks

### 5 Testing neural networks

- Visibility and Stage
- Neural Network Oracles
- Test Adequacy
- Algorithms to achieve high NN coverage


• Why test neural networks?

- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,

#### • Why test neural networks?

- NNs are (conventionally) trained only to achieve high accuracy,
- We often want our network to achieve other properties: security, fairness etc.

- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients

- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?

- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?

- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?
  - How much of the system is visible?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?
  - How much of the system is visible?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?
  - How much of the system is visible?
  - What SDLC stage are we in?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?
  - How much of the system is visible?
  - What SDLC stage are we in?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?
  - How much of the system is visible?
  - What SDLC stage are we in?
  - How to test?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?
  - How much of the system is visible?
  - What SDLC stage are we in?
  - How to test?



- Why test neural networks?
  - NNs are (conventionally) trained only to achieve high accuracy,
  - We often want our network to achieve other properties: security, fairness etc.
- Testing ingredients
  - How to identify a bug?
  - When to stop testing?
  - How much of the system is visible?
  - What SDLC stage are we in?
  - How to test?





In most cases, we will assume a *white-box* setting, or at least a *graybox* setting;

- In most cases, we will assume a *white-box* setting, or at least a graybox setting;
- Sometimes NNs need a *blackbox* setting, eg. in MLaaS systems

- In most cases, we will assume a *white-box* setting, or at least a *graybox* setting;
- Sometimes NNs need a *blackbox* setting, eg. in MLaaS systems
  - Prominent strategy in such cases is analysis using local surrogate models trained using active learning[CloudLeak]

- In most cases, we will assume a *white-box* setting, or at least a *graybox* setting;
- Sometimes NNs need a *blackbox* setting, eg. in MLaaS systems
  - Prominent strategy in such cases is analysis using local surrogate models trained using active learning[CloudLeak]

- In most cases, we will assume a *white-box* setting, or at least a graybox setting;
- Sometimes NNs need a *blackbox* setting, eg. in MLaaS systems
  - Prominent strategy in such cases is analysis using local surrogate models trained using active learning[CloudLeak]

We will consider *unit testing* stage.

#### Challenges in formulating preconditions

 The input distribution is not well-known; is only specified by a set of examples

- The input distribution is not well-known; is only specified by a set of examples
- The ground-truths for arbitrary instances are not known

- The input distribution is not well-known; is only specified by a set of examples
- The ground-truths for arbitrary instances are not known
- Properties: deterministic, probabilistic

- The input distribution is not well-known; is only specified by a set of examples
- The ground-truths for arbitrary instances are not known
- Properties: deterministic, probabilistic
- Domain-specific constraints on inputs (g. occlusion, blackout)

# Solution #1: Using a "closeness" assumption

Given a neural network  $\mathcal{N} : \mathcal{F} \to L$ , classifying features  $x \in \mathcal{F}$  to labels  $l \in \mathcal{L}$ , an annotated example set  $\mathcal{E}$ , any data-point x that is "close" to a given example,  $e \in \mathcal{E}$  is valid and has the same label as e i.e.,

 $Valid(\langle x, I \rangle) = \{ \langle x, I \rangle \mid ||x - e|| < \epsilon \land I = \mathcal{N}(e), e \in \mathcal{E}, x \in \mathcal{F} \}$ 

# Solution #1: Using a "closeness" assumption

Given a neural network  $\mathcal{N} : \mathcal{F} \to L$ , classifying features  $x \in \mathcal{F}$  to labels  $l \in \mathcal{L}$ , an annotated example set  $\mathcal{E}$ , any data-point x that is "close" to a given example,  $e \in \mathcal{E}$  is valid and has the same label as e i.e.,

 $Valid(\langle x, I \rangle) = \{ \langle x, I \rangle \mid ||x - e|| < \epsilon \land I = \mathcal{N}(e), e \in \mathcal{E}, x \in \mathcal{F} \}$ 

#### **Closeness Assumption**

# Solution #1: Using a "closeness" assumption

Given a neural network  $\mathcal{N} : \mathcal{F} \to L$ , classifying features  $x \in \mathcal{F}$  to labels  $l \in \mathcal{L}$ , an annotated example set  $\mathcal{E}$ , any data-point x that is "close" to a given example,  $e \in \mathcal{E}$  is valid and has the same label as e i.e.,

$$\textit{Valid}(\langle x, \textit{I} \rangle) = \{ \langle x, \textit{I} \rangle \mid ||x - e|| < \epsilon \land \textit{I} = \mathcal{N}(e), e \in \mathcal{E}, x \in \mathcal{F} \}$$

#### **Closeness Assumption**

 DeepConcolic divides the input-space into (overlapping) subspaces, S(D, ε) where D is a distance metric and ε is a given threshold such that if ||x<sub>1</sub> − x<sub>2</sub>|| ≤ ε then there exists a valid subspace X ∈ S(D, ε) s.t. x<sub>1</sub>, x<sub>2</sub> ∈ X. All analysis is only restricted to such valid subspaces {X | X ∈ S(D, ε)};

# Solution #1: Using a "closeness" assumption

Given a neural network  $\mathcal{N} : \mathcal{F} \to L$ , classifying features  $x \in \mathcal{F}$  to labels  $l \in \mathcal{L}$ , an annotated example set  $\mathcal{E}$ , any data-point x that is "close" to a given example,  $e \in \mathcal{E}$  is valid and has the same label as e i.e.,

$$\textit{Valid}(\langle x, \textit{I} \rangle) = \{ \langle x, \textit{I} \rangle \mid ||x - e|| < \epsilon \land \textit{I} = \mathcal{N}(e), e \in \mathcal{E}, x \in \mathcal{F} \}$$

#### **Closeness Assumption**

- DeepConcolic divides the input-space into (overlapping) subspaces, S(D, ε) where D is a distance metric and ε is a given threshold such that if ||x<sub>1</sub> − x<sub>2</sub>|| ≤ ε then there exists a valid subspace X ∈ S(D, ε) s.t. x<sub>1</sub>, x<sub>2</sub> ∈ X. All analysis is only restricted to such valid subspaces {X | X ∈ S(D, ε)};
- DeepSafe uses k-means to cluster the input-space into valid-clusters and attempts to find robustness regions

Well-designed mutations can be used such that muatations on the provided examples,  $e \in \mathcal{E}$ , are likely to maintain the validity of the input with the same label as  $\mathcal{N}(e)$ .

Well-designed mutations can be used such that muatations on the provided examples,  $e \in \mathcal{E}$ , are likely to maintain the validity of the input with the same label as  $\mathcal{N}(e)$ .

Use of mutations

Well-designed mutations can be used such that muatations on the provided examples,  $e \in \mathcal{E}$ , are likely to maintain the validity of the input with the same label as  $\mathcal{N}(e)$ .

#### Use of mutations

 DeepXplore uses domain-specific mutations on the provided input images like lighting modifications (simulating different times of the day), introducing occlusion (cars blocking view), a small-fraction of pixels blackened (effect of dirt on camera);

Well-designed mutations can be used such that muatations on the provided examples,  $e \in \mathcal{E}$ , are likely to maintain the validity of the input with the same label as  $\mathcal{N}(e)$ .

#### Use of mutations

- DeepXplore uses domain-specific mutations on the provided input images like lighting modifications (simulating different times of the day), introducing occlusion (cars blocking view), a small-fraction of pixels blackened (effect of dirt on camera);
- Deep test uses nine different realistic image transformations (changing brightness, changing contrast, translation, scaling, horizontal shearing, rotation, blurring, fog effect, and rain effect)—comprising linear, affine, and convolutional transformations.

# Solution #3: Using generative models

Generative models are capable of learning a target distribution, and have been used to synthesize new points in the input-space:

# Solution #3: Using generative models

Generative models are capable of learning a target distribution, and have been used to synthesize new points in the input-space:

#### Use of Generative models

# Solution #3: Using generative models

Generative models are capable of learning a target distribution, and have been used to synthesize new points in the input-space:

#### Use of Generative models

• Dola et al. use variational autoencoders (VAE) to learn the input-distribution;
# Solution #3: Using generative models

Generative models are capable of learning a target distribution, and have been used to synthesize new points in the input-space:

#### Use of Generative models

- Dola et al. use variational autoencoders (VAE) to learn the input-distribution;
- DeepRoad uses Generative Advarsarial Networks (GAN) to generative realistic road scenes to test self-driving controller DNNs.

## Solution #4: Using ensembles

#### Assumes that networks mostly work well and ensembles are effective

Use of ensembles

# Solution #4: Using ensembles

### Assumes that networks mostly work well and ensembles are effective

## Use of ensembles

• DeepXplore uses *majority voting* on an ensemble of networks to establish ground-truth





**"gibbon"** 99.3% confidence







$$\forall x \in X. \ \forall \epsilon \in \mathsf{Noise.} \ \mathcal{N}(x) \simeq \mathcal{N}(x + \epsilon)$$

Image Credit: Goodfellow et al. 2013.

Subhajit (subhajit)

The Science and Engineering of Testing

Independence-based Fairness (CARE)

$$orall l \in \mathcal{L}. \ P(Y = l | \mathcal{F}(s)) - P(Y = l | \mathcal{F} 
eq s) \leq \epsilon$$

 $s \in \mathcal{F}$  is a sensitive attribute.

Independence-based Fairness (CARE)

$$orall l \in \mathcal{L}. \; P(Y = l | \mathcal{F}(s)) - P(Y = l | \mathcal{F} 
eq s) \leq \epsilon$$

 $s \in \mathcal{F}$  is a sensitive attribute.

Backdoor attack success rate (CARE)

$$SR(t) = P(\mathcal{N}(x) = t \mid x \in Z, Z \subseteq X) \le \epsilon$$

 $t \in X$  is the target label,  $Z \subseteq X$  is the set of adversarial inputs.

Independence-based Fairness (CARE)

$$orall l \in \mathcal{L}. \; P(Y = l | \mathcal{F}(s)) - P(Y = l | \mathcal{F} 
eq s) \leq \epsilon$$

 $s \in \mathcal{F}$  is a sensitive attribute.

Backdoor attack success rate (CARE)

$$SR(t) = P(\mathcal{N}(x) = t \mid x \in Z, Z \subseteq X) \le \epsilon$$

 $t \in X$  is the target label,  $Z \subseteq X$  is the set of adversarial inputs.

Safety property violation rate (CARE)

$$VR(\rho) = P(\mathcal{N} \not\models \rho \mid x \in X) \le \epsilon$$

 $\rho$  is a critical safety property.

• Lipshitz Continuity (LC): all neurons are within a provided Lipshitz constant bound (DeepConcolic)

- Lipshitz Continuity (LC): all neurons are within a provided Lipshitz constant bound (DeepConcolic)
- Neuron Coverage (NC): all neurons that have been activated in some test; similar to statement coverage (DeepConcolic)

- Lipshitz Continuity (LC): all neurons are within a provided Lipshitz constant bound (DeepConcolic)
- Neuron Coverage (NC): all neurons that have been activated in some test; similar to statement coverage (DeepConcolic)
- Sign Sign Coverage (SSC): have we seen all possible activation/deactivation combinations of all pairs of neurons in adjacent layers; similar to MC/DC (DeepConcolic)

- Lipshitz Continuity (LC): all neurons are within a provided Lipshitz constant bound (DeepConcolic)
- Neuron Coverage (NC): all neurons that have been activated in some test; similar to statement coverage (DeepConcolic)
- Sign Sign Coverage (SSC): have we seen all possible activation/deactivation combinations of all pairs of neurons in adjacent layers; similar to MC/DC (DeepConcolic)
- Neuron Boundary Coverage (NBC): all neuron activation values that *exceed* a given bound (DeepConcolic)

- Lipshitz Continuity (LC): all neurons are within a provided Lipshitz constant bound (DeepConcolic)
- Neuron Coverage (NC): all neurons that have been activated in some test; similar to statement coverage (DeepConcolic)
- Sign Sign Coverage (SSC): have we seen all possible activation/deactivation combinations of all pairs of neurons in adjacent layers; similar to MC/DC (DeepConcolic)
- Neuron Boundary Coverage (NBC): all neuron activation values that *exceed* a given bound (DeepConcolic)
  - Neuron Contribution Coverage (NCC): contribution of each edge on the value of a neuron activation value (DeepCon),

$$u_{h,j}^{i}(x) = w_{h,j}^{i} \cdot f_{i-1,h}(x) \qquad U_{j}^{i}(x) = \{u_{h,j}^{i}(x) \mid 0 \le h \le s_{i-i}\}$$
$$nu_{h,j}^{i} = \frac{u_{h,j}^{i}(x) - min(U_{j}^{i}(x))}{max(U_{j}^{i}(x)) - min(U_{j}^{i}(x))}$$

• Greedy search (DeepTest),

- Greedy search (DeepTest),
- Gradient Descent (DeepGauge, DiffAl, DSE, DeepXplore, DeepCon),

- Greedy search (DeepTest),
- Gradient Descent (DeepGauge, DiffAI, DSE, DeepXplore, DeepCon),
- Concolic Execution (DeepConcolic, DeepCover, NeuroSPF, DeepCheck),

- Greedy search (DeepTest),
- Gradient Descent (DeepGauge, DiffAI, DSE, DeepXplore, DeepCon),
- Concolic Execution (DeepConcolic, DeepCover, NeuroSPF, DeepCheck),
- Coverage-guided Graybox Fuzzing (DLFuzz, TensorFuzz)

As already discussed, a neural network can be compiled to a program:

## DeepCheck

As already discussed, a neural network can be compiled to a program:

### DeepCheck

• The *i*<sup>th</sup> output neuron:

$$y_i = C_{i,0} \cdot x_0 + C_{i,1} \cdot x_1 + \cdots + C_{i,n-1} \cdot x_{n-1} + B_i$$

As already discussed, a neural network can be compiled to a program:

### DeepCheck

• The *i*<sup>th</sup> output neuron:

$$y_i = C_{i,0} \cdot x_0 + C_{i,1} \cdot x_1 + \dots + C_{i,n-1} \cdot x_{n-1} + B_i$$

• Using concolic execution, this coefficient can be assembled as:

$$C_{i,j} = \sum_{p \in paths(i,j)} (\prod_{e \in edges(p)} w(e))$$

## DeepCheck

# Compile to program (DeepCheck)

### DeepCheck

• Use the value of the coefficients to identify the most important input (assign *importance scores*) to be mutated (akin to gradient-based approaches)

# Compile to program (DeepCheck)

### DeepCheck

- Use the value of the coefficients to identify the most important input (assign *importance scores*) to be mutated (akin to gradient-based approaches)
- Attack generation: output of  $j^{th}$  neuron,  $f_i(X) = B_i + \sum_{i=1}^t C_{i,i} \cdot X_i$ , so attack constraint is:

$$\exists X. \ \wedge_{j=1, j 
eq l'} f_j(X) < f_{l'}(X) \wedge PathCond$$

where  $PC = \bigwedge_{i=1}^{A} (B_{j} + \sum_{i=1}^{t} C_{j,i} \cdot X_{i} \{\leq, >\} 0)$ , *A* is the number of activation functions; the symbolic constraints can be limited to the important neurons for efficiency

### Activation Tree



#### Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t

#### Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t

# Concolic Execution (DeepConcolic, SpaceScanner)

### Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• ap[t](i) =  $W_i \cdot X[t] + B_i \{<,>\}0$ 

# Concolic Execution (DeepConcolic, SpaceScanner)

### Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• ap[t](i) =  $W_i \cdot X[t] + B_i \{<,>\}0$ 

### Activation Tree

- activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or ap[t]<sub>k1,k2</sub>) is the activation neuron for the i<sup>th</sup> neuron (or k2 neuron on k1 layer) for test t
   Activation (Pattern)
- ap[t](i)= W<sub>i</sub> · X[t] + B<sub>i</sub>{≤,>}0 Activation of a neuron W<sub>i</sub>: incoming edge-wts. of neuron i, X[t]: input vector for test t
   AC: ∧<sup>|N|</sup><sub>i=0</sub>NeuronActivate(i)

### Activation Tree

- activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or ap[t]<sub>k1,k2</sub>) is the activation neuron for the i<sup>th</sup> neuron (or k2 neuron on k1 layer) for test t
   Activation (Pattern)
- ap[t](i)= W<sub>i</sub> · X[t] + B<sub>i</sub>{≤,>}0 Activation of a neuron W<sub>i</sub>: incoming edge-wts. of neuron i, X[t]: input vector for test t
   AC: ∧<sup>|N|</sup><sub>i=0</sub>NeuronActivate(i)

# Concolic Execution (DeepConcolic, SpaceScanner)

## Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• 
$$ap[t](i) = W_i \cdot X[t] + B_i \{\le, >\} 0$$
  
 $W_i$ : incoming edge-wts. of neuron *i*,  $X[t]$ : input vector for test *t*

Activation condition (AC)

 NN unfolded as a tree, each neuron is a prefix of the activation bitvector till that neuron

# Concolic Execution (DeepConcolic, SpaceScanner)

## Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• 
$$ap[t](i) = W_i \cdot X[t] + B_i \{\le, >\} 0$$
  
 $W_i$ : incoming edge-wts. of neuron *i*,  $X[t]$ : input vector for test *t*

Activation condition (AC)

 NN unfolded as a tree, each neuron is a prefix of the activation bitvector till that neuron

# Concolic Execution (DeepConcolic, SpaceScanner)

## Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• 
$$ap[t](i) = W_i \cdot X[t] + B_i \{\le, >\} 0$$
  
 $W_i$ : incoming edge-wts. of neuron *i*,  $X[t]$ : input vector for test *t*

- NN unfolded as a tree, each neuron is a prefix of the activation bitvector till that neuron Activation Tree Keeps track of which activations have been seen.
- DC:  $\wedge_{i \neq k} o_i > o_k$ , for desired class *i*

Activation condition (AC)

# Concolic Execution (DeepConcolic, SpaceScanner)

## Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• 
$$ap[t](i) = W_i \cdot X[t] + B_i \{\le, >\} 0$$
  
 $W_i$ : incoming edge-wts. of neuron *i*,  $X[t]$ : input vector for test *t*

- NN unfolded as a tree, each neuron is a prefix of the activation bitvector till that neuron Activation Tree Keeps track of which activations have been seen.
- DC:  $\wedge_{i \neq k} o_i > o_k$ , for desired class *i*

Activation condition (AC)
## Concolic Execution (DeepConcolic, SpaceScanner)

#### Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• 
$$ap[t](i) = W_i \cdot X[t] + B_i \{\le, >\} 0$$
  
 $W_i$ : incoming edge-wts. of neuron *i*,  $X[t]$ : input vector for test *t*

• AC: 
$$\wedge_{i=0}^{|\mathcal{N}|}$$
NeuronActivate(i)

- NN unfolded as a tree, each neuron is a prefix of the activation bitvector till that neuron Activation Tree Keeps track of which activations have been seen.
- DC:  $\wedge_{i \neq k} o_i > o_k$ , for desired class *i*
- Same AC with different DCs search all decisions with same activation

Activation condition (AC)

Decision Condition (DC)

## Concolic Execution (DeepConcolic, SpaceScanner)

#### Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• 
$$ap[t](i) = W_i \cdot X[t] + B_i \{\le, >\} 0$$
  
 $W_i$ : incoming edge-wts. of neuron *i*,  $X[t]$ : input vector for test *t*

- NN unfolded as a tree, each neuron is a prefix of the activation bitvector till that neuron Activation Tree Keeps track of which activations have been seen.
- DC:  $\wedge_{i \neq k} o_i > o_k$ , for desired class *i*
- Same AC with different DCs search all decisions with same activation

Activation condition (AC)

Decision Condition (DC)

## Concolic Execution (DeepConcolic, SpaceScanner)

#### Activation Tree

• activation pattern (ap) of a test t, ap[t], is a bitvector recording the activation state of all neurons; ap[t](i) (or  $ap[t]_{k_1,k_2}$ ) is the activation neuron for the  $i^{th}$  neuron (or  $k_2$  neuron on  $k_1$  layer) for test t Activation (Pattern)

• 
$$ap[t](i) = W_i \cdot X[t] + B_i \{\le, >\} 0$$
  
 $W_i$ : incoming edge-wts. of neuron *i*,  $X[t]$ : input vector for test *t*

• AC: 
$$\wedge_{i=0}^{|\mathcal{N}|}$$
NeuronActivate(i)

Subhajit (subhajit)

- NN unfolded as a tree, each neuron is a prefix of the activation bitvector till that neuron Activation Tree Keeps track of which activations have been seen.
- DC:  $\wedge_{i \neq k} o_i > o_k$ , for desired class *i*
- Same AC with different DCs search all decisions with same activation Amplification

Activation condition (AC)

Decision Condition (DC)

### Coverage guided concolic execution

### Coverage guided concolic execution

#### DeepConcolic

• Classic concolic execution: start with seed tests (examples)  $\mathcal{E}_{i}$ , and maximize coverage metrics (NC, SSC, NBC, Lipshitz Test) to generate new tests, eg.

### Coverage guided concolic execution

### DeepConcolic

• Classic concolic execution: start with seed tests (examples)  $\mathcal{E}_{i}$ , and maximize coverage metrics (NC, SSC, NBC, Lipshitz Test) to generate new tests, eg.

• 
$$ap'[t]_{k,i} = \neg ap[t]_{k,i} \land \underset{k_1 < k}{\forall} \underset{0 \le i_q \le s_{k_1}}{\land} ap'[t]_{k_1,i_i} = ap[t]_{k_1,i_1}$$

### Coverage guided concolic execution

### DeepConcolic

• Classic concolic execution: start with seed tests (examples)  $\mathcal{E}_{i}$ , and maximize coverage metrics (NC, SSC, NBC, Lipshitz Test) to generate new tests, eg.

• 
$$ap'[t]_{k,i} = \neg ap[t]_{k,i} \land \underset{k_1 < k}{\forall} \underset{0 \le i_q \le s_{k_1}}{\land} ap'[t]_{k_1,i_i} = ap[t]_{k_1,i_1}$$

## Coverage guided concolic execution

- Classic concolic execution: start with seed tests (examples)  $\mathcal{E}_{i}$ , and maximize coverage metrics (NC, SSC, NBC, Lipshitz Test) to generate new tests, eg.
  - $ap'[t]_{k,i} = \neg ap[t]_{k,i} \land \bigvee_{k_1 \leq k} \land o \leq i_n \leq s_k$ ,  $ap'[t]_{k_1,i_i} = ap[t]_{k_1,i_1}$  Neuron Cov.
  - { $\exists x_1, x_2$ . ( $||o[x_1] o[x_2]|| c \cdot ||x_1 x_2|| > 0$ )  $\land x_1, x_2 \in X \mid X \in S(D, b)$ }  $X \in S(D, b)$  is any of the valid regions, o(x) is the output layer value corresponding to input x

## Coverage guided concolic execution

- Classic concolic execution: start with seed tests (examples)  $\mathcal{E}_{i}$ , and maximize coverage metrics (NC, SSC, NBC, Lipshitz Test) to generate new tests, eg.
  - $ap'[t]_{k,i} = \neg ap[t]_{k,i} \land \bigvee_{k_1 \leq k} \land o \leq i_n \leq s_k$ ,  $ap'[t]_{k_1,i_i} = ap[t]_{k_1,i_1}$  Neuron Cov.
  - { $\exists x_1, x_2$ . ( $||o[x_1] o[x_2]|| c \cdot ||x_1 x_2|| > 0$ )  $\land x_1, x_2 \in X \mid X \in S(D, b)$ }  $X \in S(D, b)$  is any of the valid regions, o(x) is the output layer value corresponding to input x

### Coverage guided concolic execution

- Classic concolic execution: start with seed tests (examples)  $\mathcal{E}$ , and maximize coverage metrics (NC, SSC, NBC, Lipshitz Test) to generate new tests, eg.
  - $ap'[t]_{k,i} = \neg ap[t]_{k,i} \land \bigvee_{k_1 < k} \land_{0 \le i_q \le s_{k_1}} ap'[t]_{k_1,i_i} = ap[t]_{k_1,i_1}$  Neuron Cov.
  - $\{\exists x_1, x_2. (||o[x_1] o[x_2]|| c \cdot ||x_1 x_2|| > 0) \land x_1, x_2 \in X \mid X \in S(D, b)\}$  $X \in S(D, b)$  is any of the valid regions, o(x) is the output layer value corresponding to input x Lipshitz coverage
- Given coverage requirememts,  $\mathcal{R}$ , return test with highest score:

$$t = \underset{r}{\operatorname{argmax}} \{ \operatorname{val}(t) \mid r \in \mathcal{R} \}$$

### Probabilistic Symbolic Execution (SpaceScanner)

#### SpaceScanner

## Probabilistic Symbolic Execution (SpaceScanner)

#### SpaceScanner

• Probability of a Decision (by volume computation):

## Probabilistic Symbolic Execution (SpaceScanner)

#### SpaceScanner

• Probability of a Decision (by volume computation):

## Probabilistic Symbolic Execution (SpaceScanner)

### SpaceScanner

• Probability of a Decision (by volume computation): Decision Probability

$$Pr(\mathcal{D}) = \sum_{\varphi \in AC \land DC} \int_{x} \mathbb{1}_{x \models \varphi} \cdot p(x) dx$$
(1)  
$$= \sum_{\varphi \in AC \land DC} \frac{Vol(\phi \land s_i)}{s_i} \cdot \sum_{x} p(s_i)$$
(2)

Assuming that the input distribution is discretized into a histogram,  $H: s_i \mapsto Pr(s_i) p(x)$  is the input distribution

### Gradient-guided Optimization

### DeepXplore

$$(\sum_{i\neq j}\mathcal{N}_i(x)[c] - \lambda_1\cdot\mathcal{N}_j(x)[c]) + \lambda_2\cdot f_n(x)$$

## Gradient-guided Optimization

### DeepXplore

$$(\sum_{i\neq j}\mathcal{N}_i(x)[c] - \lambda_1\cdot\mathcal{N}_j(x)[c]) + \lambda_2\cdot f_n(x)$$

• It attempts to maximize (1) differential behavior amonst an ensemble of networks (first term), (2) neuron coverage (second term)

## Gradient-guided Optimization

### DeepXplore

$$(\sum_{i\neq j}\mathcal{N}_i(x)[c] - \lambda_1\cdot\mathcal{N}_j(x)[c]) + \lambda_2\cdot f_n(x)$$

- It attempts to maximize (1) differential behavior amonst an ensemble of networks (first term), (2) neuron coverage (second term)
- A network  $N_j$  is selected at random, and its differential behavior from others is maximized to draw out faulty behaviors

## Gradient-guided Optimization

### DeepXplore

$$(\sum_{i\neq j}\mathcal{N}_i(x)[c] - \lambda_1\cdot\mathcal{N}_j(x)[c]) + \lambda_2\cdot f_n(x)$$

- It attempts to maximize (1) differential behavior amonst an ensemble of networks (first term), (2) neuron coverage (second term)
- A network  $N_j$  is selected at random, and its differential behavior from others is maximized to draw out faulty behaviors
- A deactivated neuron  $f_n$  is selected at random, and we attempt to activate it

Solvers like Reluplex can effectively solve *local robustness* at  $x_0$ :

$$\exists_{x,x_0}. \ Symbolic[N](x) - \mathcal{N}(x_0) > \epsilon \land ||x - x_0|| \le \delta$$
  
(note:  $\mathcal{N}(x_0)$  is a constant)

Solvers like Reluplex can effectively solve *local robustness* at  $x_0$ :

$$\exists_{x,x_0}. \ Symbolic[N](x) - \mathcal{N}(x_0) > \epsilon \land ||x - x_0|| \le \delta$$
  
(note:  $\mathcal{N}(x_0)$  is a constant)

they can be used to solve global robustness by:

 $\exists_{x_1,x_2}$ . Symbolic[N]( $x_1$ ) – Symbolic( $\mathcal{N}(x_2) > \epsilon \land ||x_1 - x_2|| \le \delta$ 

However, it is not efficient:

• Symbolically encoding two copies of the network does not scale

## Data-driven + Symbolic solvers

Solvers like Reluplex can effectively solve *local robustness* at  $x_0$ :

$$\exists_{x,x_0}. \ Symbolic[N](x) - \mathcal{N}(x_0) > \epsilon \land ||x - x_0|| \le \delta$$
  
(note:  $\mathcal{N}(x_0)$  is a constant)

they can be used to solve global robustness by:

 $\exists_{x_1,x_2}$ . Symbolic[N]( $x_1$ ) – Symbolic( $\mathcal{N}(x_2) > \epsilon \land ||x_1 - x_2|| \leq \delta$ 

However, it is not efficient:

- Symbolically encoding two copies of the network does not scale
- Reluplex like solvers work best when the check is restricted to small neighborhoods

## ${\sf Data-driven}\,+\,{\sf Symbolic}\;{\sf solvers}$

#### DeepSafe

Cluster the examples *E* via k-means: each cluster identifies a region characterized by a centroid (x<sub>0</sub>), radius (r) and label (I);

## Data-driven + Symbolic solvers

- Cluster the examples  $\mathcal{E}$  via k-means: each cluster identifies a *region* characterized by a centroid ( $x_0$ ), radius (r) and label (I);
- Use the local robustness check with Reluplex on each region;

- Cluster the examples  $\mathcal{E}$  via k-means: each cluster identifies a *region* characterized by a centroid ( $x_0$ ), radius (r) and label (l);
- Use the local robustness check with Reluplex on each region;
- for each region *r*:

- Cluster the examples  $\mathcal{E}$  via k-means: each cluster identifies a *region* characterized by a centroid ( $x_0$ ), radius (r) and label (l);
- Use the local robustness check with Reluplex on each region;
- for each region *r*:
  - if no adversarial example is found, r is robust

- Cluster the examples  $\mathcal{E}$  via k-means: each cluster identifies a *region* characterized by a centroid ( $x_0$ ), radius (r) and label (l);
- Use the local robustness check with Reluplex on each region;
- for each region *r*:
  - if no adversarial example is found, r is robust
  - if an adversarial example x is found, r is shrunk to eliminate x

- Cluster the examples  $\mathcal{E}$  via k-means: each cluster identifies a *region* characterized by a centroid ( $x_0$ ), radius (r) and label (l);
- Use the local robustness check with Reluplex on each region;
- for each region *r*:
  - if no adversarial example is found, r is robust
  - if an adversarial example x is found, r is shrunk to eliminate x
  - $\bullet\,$  if a region size reduces to zero,  ${\cal N}$  is non-robust

### Metamorphic Testing

### Metamorphic Testing (HOMRS)

### Outline I

- Introduction
- Fundamentals of System Testing
  - What is *Testing*?
  - Test Oracle
  - Testing Adequacy
  - Testing Algorithms
    - Concolic Execution
    - Fuzzing
    - Gradient Descent
  - Challenges
- Mathematical preliminaries
  - Algorithmic claims
  - Multivariate calculus
  - Optimizing a function
  - metric spaces

### Problems with Neural Networks

Subhajit (subhajit)

### Outline II

- Neural networks as Programs
- Attacks on Neural Networks

#### Testing neural networks

- Visibility and Stage
- Neural Network Oracles
- Test Adequacy
- Algorithms to achieve high NN coverage



### Conclusion

# Application and impact of these techniques, other works on verification, repair, interpretation, explanation,