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outline

why do we care about HW security?

view from the bottom (reconstructing trust)

view from the top: security property verification (constructing trust)

is there a middle-ground where the ‘twain shall meet?
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in the news: security breaches galore

$400B in losses worldwide due to cybercrime [McAfee, 2014]
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1B records 100TB of data80m records40m cards 500M records



not even the police are safe
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Georgia county paid ransom of 
$400,000 to cyber-criminals!

“everything we have is down … 
we're operating by paper in 
terms of reports and arrest 
bookings.”

https://www.zdnet.com/article/georgia-county-pays-a-
whopping-400000-to-get-rid-of-a-ransomware-infection/

https://www.zdnet.com/article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/


industry response: move all the thingz to HW
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examples of HW security primitives

• HW-supported SW isolation: SGX, 
Keystone, TrustZone

• SW authentication/measurement: 
SecureBoot, TXT

• HW support for code protection: 
e.g, MPX, CFI mechanisms

App App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

all driven by the perception that hardware is “harder” to “hack” than software



but if we learned one thing in 2018 …

hardware can have security vulnerabilities too
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data supports growing HW vulns claim
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outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

what’s the connection between these two?
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two views of hardware vulnerabilities

1. someone untrusted controls part of my design
(can I somehow analyze and then trust this design?)

2. the design is trusted, but is it trustworthy?
(what can I do to convince myself that the design’s security behavior is what I intended)
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what could be untrusted in my IC?

[Brian Sharkey, TRUST in Integrated Circuits Program: Briefing to Industry, DARPA MTO, 26 March 2007]

Specification Design Mask Fab

Wafer Probe Package Test

IP Tools Std Cells Models

Deploy

Trusted Untrusted
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one way of reconstructing trust
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Source: http://miscpartsmanuals2.tpub.com/TM-9-1240-369-34/TM-9-1240-369-340115.htm

reverse engineering to extract high-level components from an 
unstructured and flat netlist

A
LU

Register File

M
U

X
M

U
X

Instr. Decoder
Manual analysis

Algorithmic analysis



Netlist

Common-support 
analysis

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching

Multibit Register 
Analysis

RF analysis

Counter analysis

Shift register analysis

Overlap Resolution

Abstracted Netlist

reverse engineering algorithm portfolio

Analyze 
Netlist to 
Detect  
Malicious 
Behaviour

13[HOST’13, DATE’13, TETC’14, FMCAD’ 14]

Combinational 
component analyses

Sequential 
component analyses



general strategy
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Identify Potential Module 
Boundaries

BDD/SAT-Based Analyses to 
Verify Functionality

Output Inferred Modules

mux?mux
Netlist is a sea of gates! No 
information about boundaries 
of modules inside it.



bitslice identification and aggregation
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Multiplexers, decoders, 
demultiplexers, ripple 
carry adders and 
subtractors, parity trees, …

Netlist

K-cut matching

Aggregation



𝑓 𝑎, 𝑏 = 𝑎 + 𝑏

𝑓 𝑎, 𝑏 = 𝑎𝑏 + 𝑐

bitslice Identification using cut matching
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𝑓 𝑎, 𝑏 = 𝑎𝑏 + ¬𝑎𝑐

Cong and Ding, FlowMap, [TCAD’94]
Chatterjee et al., Reducing Structural Bias in Technology Mapping, [ICCAD’05]

• cuts are computed recursively 
• made tractable by enumerating cuts with k ≤ 6 inputs 
• group cuts into equivalence classes using permutation independent comparison 
• BDDs used to represent Boolean functions during matching



bitslice aggregation
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Group Bitslices With Shared Signals

Group Bitslices With Cascading Signals



word propagation and module matching
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Netlist

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching



word propagation and module generation

19

given an “output” word, 
we can traverse 
backwards/forwards to 
closely-related words to 
find candidate modules



library matching
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candidate 
module

library module

Want to match candidate modules 
against a library of common modules 
such as adders, ALUs, …

Challenges
• Permutation and polarity of inputs
• Setting of control inputs

A
B
c

B
A

• formulate as QBF problem
• use signatures to restrict space of permutations searched [FMCAD’14]



library matching as QBF
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∃𝑐, 𝑝 ∀𝑋: 𝑀 Π 𝑝, X , c = L(X)

M

control signals c
k

n
data inputs X Π

n
Permutation 

Network

permutation p

L
n signature of an input i is 

the number of outputs o
such that 𝑜𝑖 ≠ 𝑜¬𝑖.



there are many more algorithms here …
Netlist

Common-support 
analysis

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching

Multibit Register 
Analysis

RF analysis

Counter analysis

Shift register analysis

Overlap Resolution

Abstracted Netlist

Combinational component analyses

Sequential component analyses

22



but the takeaway is:
Netlist

Common-support 
analysis

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching

Multibit Register 
Analysis

RF analysis

Counter analysis

Shift register analysis

Overlap Resolution

Abstracted Netlist

we have a reasonably 
effective portfolio of 
inference algorithms to 
identify word-level 
modules from a 
unstructured netlists

23



summarizing inference results (1/2)

24

• 50-90% of the gates in these are covered
• Runtime is a maximum of a several minutes



summarizing inference results (2/2)

25

• Covered ~70% of the large test article (375k gates)
• Split the up big design into 7 subcomponents using reset tree; Covered 60-87%



retrospective on reverse engineering

• possible to reconstruct many high-level structures from flat netlists

• easier if we have information about what we expect to find
recall we were working blind – had no RTL info at all

• challenges are mostly due to aggressive synthesis and optimization
− tools merge equivalent functionality across sub-modules

− tools aggressively optimize out constants

• these challenges may be solvable with CEGIS

26



so we can do this …

Source: http://miscpartsmanuals2.tpub.com/TM-9-1240-369-34/TM-9-1240-369-340115.htm

A
LU

Register File

M
U

X
M

U
X

Instr. Decoder
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but the elephant in the room is …

How does one analyze a design to find security vulnerabilities?

Manual analysis

Algorithmic analysis

28



two views of hardware vulnerabilities

1. someone untrusted controls part of my design
(can I somehow analyze and then trust this design?)

2. the design is trusted, but is it trustworthy?
(what can I do to convince myself that the design’s security behavior is what I intended)

29



outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

• techniques for security property specification

• case study of enclave platform verification

what’s connection between the two?

30



need more than safety for security (1/4)

int secret[N];
int public[N];
int foo(int index) {

int r = 0;
if (index >= 0 && index < N)
if (priv_level == sup_user)

r = secret[index];
else

r = public[index];
return r;

}

mov ebx, secret
mov edi, index
mov eax, [ebx+4*edi]
mov r, eax

Idea: instrument each load to ensure that secret array is not accessed

Specification: only super 
user must access secret 
array.

31



need more than safety for security (2/4)

define valid (addr) = 
(addr >= secret && 
addr <  secret + N)
 priv_level == sup_user)

32

mov ebx, secret
mov edi, index
assert valid(ebx+4*edi);
mov eax, [ebx+4*edi]
mov r, eax

Specification: only super 
user must access secret 
array.

Idea: instrument each load to ensure that secret array is not accessed



need more than safety for security (3/4)

What is the 
bug?

33

int secret[N]; // &secret[0]=100
int public[N]; // &public[0]=104
int t;         // &t=108; N=4
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)
if (priv_level == sup_user)

r=t=secret[index];
else

r = public[index];
return r;

}

Specification: only super 
user must access secret 
array.



need more than safety for security (4/4)

34

int secret[N]; // &secret[0]=100
int public[N]; // &public[0]=104
int t;         // &t=108; N=4
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)
if (priv_level == sup_user)

r=t=secret[index];
else

r = public[index];
return r;

}

1. superuser calls foo(0)

2. t contains secret[0] (bug #1)

3. attacker calls foo(4)

4. this should have returned 0

5. due to bug #2 we return t
(which contained secret[0])

Note our property  is still satisfied!



moral of the story

• we wanted to verify the flow of information

• but what we were actually checking was access to the information

• trace (or safety) properties can capture the latter, not the former

35



cryptographers solution: distinguishability games
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secret=X0
public=A

secret=X1
public=A

foo(x)

• Pose game between an attacker and defender
• Attacker wins game: system is not secure
• Defender wins the game: system is secure

System 0

System 1

result



distinguishability game for function foo
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Defender
Attacker

Choose 
𝑏 ∈
{0,1}

secret0, 
secret1, 

public

foo(0), SU

⊥

publicb[1]

b = 1

…

…

Finalization: Attacker wins if she can determine b

foo(1), U

Game Initialization

• Defender chooses 𝑏 ∈ {0,1}

• Attacker chooses 
𝑠𝑒𝑐𝑟𝑒𝑡0, 𝑠𝑒𝑐𝑟𝑒𝑡1, 𝑝𝑢𝑏𝑙𝑖𝑐

• System initial state is defined 
by 𝑠𝑒𝑐𝑟𝑒𝑡𝑏, 𝑝𝑢𝑏𝑙𝑖𝑐

Game Execution

• Attacker makes calls to 
foo(x), and observes result r

• Result defined to be ⊥ when 
called in SU mode

• Result is the return value of 
foo in usr mode



can attacker win the game?
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Defender
Attacker

Choose 
𝑏 = 1

secret0={1,2,3,4}, 
secret1={5,6,7,8}, 

public={9,7,8,6}

foo(0), SU

⊥

7

b = ??

…

…

foo(1), U

int secret[N]; 
int public[N];
int foo(int index) {

int r = 0;
if (index >= 0 && index < N)

if (priv_level == sup_user)
r = secret[index];

else
r = public[index];

return r;
}

foo(2), U

8
The game can go on 
forever, nothing will 
reveal secret to adversary



can attacker win game with buggy foo?
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Defender
Attacker

Choose 
𝑏 = 1

secret0={1,2,3,4}, 
secret1={5,6,7,8}, 

public={9,7,8,6}

foo(0), SU

⊥ (t = 5)

7

b = 1

…

…

foo(1), U

foo(4), U

5 (val in t) • Now, attacker always wins!

• Secrets are not indistinguishable

int secret[N]; //&secret[0]=100
int public[N]; //&public[0]=104
int t = 0; //&t=108; N=4
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)

if (priv_level == sup_user)
r=t=secret[index];

else
r=public[index];

return r;
}



game viewed as a sequence of states
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int secret[N];
int public[N];
int t = 0;
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)

if (priv_level == sup_user)
r=t=secret[index];

else
r=public[index];

return r;
}

Initial states
• secret0 = {1,2,3,4}
• secret1 = {5,6,7,8}
• public = {10,11,12,13}

priv_level=SU, foo(1)

priv_level=U, foo(4)

res=⊥

res=2 res=6

b=0 b=1

b=0 b=1

Initial States



we can view this as a 2-trace property (1/2)
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1. init states have different secrets, same public values
2. attacker takes arbitrary actions at each step
3. must prove results of invocation are same at each step

...

...

=res =res

priv_level=SU, foo(1)

priv_level=U, foo(4)

res=⊥

res=2 res=6

b=0 b=1

Initial States



we can view this as a 2-trace property (2/2)

42

1. Init states have different secrets, 
same public values

2. Attacker takes arbitrary actions at 
each step

3. Must prove results of invocation 
are same at each step

...

...

=res =res

∀𝜋1𝜋2 ∈ 𝑇𝑟𝑎𝑐𝑒𝑠:
𝜋1 0 . 𝑝𝑢𝑏𝑙𝑖𝑐 = 𝜋2 0 . 𝑝𝑢𝑏𝑙𝑖𝑐 ⇒
∀𝑖. 𝑟𝑒𝑠(𝜋1 𝑖 ) = 𝑟𝑒𝑠(𝜋2 𝑖 )



there is a well-developed theory here
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• This was an example of a hyperproperty [Clarkson and Schneider, 2009]

• Was a relation over traces, not a set of traces

• Studied since at least the early eighties
− Non-interference [Goguen and Meseguer, 1982]

− Observational Determinism [Zdancewic and Myers, 2003]

− Many more classes, with many subtle (but important) differences

Hyperproperties enable succinct system-level security specification



outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

• techniques for security property specification

• case study of enclave platform verification

what’s connection between the two?

44



enclave platforms 101 (1/3)

45

Program Code+Input

Output

What guarantees do we want for secure remote execution?

[CCS’17]



enclave platforms 101 (2/3)

46

MyApp App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

How to ensure security in this scenario?

Typical public cloud implies untrusted 
OS, hypervisor and co-located apps



enclave platforms 101 (3/3)

47

MyEnc App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

Enclave Platforms like Intel SGX and MIT Sanctum 
provide ISA-level primitives for “secure” remote 
execution

Enclave consists of:

• Protected mem region for code/data
• Even OS/VM can’t access enclave mem
• HW “measurement” operator

Research Question: How do enclave primitives 
translate to secure remote execution?



using enclaves

1. User sends program

2. Untrusted OS creates enclave

3. User authenticates w/ measurement

4. If measurement matches, encrypted 
input is set to enclave

5. Enclave computes returne encrypted 
output

48

Program

App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

MyEnc?

untrusted 
network

MyEnc



how could platforms betray us?

• Access control: untrusted code is able to read/write enclave memory

• Side channels: caches, page tables, speculation, etc. 

• Measurements: different enclaves with the same measurement

• Bad operations like cloning of enclaves

49



Secure Remote Execution of Enclaves

Remote server’s execution of enclave program e must be identical to trusted local 
execution modulo inputs provided to the enclave. 

50

(Definition) Secure Remote Execution (SRE)

(Theorem) SRE Decomposition

Measurement: is the right program being executed?

Integrity: is adversary effect on enclave restricted to 
providing inputs?

Confidentiality: is adversary state a deterministic function 
of only public observations and adversary operations

SR
E 

eq
u

iv
al

en
t 

to
 

M
IC

 p
ro

p
er

ti
es



Enclave Measurement Property
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… …

… …

Sa
m

e 
m
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s.
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m

e 
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p
u

t
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m

e 
In

p
u

t

If we start two enclaves with the same measurement and, and if at each step 
the enclave executes, the inputs to the enclave are identical, then these two 
enclaves must have the same state and outputs at every step
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Enclave Integrity Property
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… …

… …

Sa
m

e 
En
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e
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e 
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p
u

t
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m

e 
In

p
u

t

If we start two identical enclaves, and if at each step the enclave executes, the 
inputs to the enclave are identical, then regardless of adversary actions, the 
enclave computation must also be identical

A1

A2

A1

A2
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Enclave Confidentiality Property

53

… …

… …

Sa
m

e 
A

d
v

Sa
m

e 
O

b
s

Sa
m

e 
O

b
s

If we start two different enclaves, and if at each step the enclave executes, the 
outputs of the enclave are identical, and the adversary actions are the same, 
then regardless of adversary actions, the adversary state must also be identical

A

A

A

A
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e1
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The Trusted Abstract Platform

54

• Registers, program counter
• Virtual to physical mappings
• Enclave metadata
• Memory and associated cache

• Create, Destroy
• Enter, Exit
• Pause, Resume
• Load/Store/ALU
• Update page tables

TAP State Variables TAP Operations

A model of an enclave platform that is not specific to a 
particular implementation like SGX, or Sanctum



Verification of Enclave Platforms

55

Intel SGX Model
MIT Sanctum 

Model

Trusted Abstract 
Platform

Parameterized 
Adversary Model

Machine-checked 
simulation proof 

Machine-checked proof of SRE• create(container_t *)
• destroy(enclave_t)
• enter(enclave_t)
• exit()
• pause(enclave_t)
• resume(enclave_t)
• rand()
• attest(msg_t)

The TAP provides a common framework for reasoning about security of enclave 
platform primitives and adversary models.



Verification of Enclave Platforms

56

Intel SGX Model
MIT Sanctum 

Model

Trusted Abstract 
Platform

Parameterized 
Adversary Model

Machine-checked 
simulation proof 

Machine-checked proof of SRE• create(container_t *)
• destroy(enclave_t)
• enter(enclave_t)
• exit()
• pause(enclave_t)
• resume(enclave_t)
• rand()
• attest(msg_t)

• Proofs were done by induction, just like this tutorial
• Two safety properties proven using self-composition

4700 lines of proof code + 4200 lines of model



what is the point of all this?

• enclave platforms are quite complex 
SGX developer guide is 381 pages

and guide already assumes reader understands enclave security guarantees

• you might think their security specification would be complex too

• but no! only 3 hyperproperties capture enclave security guarantees

moral of the story: security specification can be a lot more succinct 
(and easier to verify) than a specification of full functional correctness
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outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

• techniques for security property specification

• case study of enclave platform verification

what’s connection between the two?

58



where are we now?

59

Trusted Abstract Platform Model

SGX Model Sanctum Model

Monitor (FW 
code in C)

Processor 
(Chisel)

Binary Code
Synthesized 

Netlist

verified SRE at this 
level of abstraction

reverse engineeringIntel SGX Impl.



where we would like to be

60

Trusted Abstract Platform Model

SGX Model Sanctum Model

Monitor (FW 
code in C)

Processor 
(Chisel)

Binary Code
Synthesized 

Netlist

Intel SGX Impl.

secure remote 
execution guarantees 
for the entire stack



what makes this difficult?

microarchitectural impl and RTL synthesis pose new verif. challenges

• new attacks become possible at the lower layers (e.g. spectre)

• system invariants may be messed up due to retiming etc.

therefore, proofs cannot be straightforwardly translated to lower levels

this is where reverse engineering could help bridge the gap

61



lot of important research problems here

• can we do hyperproperty mining for finding security properties?

• software compilation is known to introduce security bugs
does synthesis also do the same?

if so, what are they and how do we fix them?

if not, why not and can we use those tricks in software?

• the μarch/HW/FW/SW interfaces seem to be a rich source of bugs

e.g., spectre, sysret, rowhammer, etc.

what can we do to eliminate these bugs?

62



more broadly, hyperproperties are under-explored

• they capture properties like determinism, commutativity, associativity
could be important in specification of system-level behavior

• in security, a key challenge is formulating the right property
hyperproperties can help here

• verification techniques are also relatively under-studied
relational invariants seem to be harder for IC3 etc.
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Thank You
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Identifying Register Files
Netlist

Common-support 
analysis

K-cut matching

Aggregation

Word propagation

Module 
generation

Library Matching

RF analysis
Combinational component analyses

Sequential component analyses

66



The Structure of a Register File

67

Register FileWrite data

Write addr + write enable

Read address

Read data

Register file consists of:

• Flip-flops that store information
• Read logic: takes a read address and outputs stored data
• Write logic: stores data in the register file



Identifying Read Logic

68

FF FF FF FF FF FF FF FF

dataout

addr[2]

addr[1]

addr[0]

Insight: look for trees of logic where the leaves of the tree are flip-flops



Verifying Identified Read Logic

69

FF FF FF FF FF FF FF FF

dataout

addr[2]

addr[1]

addr[0]

• Verify there exists some address which propagates each flip-flop 
output to the data output

• This is done using a BDD-based analysis



Identifying Write Logic

70

• Muxes select between current value and write data
• Decoders select the location that is being written to
• Easy to find muxes and decoders after we find the flip-flops



Overlap  Resolution
Netlist

Common-support 
analysis

K-cut matching

Aggregation

Word propagation

Module 
generation

Library Matching

Multibit Register 
Analysis

RF analysis

Counter analysis

Shift register 
analysis

71

Combinational component analyses

Sequential component analyses

Overlap 
Resolution

Abstracted Netlist



Problem: Inferred Modules Overlap

72

FF FF FF FF FF FF FF FF

dataout

addr[2]

addr[1]

addr[0]

Inferred register file

4-bit MUX



Resolving Overlaps

Formulate an Integer-Linear Program

1. Constraints specify that modules must not overlap
2. Objective is one of the following

• Maximize the number of covered gates OR
• Minimize the number of modules given a coverage target
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Experimental Setup

• Implemented in C++

• MiniSAT 2.2

• CUDD 2.4

• CPLEX 12.5

Toolchain

• Many from OpenCores.org

• Size ranges from few hundred to several thousand gates

• Also got a test case with 375k gates from DARPA

Designs

74



why the deluge of security breaches?
my theory of the case

75

1. attacks possible from above, below and peers
(so everything ends up in the TCB)

2. layer boundaries are ill-specified
for ex: AMD vs Intel sysret

3. security requirements not formally specified
for ex: meltdown, foreshadow

OS

App App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW



what is the impact of  hardware bugs?

Before/after pictures of a suspected nuclear reactor site

Suspicion that a hardware backdoor was exploited to disable the radar system

[Sally Adee, The Hunt for the Kill Switch, IEEE Spectrum May 2008]
[John Markoff, Old Trick Threatens the Newest Weapons, NY Times, 26 October 2009] 76


