
Logic Locking: Current Trends, Attacks
and Future Directions

Ujjwal Guin, Assistant Professor
Electrical and Computer Engineering

Auburn University, Auburn, AL 36849

ujjwal.guin@auburn.edu

1

Pramod Subramanyan, Assistant Professor

Computer Science and Engineering
Indian Institute of Technology, Kanpur

spramod@cse.iitk.ac.in

VLSID 2019 Logic Locking

Part I: Motivation and
Introduction to Logic Locking

VLSID 2019 Logic Locking 2

Outline

• IC Counterfeiting and Security Concerns

• Design-for-Security (DFS) Requirements

• Initial Proposals for Logic Locking

• Threat and Adversary Modeling

• Attacks on Logic Locking

• Countermeasures

• Future Directions

• Practical Session: Encryption Tools, Attack Tools, etc.

32/2/2019

Problem: Counterfeiting and Piracy• Counterfeiting and Piracy are one of the emerging and evolving
threat.

• Amount of total counterfeiting globally has reached to 1.2 Trillion
USD in 2017 and is bound to reach 1.82 Trillion USD by the year 2020
[Business Wire].

• Total cost of counterfeiting and piracy for G20 nations was $450 to
$650 billion in 2008 and will grow to $1.2 to1.7 trillion in 2015 [ICC].

• Counterfeit parts pose a risk of $169B per year for global electronic
supply chain [IHS].

Supply Chain Vulnerabilities

Design Fabrication Assembly Distribution
System

Integration
Deployment

Piracy
(Cloned)

Overproduction
Out-of-Spec/

Defective

Recycled, Remarked
Out-of-Spec/Defective

Piracy and
Overproduction

All Counterfeit
Types

Recycled
Remarked

Defective/ Out-of-
spec

Piracy and Overproduction

6

IP

IP

IP

DFT

GDSII

Fab

Assembly

Ship to the market

Untrusted Foundry

Untrusted SoC

Designer Untrusted Assembly

Untrusted IP Owner
Untrusted System Integrator

2/2/2019

Piracy and Overproduction- Cont.

• IP Overuse
• An untrusted system on chip (SoC) designer produce more ICs and

report a lesser number to the IP owner.
• He may illegally use an IP that was licensed to be used in a different

design.
• IC Overproduction
• Untrusted foundries and assemblies may produce more than the

number of chips they are contracted to manufacture.
• IP Piracy and Cloning
• An untrusted SoC designer may legally purchase a 3PIP core from an

IP vendor and then make clones, or illegitimate copies of the original
IP.

• An untrusted SoC designer can add some extra features to those
3PIPs to make them look like a different one and then sell them to
another SoC designer.

• An SoC designer may also modify a 3PIP in order to introduce a
backdoor or hardware Trojan into the chip.

72/2/2019

Problem Statement

8

IP Owners

Foundry/
Assembly

SoC Designers

Images: Google

2/2/2019

Problem Statement – Cont.

9

3PIP1

3PIP2

3PIPn

IP Owners

Foundry/

Assembly

Chips

SoC Designer

SoC Design

IP Piracy

IP Overuse
IC

Overproduction

Another SoC

Designer

Sell

License

Sell

Contract

#chips

#chips

#chips

Trust Trust

Supply Chain

2/2/2019

Solution Overview

10

3PIP1

3PIP2

3PIPn

IP Owners

Foundry/

Assembly

Chips

SoC Designer

SoC Design

Encrypted and

Locked

Need Keys from

3PIP Owners
Need Keys from

SoC Designers

Supply Chain

Another SoC

Designer

Sell

License

Sell

Contract

#chips

#chips

#chips

Trust Trust

2/2/2019

Solution Overview- Cont.

• Hardware watermarking
• Creating a unique fingerprint for verify proof of IP ownership

• Cannot be used it to prevent IP overuse, IP piracy, and IC overproduction

• IC camouflaging
• A layout-level technique to hamper image processing-based extraction of the

gate-level netlist.

• Difficulty of implementing metering.

112/2/2019

Solution Overview- Cont.

12

• IC metering
• Prevent IC overproduction by control the number of ICs manufactured

• Metering using logic locking can be used to prevent all the aforementioned attacks.

• Split manufacturing
• The design is split into the different layers and fabricated separately in different

foundries.

• The cost will be higher than the conventional methods

• Logic Locking
• Obfuscate the inner details of the original design

• A secret key can only unlock the chips.

• Should be resistant to different attacks.

2/2/2019

Initial Proposal for Logic Locking

2/2/2019 13

Locked

Circuit

Primary

Inputs (PIs)

Primary

Outputs (POs)

Key Inputs

(Key)

PIs

POs

Initial Proposal for Logic Locking

2/2/2019 14

Locked

Circuit

Primary

Inputs (PIs)

Primary

Outputs (POs)

Key Inputs

(Key)

Key

PIs

POs

Design-for-Security (DFS) Requirements

• No effect on functionality of the original circuit

• Attack resistance
• Designs do not leak key during the manufacturing tests

• Reverse engineering does not reveal key bits

• Structural test capability without the key
• Manufacturing tests must be performed at the foundries and assemblies

• Post-silicon validation and debug capability
• Full functional test capability at the secure site

• Full in-system test capability

• Reasonable overhead

152/2/2019

IC Activation Process

3PIPs
SoC

Designer
Foundry

2/2/2019 16

Activation
(Trusted)

Activation
(Untrusted)

Market

Test Before Activation

17

Generate test pattern from original circuit: P1

I1

I2

I3
I4
I5

I6
Sa0

Chip

O1

g0

g1

X

g2

g3

g4

g5

g6

1 for
propagation

0

1

1

0

x

x

10

x
x
x

0

1

2/2/2019

Test Before Activation- Cont.

18

I1

I2

I3
I4
I5

I6

Chip

O1

Need to know the key to generate test pattern

Tamper proof memory

D
D

Ki = 0Ki = x

D X

Te
st

 p
at

te
rn

 P
1

Logic
Cone

DetectedNot detected

g0

g1

g2

g3

g4

g5

g6

ki

0

x
x
x

0

1

D

Sa0
X

1 for
propagation

X

2/2/2019

Test Before Activation - Cont.

19

Tamper-proof

memory for K

Test

PIs

POs

Key Input

Locked
Circuit

Test Patterns Test Response

(b)

PIs

POs

Key Input

Locked
CircuitTest Patterns Test ResponseTamper-proof

memory for K

All 0s/1s

(a)

2/2/2019

Part II(a): Adversary Modeling

VLSID 2019 Logic Locking 20

Trump’s Wall: Design Intent

VLSID 2019 Logic Locking 21

Trump’s Wall: Likely Reality?

VLSID 2019 Logic Locking 22

Asset

What is missing from this picture?

Enforcement Mechanism

Attacker

VLSID 2019 Logic Locking 23

Asset

Enforcement Mechanism

Attacker

Security property: what is the goal of enforcement?
Adversary model: what can the attacker do while
attempting to subvert the enforcement mechanism?

VLSID 2019 Logic Locking 24

Asset

Enforcement Mechanism

Attacker

Security property: what is the goal of enforcement?
Adversary model: what can the attacker do while
attempting to subvert the enforcement mechanism?

VLSID 2019 Logic Locking 25

Elaborating on the Security Property

Some example security properties:

1. No person is able to immigrate to the US without papers

2. No one is able to cross the Mexico-US border without papers

3. No undocumented immigrant is able to work without papers

These goals require very different enforcement mechanisms

VLSID 2019 Logic Locking 26

An Aside: Fuzzy vs. Well-defined Security

Boaz Barak

https://www.boazbarak.org/papers/obf_informal

Fuzzy security. By fuzzy security I mean the following process: some guy comes up
with some sort of cryptographic algorithm. He then makes some vague claims
about the security of this algorithm, and people start using it for applications of
national or personal security of the utmost importance. Then, someone else (a
hacker) manages to break this algorithm, usually with disastrous results to its
users, and then the inventor or users either "tweak" the algorithm, hoping that the
new tweak is secure, or one invent a new algorithm. The distinguishing mark of
fuzzy security is not that it is often broken with disastrous outcomes. This is a side
effect. The distinguishing mark is that there is never a rigorous definition of
security, and so there is never a clearly stated conjecture of the security
properties of this algorithm.

VLSID 2019 Logic Locking 27

https://www.boazbarak.org/papers/obf_informal

Asset

Enforcement Mechanism

Attacker

Security property: what is the goal of enforcement?
Adversary model: what can the attacker do while
attempting to subvert the enforcement mechanism?

VLSID 2019 Logic Locking 28

Elaborating on the attacker model

•Can the attacker use ladders?

•Can the attacker fly?

•How about tunnel?

•Can attacker cross legally but overstay their visa?

My goal is not to dunk on the wall, but to point out
that we can’t evaluate whether a scheme is secure
without a clear definition of adversary capabilities

VLSID 2019 Logic Locking 29

What is an Adversary Model?

Precise statement of adversary
capabilities that is used to systematically
reason about the security of a particular
protocol or enforcement mechanism

VLSID 2019 Logic Locking 30

Logic Locking: Security Property

Only authorized users can operate locked IC

Implicit in definition

• Some notion of unauthorized user

• What operate means

VLSID 2019 Logic Locking 31

Logic Locking: Adversary Model

Want to capture abilities of malicious foundry

What can foundry do?

• Distinguish between key inputs and regular inputs?

• Reverse engineer gate-level netlist from masks?

• Further analysis to obtain-high level structures?

• Buy an activated IC from the market and observe outputs for
specified inputs? (I/O Oracle access)

VLSID 2019 Logic Locking 32

Maybe

We’ll Consider Two Adversaries

1[Torrance et al., CHES’09], 2[Subramanyan et al., TETC’14]

Active
Adversary

• Buy activated IC and observe
outputs for specific inputs

• +Passive adversary capabilities

Passive
Adversary

• Distinguish between key inputs
and regular inputs

• Reconstruct gate-level
structures from masks1

• Reconstruct modules from
gates2

VLSID 2019 Logic Locking 33

Can you do anything without Oracle access?

Strawman locking algorithm

1. Pick a random wire in the circuit

2. Choose a random gate ∈ {AND2, OR2}

3. Connect one input of gate to the wire’s driver

4. Connect the other input of gate to a key input

5. Connect the output of the gate to the wire’s load

6. Correct key input = 1 if inserted gate was AND2 and 0 otherwise

7. Repeat 1-6 as many times as desired

VLSID 2019 Logic Locking 34

Security Analysis of Strawman Locking Algo

VLSID 2019 Logic Locking 35

Security Analysis of Strawman Locking Algo

VLSID 2019 Logic Locking 36

Security Analysis of Strawman Locking Algo

VLSID 2019 Logic Locking 37

Security Analysis of Strawman Locking Algo

VLSID 2019 Logic Locking 38

Security Analysis of Strawman Locking Algo

VLSID 2019 Logic Locking 39

Security Analysis of Strawman Locking Algo

Key Input

VLSID 2019 Logic Locking 40

What is the key input value?

Key Input

AND gates connected to key inputs means key=1!

VLSID 2019 Logic Locking 41

Morals of the Story

•Careful definition of security property and
adversary model are very important

•Even seemingly weak adversaries can break
insecure locking algorithms

VLSID 2019 Logic Locking 42

Part II(b): Attacks on Logic
Locking

VLSID 2019 Logic Locking 43

A Timeline of Attacks

VLSID 2019 Logic Locking 44

ATPG Attack, DAC’12

SAT Attack, HOST’15

SPS Attack, HOST’16

DoubleDIP, GLSVLSI’17

AppSAT, HOST’17

FALL, DATE’19• Not an exhaustive list
• Goal is to give you an idea

of where the community
is headed

Classification of Attacks

Attacks

Structural

Functional

Active

Passive

VLSID 2019 Logic Locking 45

Only structural analysis
of netlist. E.g., SPS

Functional analysis
usually done using
SAT/BDDs.

Most attacks: ATPG,
SAT, AppSAT etc. are
active functional
attacks

FALL attack

A Timeline of Attacks

ATPG Attack, DAC’12

FA FA

SAT Attack, HOST’15

S

SPS Attack, HOST’16

DoubleDIP, GLSVLSI’17

AppSAT, HOST’17

FALL, DATE’19

FA FA FP

VLSID 2019 Logic Locking 46

ATPG Attack

ATPG Attack, DAC’12

FA FA

SAT Attack, HOST’15

S

SPS Attack, HOST’16

DoubleDIP, GLSVLSI’17

AppSAT, HOST’17

FALL, DATE’19

FA FA FP

VLSID 2019 Logic Locking 47

ATPG Attack

VLSID 2019 Logic Locking 48

Q: What is the value of the key input?

[Rajendran et al., DAC’12]

ATPG Attack

VLSID 2019 Logic Locking 49

Insight: view key input like a stuck-at fault

[Rajendran et al., DAC’12]

ATPG Attack

VLSID 2019 Logic Locking 50

Input vector which exposes fault will reveal key

0

0

0

S-A-1

[Rajendran et al., DAC’12]

ATPG Attack Algorithm

Input: netlist, key input to attack

Procedure:

• Set unknown key inputs to X, known key inputs to appropriate values

• Find test vector to expose stuck-at fault at output of gate connected
to this key input

• Apply this test vector on the activated IC

• Output will determine key value

Repeat for remaining key inputs

VLSID 2019 Logic Locking 51

[Rajendran et al., DAC’12]

ATPG Attack Countermeasure

VLSID 2019 Logic Locking 52

[Rajendran et al., DAC’12]

K1

K2

No single input
vector can
expose the
values of K1/K2

X

X

ATPG Attack Summary

• Key idea: find vectors that propagate key inputs to the output

• ATPG tools solve exactly the above problem, so utilize them

• Countermeasure: prevent propagation by making key inputs interfere

VLSID 2019 Logic Locking 53

[Rajendran et al., DAC’12]

The SAT Attack

ATPG Attack, DAC’12

FA FA

SAT Attack, HOST’15

S

SPS Attack, HOST’16

DoubleDIP, GLSVLSI’17

AppSAT, HOST’17

FALL, DATE’19

FA FA FP

VLSID 2019 Logic Locking 54

[Subramanyan et al., HOST’15]

A Brief Interlude
SAT Solving

VLSID 2019 Logic Locking 55

What is SAT Solving?

Given a propositional logic (Boolean) formula, find a variable assignment
such that the formula evaluates to 1, or prove no such assignment exists.

For n variables, there are 2n possible truth assignments to be checked.

First established NP-Complete problem.
S. A. Cook, The complexity of theorem proving procedures, Third Annual ACM
Symposium on the Theory of Computing, 1971

F = (a ∨ b) ∧ (¬a ∨ ¬b ∨ c)

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

Logic Locking 56Slide Credit: Aarti GuptaVLSID 2019

Aren’t NP-Complete Problems Hard?

• Modern solvers can regularly solve practical SAT instances with
millions of variables and constraints

• Practical impact of SAT solvers

― Electronic Design Automation (EDA): logic synthesis, equivalence checking,
assertion checking, post-silicon validation

― Software verification: core of most program verification techniques; Regularly
used at MS, Google, Amazon, FB etc.

― AI/Planning: Used in many constraint solving procedures

Logic Locking 57VLSID 2019

SAT Solver Usage

p cnf 3 2

1 2 0

-1 -2 3 0

VLSID 2019 Logic Locking 58

Number of variables

Number of clauses

𝑥1 ∨ 𝑥2

¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3

• Input is a formula in CNF
• Output is an assignment to the variables or UNSAT
• Example shown above is in DIMACS format

Using SAT Solvers

• Accept input in CNF (product of sums, conjunction of disjunctions)

• Obviously, circuits in general are not in CNF

• The naïve conversion to CNF could result in an exponential blowup

• But there is a way out, every circuit can be efficiently encoded in CNF

• Trick is to introduce (polynomially many) new variables

VLSID 2019 Logic Locking 59

Converting to CNF: Tseitin Transformation

Logic Locking 60

a

b
d e

c

(a ∨ b ∨ ¬d) ∧

(¬a ∨ d) ∧

(¬b ∨ d) ∧

d (a ∨ b)
(¬c ∨ ¬d ∨ e) ∧

(d ∨ ¬e) ∧

(c ∨ ¬e) ∧

e (c ∧ d)

Can ‘e’ ever become true?

Is (e)∧(a∨b∨¬d)∧(¬a∨d)∧(¬b∨d)∧(¬c∨¬d∨e)∧(d∨¬e)∧(c∨¬e) satisfiable?

Tseitin Transformation: Procedure

• Create a new variable for each
gate’s output in the circuit

• Create clauses that capture
functionality of each gate (see
next slide for anohter example)

• Conjunction of all clauses is the
desired CNF formula

VLSID 2019

Circuit C with inputs X, outputs Y, internal gates Z is represented as C(X, Y, Z) or C(X, Y)

One More Example

S A B Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Logic Locking 61

What is this function?

• What is Y when S = 0?
• What about when S = 1?

F
S
A
B

Y

(¬s ∧ ¬a ∧ ¬b → ¬y) ∧
(¬s ∧ ¬a ∧ b → ¬y) ∧
(¬s ∧ a ∧ ¬b → y) ∧
(¬s ∧ a ∧ b → y) ∧
(s ∧ ¬a ∧ ¬b → ¬y) ∧
(s ∧ ¬a ∧ b → ¬y) ∧
(s ∧ a ∧ ¬b → y) ∧
(s ∧ a ∧ b → y)

(¬s ∧ ¬a → ¬y) ∧
(¬s ∧ a → y) ∧
(s ∧ ¬b → ¬y) ∧
(s ∧ b → y)

(s ∨ a ∨ ¬y) ∧
(s ∨ ¬a ∨ y) ∧
(¬s ∨ b ∨ ¬y) ∧
(¬s ∨ ¬b ∨ y)

(F ∧ ¬x → p) ∧
(F ∧ x → p) ∧

 (F → p)

(A → B) (¬A ∨ B)

VLSID 2019

The SAT Attack

ATPG Attack, DAC’12

FA FA

SAT Attack, HOST’15

S

SPS Attack, HOST’16

DoubleDIP, GLSVLSI’17

AppSAT, HOST’17

FALL, DATE’19

FA FA FP

VLSID 2019 Logic Locking 62

[Subramanyan et al., HOST’15]

Circuit is not actually secure!

VLSID 2019 Logic Locking 63

K1

K2

A

B

C

A B C Y

0 0 0 0

What key values
are consistent
with the above
I/O patter?

Only (K1,K2)=(0,0)

Main Idea in the SAT Attack

•Do the reasoning shown on the previous
slide using the SAT solver

•Challenges
•How do we generate the input vectors?
•When do we know that we have the correct key?

VLSID 2019 Logic Locking 64

Strawman SAT attack

Suppose we have a locked circuit represented as C(X, K, Y)

• X: circuit inputs, K: key inputs, Y: outputs

Strawman attack algorithm

• Generate a lot of random inputs: 𝑋1, 𝑋2, … , 𝑋𝑁

• Evaluate the output for each on activated IC: 𝑌1, 𝑌2, … , 𝑌𝑁

• Construct SAT formula: 𝐶 𝑋1, 𝐾, 𝑌1 ∧ ⋯ ∧ 𝐶(𝑋2, 𝐾, 𝑌2)

• Satisfying assignment to 𝐾 is the key

VLSID 2019 Logic Locking 65

Does Strawman SAT attack work?

Suppose we have a locked circuit represented as C(X, K, Y)

• X: circuit inputs, K: key inputs, Y: outputs

Strawman attack algorithm

• Generate a lot of random inputs: 𝑋1, 𝑋2, … , 𝑋𝑁

• Evaluate the output for each on activated IC: 𝑌1, 𝑌2, … , 𝑌𝑁

• Construct SAT formula: 𝐶 𝑋1, 𝐾, 𝑌1 ∧ ⋯ ∧ 𝐶(𝑋2, 𝐾, 𝑌2)

• Satisfying assignment to 𝐾 is the key

VLSID 2019 Logic Locking 66

Strawman does not work

VLSID 2019 Logic Locking 67

K1

K2

A

B

C

A B C Y

1 0 1 1

0 1 1 1

1 1 1 1

What key values
are consistent
with the above
I/O patterns?

(K1,K2)=(1,0); (K1,K2)=(0,0)

Problems with the Strawman SAT Attack

Strawman attack algorithm

• Generate a lot of random inputs: 𝑋1, 𝑋2, … , 𝑋𝑁

• Evaluate the output for each on activated IC: 𝑌1, 𝑌2, … , 𝑌𝑁

• Construct SAT formula: 𝐶 𝑋1, 𝐾, 𝑌1 ∧ ⋯ ∧ 𝐶(𝑋2, 𝐾, 𝑌2)

• Satisfying assignment to 𝐾 is the key

Problems

• Might have two keys which agree on 𝑋1, … , 𝑋𝑁 but differ on 𝑋𝑁+1

• So we don’t know when to stop sampling inputs

VLSID 2019 Logic Locking 68

Key Idea in SAT Attack: Distinguishing Inputs

VLSID 2019 Logic Locking 69

K1

K2

A

B

C

A B C Y

0 1 1 1

1 1 1 1

The above input vectors are useless because they
result in the same output value for all keys

Key Idea in SAT Attack: Distinguishing Inputs

VLSID 2019 Logic Locking 70

K1

K2

A

B

C

A B C Y

0 1 1 1

1 1 1 1

Want input vectors that can distinguish between at
least two keys with different behaviors

Key Idea in SAT Attack: Distinguishing Inputs

VLSID 2019 Logic Locking 71

K1

K2

A

B

C

A B C K1 K2 Y

0 0 0
1 1 1

0 0 0

Distinguishing input for two key values: an input
vector that produces different outputs for these keys

How do we compute distinguishing inputs?

VLSID 2019 Logic Locking 72

c
X

Y1

K1

c
X

Y2
K2

𝐶 𝑋, 𝐾1, 𝑌1 ∧ 𝐶 𝑋, 𝐾2, 𝑌2 ∧ 𝑌1 ≠ 𝑌2

SAT Attack

74

Space of all possible keys

I/O set E := {(i1,o1)}

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

VLSID 2019 Logic Locking

SAT Attack

75

Space of all possible keys

I/O set E := {(i1,o1)}

K1

K2

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

VLSID 2019 Logic Locking

SAT Attack

VLSID 2019 76

Space of all possible keys

I/O set E := {(i1,o1)}

K1

K2

i2

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

Logic Locking

SAT Attack

VLSID 2019 77

Space of all possible keys

I/O set E := {(i1,o1)}

K1

K2

i2

(i2, o2)

eval

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

Logic Locking

SAT Attack

VLSID 2019 78

Space of all possible keys

I/O set E := E ∪ {(i2,o2)}

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

Logic Locking

SAT Attack

VLSID 2019 79

Space of all possible keys

I/O set E := E ∪ {(ij,oj)}

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

Logic Locking

SAT Attack

VLSID 2019 80

Space of all possible keys

I/O set E := E ∪ {(ik,ok)}

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

Logic Locking

SAT Attack

VLSID 2019 81

Space of all possible keys

I/O set E := E [{(in,on)}

Find Distinguishing Input

Evaluate Output on
Unlocked IC

Eliminate keys inconsistent
with I/O pair

More Distinguishing Inputs?

Report Key

Y

N

Logic Locking

SAT Attack: Algorithm

function SATAttack(C)
k ← 1
R1 ← 𝐶 𝑋, 𝐾1, 𝑌1 ∧ 𝐶 𝑋, 𝐾2, 𝑌2 ∧ (𝜃 ↔ 𝑌1 ≠ 𝑌2)
while sat(Rk ∧ θ) do

∆ ← MODEL(X)(Rk ∧ θ)
O ← Evali(∆)
O1 ← 𝐶(Δ, 𝐾1, 𝑂)
O2 ← 𝐶(Δ, 𝐾2, 𝑂)
Rk+1 ← Rk ∧ O1 ∧ O2
k ← k + 1

end while
if sat(Rk ∧ ¬θ) then

return MODELK1(Rk ∧ ¬θ)
end if
return ⊥

end function

82VLSID 2019 Logic Locking

SAT Attack Results

VLSID 2019 Logic Locking 83

[Subramanyan et al., HOST’15]

SAT Attack Impact

• Broke all combinational locking methods known at the time

• Led to a spate of new papers on SAT attack resilient locking

VLSID 2019 Logic Locking 84

[Subramanyan et al., HOST’15]

SAT Resilient Locking Methods

VLSID 2019 Logic Locking 85

The curious case of c2670

•Most resilient circuit to SAT attack in experiments

•Note benchmark set included DES, multipliers, etc.

•So why was this small circuit the most difficult?

VLSID 2019 Logic Locking 86

[Subramanyan et al., HOST’15]

…

X1
K1

X2
K2

XN
KN

This circuit requires
2N/2 distinguishing
inputs on average to
find the key

Circuit+AND Tree ⇨ SAT Resilience

VLSID 2019 Logic Locking 87

c

…

X1
K1

X2
K2

XN
KN

…

X1
KN+1

X2
KN+2

XN
K2N

X1 … XN Y
Y’

[Xie et al., AntiSAT, CHES’16]

Output is 0 only if
K1…KN == KN+1…K2N

K2N+1…Use pre-SAT
locking here for

output
corruputibility

Circuit+AND Tree ⇨ SAT Resilience

VLSID 2019 Logic Locking 88

c

…

X1

X2

XN

…

X1
K1

X2
K2

XN
KN

X1 … XN

Y

Y’

[Yasin et al., SARLock, HOST’16]

Output is flipped for
protected cube

Output is “fixed” if
K1…KN = protected cube

KN+1…Use pre-SAT
locking here for

output
corruputibility

Circuit+Hamming Distance⇨ SAT Resilience

VLSID 2019 Logic Locking 89

c

HD=k from
prot. cube…

X1

X2

XN

HD=k
…

X1
K1

X2
K2

XN
KN

X1 … XN

Y

Y’

[Yasin et al., SFLL, CCS’17]

Output is flipped for
Hamming dist k from

protected cube

Output is “fixed” if
K1…KN = protected cube

Subsequent Attacks

ATPG Attack, DAC’12

FA FA

SAT Attack, HOST’15

S

SPS Attack, HOST’16

DoubleDIP, GLSVLSI’17

AppSAT, HOST’17

FALL, DATE’19

FA FA FP

VLSID 2019 Logic Locking 90

Signal Probability Skew Attack

Key idea: output signal S of AND-tree has very low Pr(S = 1)

So isolate such nodes and remove them

How to isolate?

• Set Pr(Xi = 1) = 0.5 for all primary inputs

• For AND gate, Y = AND(A, B)

• Pr(Y=1) = Pr(A=1) * Pr(B=1)

• For OR gate, Y = OR(A,B)

• Pr(Y=1) = (1 – Pr(A=1)) * (1 – Pr(B=1))

• And so on …

VLSID 2019 Logic Locking 91

[Yasin et al., HOST’16]

SPS on Anti-SAT

VLSID 2019 Logic Locking 92

c

…

X1
K1

X2
K2

XN
KN

…

X1
KN+1

X2
KN+2

XN
K2N

X1 … XN Y
Y’

K2N+1…

0.25

0.25

0.5

0.5

0.5

0.125

≈0

≈1
0.5

[Yasin et al., HOST’16]

…

0

DoubleDIP

SARLock without the output corruptibility part produces the wrong
output on exactly two input vectors

• We want to attack the output corruptibility inducing part of SARLock

• Left to itself, the SAT attack gets lost attacking the AND-tree

• Double-DIP idea: ask SAT solver to find doubly distinguishing input

C(X,K1,Y1) ∧ C(X,K2,Y2) ∧ C(X,K3,Y1) ∧ C(X,K4,Y2) ∧ Y1 ≠ Y2 ∧ K1 ≠ K3 ∧ K2 ≠ K4

VLSID 2019 Logic Locking 93

[Shen and Zhou, GLSVLSI’16]

DoubleDIP on SARLock

VLSID 2019 Logic Locking 94

c

…

X1

X2

XN

…

X1
K1

X2
K2

XN
KN

X1 … XN

Y

Y’

[Yasin et al., SARLock, HOST’16]

KN+1…

[Shen and Zhou, GLSVLSI’16]

Want
solver to

focus here

And not
here

DoubleDIP insight:
distinguishing inputs
for AND-tree
distinguishes between
exactly two keys. So
ask for doubly-
distinguishing inputs

AppSAT

• Also focuses on lack of output corruptibility in SARLock

• Idea: run the SAT attack for a while, extract a key, and sample I/O
behavior of this key. If the sampled I/O patterns seem alright, we can
terminate even if the solver is able to find more distinguishing inputs

• This works pretty well against SARLock

VLSID 2019 Logic Locking 95

[Shamsi et al., HOST’17]

FALL Attacks

• Hamming Distance module has very specific Boolean properties

• This can be used to identify it and the protected cube

• This defeats SFLL and brings us back where we were in May 2015

• No published locking algorithm that is known to be secure exists

VLSID 2019 Logic Locking 96

[Sirone et al., DATE’19]

FALL Attacks on SFLL

VLSID 2019 Logic Locking 97

c

HD=k from
prot. cube…

X1

X2

XN

HD=k
…

X1
K1

X2
K2

XN
KN

X1 … XN

Y

Y’

[Sirone et al., DATE’19]

Locking key (aka
protectd cube is

hidden here)

Part III: Countermeasures

VLSID 2019 Logic Locking 98

• Design-for-security (DFS) architecture
• Allows a fully scan-based structural tests at the foundry on the obfuscated design.

• Once the keys programmed, and shipped to the customer, the scan out capability is
blocked. Only scan-in and functional operation are supported. Full structural scan
tests are still possible.

• DFS architecture prevents leaking of key information (even in part) to an
adversary under any circumstances.

99

Countermeasure 1: Design-for-Security (DFS)
Architecture

2/2/2019

UntrustedTrusted

100

RTL

Gate
Level
Netlist

Lock
Insertion

DFS
Insertion

Place &
Route

Test
Patterns

Design

Post Si
Validation

and Debug

Activation

Fabrication and
Packaging

Manufacturing
Tests

Deployment

In-system
Tests

Functional
Operation

Untrusted

Countermeasure 1: DFS Arch – Cont.

2/2/2019

Countermeasure 1: DFS Arch – Cont.

(a)

k1

a1

an

k2
k2

Logic

Cone D Q

FFY

SI 1

SE

0

k1

k1

k1

a1

an

k2 k2

Logic

Cone

D Q

FFK1

SI

0

1

SE

D Q

FFK2

SI

0

1

SE

D Q

FFY

SI 1

SE

0

F
F

K
1

F
F

K
2

F
F

Y

C1

C2

O1

O2

CompressorScan Chains

1 2 3 4 5 6 7 8 9 10 11 12 13

SC1

SC2

SC3

SC4

(d)

Shift-in Function Shift-out

SE

Clk

(c)

(b)

1012/2/2019

102

2

[Test, SE]

ki

Logic Cone

FF k

D Q

00

01

10

11SI

ki

Secure Cell

CKClk

Countermeasure 1: DFS Arch – Cont.

2/2/2019

Modes of Operation

Test SE Mode Description

0 0 M0
The chip is in functional mode. The secure cell
applies key to the logic.

0 1
M1

The secure cell holds its previous value. The
rest of the circuit is in functional/ shift mode
depending on the SE.1 0

1 1 M2
The SC becomes scan cell and it becomes a
part of the scan chain.

1032/2/2019

Modes of Operation- Cont.

104

• Manufacturing Tests
• No key required

• Post-Si Debug and Validation
• Key is shifted through the scan chain

• Performed at the trusted site

• In-system Tests
• Disable scan

dump

Shift -In Capture Shift -Out

SE

Clk

Test

2/2/2019

Scan Data Access Control

105

D
e
co

m
p
re

ss
o

r

C
o

m
p

re
ss

o
r

Test D Q

CK

FF

PIs POs

1

CLR

A

I

O

Delay Unit

TS

No positive transition at the Test pin

2/2/2019

Results

106

Benchmark
Key
Bits

Test Coverage (%) Pattern Count Area
OverheadORG KEY DFS Change ORG KEY DFS Change(%)

S35932 128 100 100 100 0.00 56 55 65 18.18% 6.14%

S38584 128 100 100 100 0.00 536 549 565 2.91% 7.84%

S38417 128 100 100 100 0.00 1,133 1,124 1,115 -0.80% 6.75%

b17 128 99.92 99.91 99.90 -0.11 2,542 2,516 2,516 1.71% 4.23%

b18 128 99.54 99.60 99.58 -0.02 5,086 5,112 5,116 0.08% 1.51%

b19 128 99.65 99.65 99.64 -0.01 9,395 9,387 9,398 0.12% 0.80%

TEST METRIC COMPARISON

2/2/2019

Analysis

107

• Attacks
• SAT-Based Attacks

• Brute-force Attacks

• Tampering

• Area Overhead
• Primarily from the Secure Cell

• Approximate gate count
• 5200 for a 256-bit Key

• 2700 for a 124-bit Key

• Well below 1%

• Need one additional pin (Test)

2/2/2019

Countermeasure 1- Summary

• We have presented a novel SC design for implementing DFS
infrastructure to prevents the leaking of obfuscation key to an
adversary, and thus establishes trust in semiconductor
manufacturing.

• The proposed infrastructure does not impact the existing IC
manufacturing flow.

• The secure cell holds its previous state during manufacturing tests.
• No leakage of key

• Minimum area overhead
• Require one additional Test pin

1082/2/2019

Countermeasure 2: SFLL-HDh

109

• SFLL-HDh structure: striped functionality from the original circuit and then
using a flip signal to correct the functionality.

HD(IN,K) =0
Tamper-proof

memory

Functionality
stripped circuit

K

?

Restore unit Restore

Yfs
Y

IN

Yfs IN K0 K1 K2 K3 K4 K5 K6 K7

√ 0 × √ √ √ √ √ √ √

√ 1 √ × √ √ √ √ √ √

√ 2 √ √ × √ √ √ √ √

√ 3 √ √ √ × √ √ √ √

√ 4 √ √ √ √ × √ √ √

√ 5 √ √ √ √ √ × √ √

× 6 × × × × × × √ ×

√ 7 √ √ √ √ √ √ √ ×

SFLL-HDh architecture for h = 0 and k=3

2/2/2019

Countermeasure 3: SARLock

110

• SARLock structure: add a small comparator circuit in the design to
ensure the exponential complexity of key bits.

Cons: Vulnerable to double DIP attack, removal attack and AppSAT
attack.

?= Mask

Tamper-proof
memory

Logic Cone OUT

Flip

K

2/2/2019

• Anti-SAT structure: uses two key vectors resulting in a total key length of 2n
replicating the SARLock truth-table 2n times.

Cons: Vulnerable to signal probability skew attack, bypass attack and AppSAT
attack.

Countermeasure 4: Anti-SAT

111

Tamper-proof
memory

Logic Cone OUT

X

𝐺 𝑋, 𝐾I2

𝐺 𝑋, 𝐾𝐼1
𝐾𝐼1

𝐾𝐼2

2/2/2019

Provable Security for Logic
Locking

VLSID 2019 Logic Locking 112

Games Cryptographers Play: IND-CPA

VLSID 2019 Logic Locking 113

Defender Attacker

Choose 𝑏 ∈ {0,1};
Secret key K

M0, M1

M0’, M1’

Enc(Mb, K)

Enc(Mb’, K)

b = 1

…

…

Attacker wins if she can guess b
with probability better than 0.5

Proposed Game: IND-LL

VLSID 2019 Logic Locking 114

Defender Attacker

Choose 𝑏 ∈ {0,1};
Locking key K

C0, C1

C0’, C1’

Lock(Cb, K)

Lock(Cb’, K)

b = 1

…

…

Attacker wins if she can guess b
with probability better than 0.5

IND-LL Simulates All Attacks

• All structural and passive functional attacks can be carried
out by attacker as she has locked circuits

• All active functional attacks can also be carried out: just run
the same algorithm twice with the two locked circuits

Important to have security proofs that generalize beyond
resistance to a specific attack or set of attacks

VLSID 2019 Logic Locking 115

Community Research Challenge

• Develop a locking method that can win the IND-LL game

VLSID 2019 Logic Locking 116

In Summary

• Logic locking seems to be taking off

• Current methods not as secure as common crypto primitives

• Opportunity to develop solutions that stand the test of time

VLSID 2019 Logic Locking 117

Shameless Plug

• I have open positions for PhD and MS students
interested in provable security and formal
methods in general and specifically in logic locking

• Send me an email if you are interested:
spramod@cse.iitk.ac.in

VLSID 2019 Logic Locking 118

mailto:spramod@cse.iitk.ac.in

Potpourri of Related Theory Issues (1/3)

• Q: Didn’t Barak et al. prove that obfuscation is impossible?

• A: No, they consider a scenario where a program P is obfuscated to
generate P’ without the notion of a locking key. We have an
additional input: the locking key. So their results are inapplicable.
Crypto is full of surprising results and this doesn’t mean obfuscation
isn’t impossible, but AFAIK nobody has proved it so.

VLSID 2019 Logic Locking 119

Potpourri of Related Theory Issues (2/3)

• Q: Isn’t obfuscation the same as functional encryption, which is
known to be extremely inefficient?

• A: Not quite, functional encryption is about operating on encrypted
data and allows sensitive computation to be performed on untrusted
hardware. This is stronger than the locking threat model, which for
instance, doesn’t allow probing of internal wires while computing on
an activated IC.

VLSID 2019 Logic Locking 120

Potpourri of Related Theory Issues (2/3)

• Q: Isn’t the IND-LL game is too strong to model a passive adversary?

• A: Yes, and this yet another topic for where further research is need.

VLSID 2019 Logic Locking 121

SAT Attack Tool Demo
https://bitbucket.org/spramod/host15-logic-encryption

VLSID 2019 Logic Locking 122

https://bitbucket.org/spramod/host15-logic-encryption

