
Reverse Engineering for Security

Pramod Subramanyan

spramod@cse.iitk.ac.in

Indian Institute of Technology, Kanpur

6th Workshop on Design Automation for Understanding Hardware Designs

March 29 2019

This work was supported in part by the Semiconductor Research Corporation (SRC). 1

mailto:spramod@cse.iitk.ac.in?subject=[DUHDe%202019%20Talk]

acknowledgements

• Srinivas Devadas

• Bruno Dutertre

• Jason M. Fung

• Dejan Jovanovic

• Hareesh Khattri

• Ilia Lebedev

• Abhranil Maiti

• Aarti Gupta

• Adria Gascon

• Wenchao Li

• Sharad Malik

• Kanika Pasricha

• Dillon Reisman

• Sanjit Seshia

• Rohit Sinha

• Adriana Susnea

• Ashish Tiwari

• Nestan Tsiskaradze

• Weikun Yang

• Yakir Vizel

2

outline

why do we care about HW security?

view from the bottom (reconstructing trust)

view from the top: security property verification (constructing trust)

is there a middle-ground where the ‘twain shall meet?

3

in the news: security breaches galore

$400B in losses worldwide due to cybercrime [McAfee, 2014]

4

1B records 100TB of data80m records40m cards 500M records

not even the police are safe

5

Georgia county paid ransom of
$400,000 to cyber-criminals!

“everything we have is down …
we're operating by paper in
terms of reports and arrest
bookings.”

https://www.zdnet.com/article/georgia-county-pays-a-
whopping-400000-to-get-rid-of-a-ransomware-infection/

https://www.zdnet.com/article/georgia-county-pays-a-whopping-400000-to-get-rid-of-a-ransomware-infection/

industry response: move all the thingz to HW

6

examples of HW security primitives

• HW-supported SW isolation: SGX,
Keystone, TrustZone

• SW authentication/measurement:
SecureBoot, TXT

• HW support for code protection:
e.g, MPX, CFI mechanisms

App App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

all driven by the perception that hardware is “harder” to “hack” than software

but if we learned one thing in 2018 …

hardware can have security vulnerabilities too

7

data supports growing HW vulns claim

8

outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

what’s the connection between these two?

9

two views of hardware vulnerabilities

1. someone untrusted controls part of my design
(can I somehow analyze and then trust this design?)

2. the design is trusted, but is it trustworthy?
(what can I do to convince myself that the design’s security behavior is what I intended)

10

what could be untrusted in my IC?

[Brian Sharkey, TRUST in Integrated Circuits Program: Briefing to Industry, DARPA MTO, 26 March 2007]

Specification Design Mask Fab

Wafer Probe Package Test

IP Tools Std Cells Models

Deploy

Trusted Untrusted
11

one way of reconstructing trust

12

Source: http://miscpartsmanuals2.tpub.com/TM-9-1240-369-34/TM-9-1240-369-340115.htm

reverse engineering to extract high-level components from an
unstructured and flat netlist

A
LU

Register File

M
U

X
M

U
X

Instr. Decoder
Manual analysis

Algorithmic analysis

Netlist

Common-support
analysis

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching

Multibit Register
Analysis

RF analysis

Counter analysis

Shift register analysis

Overlap Resolution

Abstracted Netlist

reverse engineering algorithm portfolio

Analyze
Netlist to
Detect
Malicious
Behaviour

13[HOST’13, DATE’13, TETC’14, FMCAD’ 14]

Combinational
component analyses

Sequential
component analyses

general strategy

14

Identify Potential Module
Boundaries

BDD/SAT-Based Analyses to
Verify Functionality

Output Inferred Modules

mux?mux
Netlist is a sea of gates! No
information about boundaries
of modules inside it.

bitslice identification and aggregation

15

Multiplexers, decoders,
demultiplexers, ripple
carry adders and
subtractors, parity trees, …

Netlist

K-cut matching

Aggregation

𝑓 𝑎, 𝑏 = 𝑎 + 𝑏

𝑓 𝑎, 𝑏 = 𝑎𝑏 + 𝑐

bitslice Identification using cut matching

16

𝑓 𝑎, 𝑏 = 𝑎𝑏 + ¬𝑎𝑐

Cong and Ding, FlowMap, [TCAD’94]
Chatterjee et al., Reducing Structural Bias in Technology Mapping, [ICCAD’05]

• cuts are computed recursively
• made tractable by enumerating cuts with k ≤ 6 inputs
• group cuts into equivalence classes using permutation independent comparison
• BDDs used to represent Boolean functions during matching

bitslice aggregation

17

Group Bitslices With Shared Signals

Group Bitslices With Cascading Signals

word propagation and module matching

18

Netlist

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching

word propagation and module generation

19

given an “output” word,
we can traverse
backwards/forwards to
closely-related words to
find candidate modules

library matching

20

candidate
module

library module

Want to match candidate modules
against a library of common modules
such as adders, ALUs, …

Challenges
• Permutation and polarity of inputs
• Setting of control inputs

A
B
c

B
A

• formulate as QBF problem
• use signatures to restrict space of permutations searched [FMCAD’14]

library matching as QBF

21

∃𝑐, 𝑝 ∀𝑋: 𝑀 Π 𝑝, X , c = L(X)

M

control signals c
k

n
data inputs X Π

n
Permutation

Network

permutation p

L
n signature of an input i is

the number of outputs o
such that 𝑜𝑖 ≠ 𝑜¬𝑖.

there are many more algorithms here …
Netlist

Common-support
analysis

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching

Multibit Register
Analysis

RF analysis

Counter analysis

Shift register analysis

Overlap Resolution

Abstracted Netlist

Combinational component analyses

Sequential component analyses

22

but the takeaway is:
Netlist

Common-support
analysis

K-cut matching

Aggregation

Word propagation

Module generation

Library Matching

Multibit Register
Analysis

RF analysis

Counter analysis

Shift register analysis

Overlap Resolution

Abstracted Netlist

we have a reasonably
effective portfolio of
inference algorithms to
identify word-level
modules from a
unstructured netlists

23

summarizing inference results (1/2)

24

• 50-90% of the gates in these are covered
• Runtime is a maximum of a several minutes

summarizing inference results (2/2)

25

• Covered ~70% of the large test article (375k gates)
• Split the up big design into 7 subcomponents using reset tree; Covered 60-87%

retrospective on reverse engineering

• possible to reconstruct many high-level structures from flat netlists

• easier if we have information about what we expect to find
recall we were working blind – had no RTL info at all

• challenges are mostly due to aggressive synthesis and optimization
− tools merge equivalent functionality across sub-modules

− tools aggressively optimize out constants

• these challenges may be solvable with CEGIS

26

so we can do this …

Source: http://miscpartsmanuals2.tpub.com/TM-9-1240-369-34/TM-9-1240-369-340115.htm

A
LU

Register File

M
U

X
M

U
X

Instr. Decoder

27

but the elephant in the room is …

How does one analyze a design to find security vulnerabilities?

Manual analysis

Algorithmic analysis

28

two views of hardware vulnerabilities

1. someone untrusted controls part of my design
(can I somehow analyze and then trust this design?)

2. the design is trusted, but is it trustworthy?
(what can I do to convince myself that the design’s security behavior is what I intended)

29

outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

• techniques for security property specification

• case study of enclave platform verification

what’s connection between the two?

30

need more than safety for security (1/4)

int secret[N];
int public[N];
int foo(int index) {

int r = 0;
if (index >= 0 && index < N)
if (priv_level == sup_user)

r = secret[index];
else

r = public[index];
return r;

}

mov ebx, secret
mov edi, index
mov eax, [ebx+4*edi]
mov r, eax

Idea: instrument each load to ensure that secret array is not accessed

Specification: only super
user must access secret
array.

31

need more than safety for security (2/4)

define valid (addr) =
(addr >= secret &&
addr < secret + N)
 priv_level == sup_user)

32

mov ebx, secret
mov edi, index
assert valid(ebx+4*edi);
mov eax, [ebx+4*edi]
mov r, eax

Specification: only super
user must access secret
array.

Idea: instrument each load to ensure that secret array is not accessed

need more than safety for security (3/4)

What is the
bug?

33

int secret[N]; // &secret[0]=100
int public[N]; // &public[0]=104
int t; // &t=108; N=4
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)
if (priv_level == sup_user)

r=t=secret[index];
else

r = public[index];
return r;

}

Specification: only super
user must access secret
array.

need more than safety for security (4/4)

34

int secret[N]; // &secret[0]=100
int public[N]; // &public[0]=104
int t; // &t=108; N=4
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)
if (priv_level == sup_user)

r=t=secret[index];
else

r = public[index];
return r;

}

1. superuser calls foo(0)

2. t contains secret[0] (bug #1)

3. attacker calls foo(4)

4. this should have returned 0

5. due to bug #2 we return t
(which contained secret[0])

Note our property is still satisfied!

moral of the story

• we wanted to verify the flow of information

• but what we were actually checking was access to the information

• trace (or safety) properties can capture the latter, not the former

35

cryptographers solution: distinguishability games

36

secret=X0
public=A

secret=X1
public=A

foo(x)

• Pose game between an attacker and defender
• Attacker wins game: system is not secure
• Defender wins the game: system is secure

System 0

System 1

result

distinguishability game for function foo

37

Defender
Attacker

Choose
𝑏 ∈
{0,1}

secret0,
secret1,

public

foo(0), SU

⊥

publicb[1]

b = 1

…

…

Finalization: Attacker wins if she can determine b

foo(1), U

Game Initialization

• Defender chooses 𝑏 ∈ {0,1}

• Attacker chooses
𝑠𝑒𝑐𝑟𝑒𝑡0, 𝑠𝑒𝑐𝑟𝑒𝑡1, 𝑝𝑢𝑏𝑙𝑖𝑐

• System initial state is defined
by 𝑠𝑒𝑐𝑟𝑒𝑡𝑏, 𝑝𝑢𝑏𝑙𝑖𝑐

Game Execution

• Attacker makes calls to
foo(x), and observes result r

• Result defined to be ⊥ when
called in SU mode

• Result is the return value of
foo in usr mode

can attacker win the game?

38

Defender
Attacker

Choose
𝑏 = 1

secret0={1,2,3,4},
secret1={5,6,7,8},

public={9,7,8,6}

foo(0), SU

⊥

7

b = ??

…

…

foo(1), U

int secret[N];
int public[N];
int foo(int index) {

int r = 0;
if (index >= 0 && index < N)

if (priv_level == sup_user)
r = secret[index];

else
r = public[index];

return r;
}

foo(2), U

8
The game can go on
forever, nothing will
reveal secret to adversary

can attacker win game with buggy foo?

39

Defender
Attacker

Choose
𝑏 = 1

secret0={1,2,3,4},
secret1={5,6,7,8},

public={9,7,8,6}

foo(0), SU

⊥ (t = 5)

7

b = 1

…

…

foo(1), U

foo(4), U

5 (val in t) • Now, attacker always wins!

• Secrets are not indistinguishable

int secret[N]; //&secret[0]=100
int public[N]; //&public[0]=104
int t = 0; //&t=108; N=4
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)

if (priv_level == sup_user)
r=t=secret[index];

else
r=public[index];

return r;
}

game viewed as a sequence of states

40

int secret[N];
int public[N];
int t = 0;
int foo(int index) {

int r = 0;
if (index >= 0 && index <= N)

if (priv_level == sup_user)
r=t=secret[index];

else
r=public[index];

return r;
}

Initial states
• secret0 = {1,2,3,4}
• secret1 = {5,6,7,8}
• public = {10,11,12,13}

priv_level=SU, foo(1)

priv_level=U, foo(4)

res=⊥

res=2 res=6

b=0 b=1

b=0 b=1

Initial States

we can view this as a 2-trace property (1/2)

41

1. init states have different secrets, same public values
2. attacker takes arbitrary actions at each step
3. must prove results of invocation are same at each step

...

...

=res =res

priv_level=SU, foo(1)

priv_level=U, foo(4)

res=⊥

res=2 res=6

b=0 b=1

Initial States

we can view this as a 2-trace property (2/2)

42

1. Init states have different secrets,
same public values

2. Attacker takes arbitrary actions at
each step

3. Must prove results of invocation
are same at each step

...

...

=res =res

∀𝜋1𝜋2 ∈ 𝑇𝑟𝑎𝑐𝑒𝑠:
𝜋1 0 . 𝑝𝑢𝑏𝑙𝑖𝑐 = 𝜋2 0 . 𝑝𝑢𝑏𝑙𝑖𝑐 ⇒
∀𝑖. 𝑟𝑒𝑠(𝜋1 𝑖) = 𝑟𝑒𝑠(𝜋2 𝑖)

there is a well-developed theory here

43

• This was an example of a hyperproperty [Clarkson and Schneider, 2009]

• Was a relation over traces, not a set of traces

• Studied since at least the early eighties
− Non-interference [Goguen and Meseguer, 1982]

− Observational Determinism [Zdancewic and Myers, 2003]

− Many more classes, with many subtle (but important) differences

Hyperproperties enable succinct system-level security specification

outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

• techniques for security property specification

• case study of enclave platform verification

what’s connection between the two?

44

enclave platforms 101 (1/3)

45

Program Code+Input

Output

What guarantees do we want for secure remote execution?

[CCS’17]

enclave platforms 101 (2/3)

46

MyApp App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

How to ensure security in this scenario?

Typical public cloud implies untrusted
OS, hypervisor and co-located apps

enclave platforms 101 (3/3)

47

MyEnc App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

Enclave Platforms like Intel SGX and MIT Sanctum
provide ISA-level primitives for “secure” remote
execution

Enclave consists of:

• Protected mem region for code/data
• Even OS/VM can’t access enclave mem
• HW “measurement” operator

Research Question: How do enclave primitives
translate to secure remote execution?

using enclaves

1. User sends program

2. Untrusted OS creates enclave

3. User authenticates w/ measurement

4. If measurement matches, encrypted
input is set to enclave

5. Enclave computes returne encrypted
output

48

Program

App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

MyEnc?

untrusted
network

MyEnc

how could platforms betray us?

• Access control: untrusted code is able to read/write enclave memory

• Side channels: caches, page tables, speculation, etc.

• Measurements: different enclaves with the same measurement

• Bad operations like cloning of enclaves

49

Secure Remote Execution of Enclaves

Remote server’s execution of enclave program e must be identical to trusted local
execution modulo inputs provided to the enclave.

50

(Definition) Secure Remote Execution (SRE)

(Theorem) SRE Decomposition

Measurement: is the right program being executed?

Integrity: is adversary effect on enclave restricted to
providing inputs?

Confidentiality: is adversary state a deterministic function
of only public observations and adversary operations

SR
E

eq
u

iv
al

en
t

to

M
IC

 p
ro

p
er

ti
es

Enclave Measurement Property

51

… …

… …

Sa
m

e
m

ea
s.

Sa
m

e
In

p
u

t

Sa
m

e
In

p
u

t

If we start two enclaves with the same measurement and, and if at each step
the enclave executes, the inputs to the enclave are identical, then these two
enclaves must have the same state and outputs at every step

e

e

e

e

Sa
m

e
en

c
st

Sa
m

e
en

c
st

Enclave Integrity Property

52

… …

… …

Sa
m

e
En

cl
av

e

Sa
m

e
In

p
u

t

Sa
m

e
In

p
u

t

If we start two identical enclaves, and if at each step the enclave executes, the
inputs to the enclave are identical, then regardless of adversary actions, the
enclave computation must also be identical

A1

A2

A1

A2

e

e

e

e

Sa
m

e
en

c
st

Sa
m

e
en

c
st

Enclave Confidentiality Property

53

… …

… …

Sa
m

e
A

d
v

Sa
m

e
O

b
s

Sa
m

e
O

b
s

If we start two different enclaves, and if at each step the enclave executes, the
outputs of the enclave are identical, and the adversary actions are the same,
then regardless of adversary actions, the adversary state must also be identical

A

A

A

A

e1

e2

e1

e2

Sa
m

e
ad

v
st

Sa
m

e
ad

v
st

The Trusted Abstract Platform

54

• Registers, program counter
• Virtual to physical mappings
• Enclave metadata
• Memory and associated cache

• Create, Destroy
• Enter, Exit
• Pause, Resume
• Load/Store/ALU
• Update page tables

TAP State Variables TAP Operations

A model of an enclave platform that is not specific to a
particular implementation like SGX, or Sanctum

Verification of Enclave Platforms

55

Intel SGX Model
MIT Sanctum

Model

Trusted Abstract
Platform

Parameterized
Adversary Model

Machine-checked
simulation proof

Machine-checked proof of SRE• create(container_t *)
• destroy(enclave_t)
• enter(enclave_t)
• exit()
• pause(enclave_t)
• resume(enclave_t)
• rand()
• attest(msg_t)

The TAP provides a common framework for reasoning about security of enclave
platform primitives and adversary models.

Verification of Enclave Platforms

56

Intel SGX Model
MIT Sanctum

Model

Trusted Abstract
Platform

Parameterized
Adversary Model

Machine-checked
simulation proof

Machine-checked proof of SRE• create(container_t *)
• destroy(enclave_t)
• enter(enclave_t)
• exit()
• pause(enclave_t)
• resume(enclave_t)
• rand()
• attest(msg_t)

• Proofs were done by induction, just like this tutorial
• Two safety properties proven using self-composition

4700 lines of proof code + 4200 lines of model

what is the point of all this?

• enclave platforms are quite complex
SGX developer guide is 381 pages

and guide already assumes reader understands enclave security guarantees

• you might think their security specification would be complex too

• but no! only 3 hyperproperties capture enclave security guarantees

moral of the story: security specification can be a lot more succinct
(and easier to verify) than a specification of full functional correctness

57

outline: revisited

we should care about HW security!

can we reconstruct trust in an untrusted component? (bottom-up)

can we prove a trusted component is trustworthy? (top-down)

• techniques for security property specification

• case study of enclave platform verification

what’s connection between the two?

58

where are we now?

59

Trusted Abstract Platform Model

SGX Model Sanctum Model

Monitor (FW
code in C)

Processor
(Chisel)

Binary Code
Synthesized

Netlist

verified SRE at this
level of abstraction

reverse engineeringIntel SGX Impl.

where we would like to be

60

Trusted Abstract Platform Model

SGX Model Sanctum Model

Monitor (FW
code in C)

Processor
(Chisel)

Binary Code
Synthesized

Netlist

Intel SGX Impl.

secure remote
execution guarantees
for the entire stack

what makes this difficult?

microarchitectural impl and RTL synthesis pose new verif. challenges

• new attacks become possible at the lower layers (e.g. spectre)

• system invariants may be messed up due to retiming etc.

therefore, proofs cannot be straightforwardly translated to lower levels

this is where reverse engineering could help bridge the gap

61

lot of important research problems here

• can we do hyperproperty mining for finding security properties?

• software compilation is known to introduce security bugs
does synthesis also do the same?

if so, what are they and how do we fix them?

if not, why not and can we use those tricks in software?

• the μarch/HW/FW/SW interfaces seem to be a rich source of bugs

e.g., spectre, sysret, rowhammer, etc.

what can we do to eliminate these bugs?

62

more broadly, hyperproperties are under-explored

• they capture properties like determinism, commutativity, associativity
could be important in specification of system-level behavior

• in security, a key challenge is formulating the right property
hyperproperties can help here

• verification techniques are also relatively under-studied
relational invariants seem to be harder for IC3 etc.

63

references

• Goguen and Meseguer, Security Policies and Security Models, SP ‘82

• Cong and Ding, FlowMap, TCAD ’94

• Zdancewic and Myers, Observational Determinism for Concurrent Program Security, CSFW ’04

• Terauchi and Aiken, Secure Information Flow as a Safety Problem, SAS ‘05

• Chatterjee, Mischenko, Brayton, Reducing Structural Bias in Technology Mapping, TCAD ’06

• Li et al., WordRev: Finding word-level structures in a sea of bit-level gates, HOST ‘13

• Subramanyan et al., Reverse Engineering Digitial Circuits using Functional Analyses, DATE ‘13

• Subramanyan et al., Reverse Engineering Digital Circuits using Structural and Functional Analyses, TETC ’14

• Gascon et al., Template-based circuit understanding, FMCAD ’14

• Subramanyan et al., A Formal Foundation for Secure Remote Execution of Enclaves, CCS ’17

• Yang et al., Lazy Self-Composition for Security Verification, CAV ’18

64

Thank You

65

Identifying Register Files
Netlist

Common-support
analysis

K-cut matching

Aggregation

Word propagation

Module
generation

Library Matching

RF analysis
Combinational component analyses

Sequential component analyses

66

The Structure of a Register File

67

Register FileWrite data

Write addr + write enable

Read address

Read data

Register file consists of:

• Flip-flops that store information
• Read logic: takes a read address and outputs stored data
• Write logic: stores data in the register file

Identifying Read Logic

68

FF FF FF FF FF FF FF FF

dataout

addr[2]

addr[1]

addr[0]

Insight: look for trees of logic where the leaves of the tree are flip-flops

Verifying Identified Read Logic

69

FF FF FF FF FF FF FF FF

dataout

addr[2]

addr[1]

addr[0]

• Verify there exists some address which propagates each flip-flop
output to the data output

• This is done using a BDD-based analysis

Identifying Write Logic

70

• Muxes select between current value and write data
• Decoders select the location that is being written to
• Easy to find muxes and decoders after we find the flip-flops

Overlap Resolution
Netlist

Common-support
analysis

K-cut matching

Aggregation

Word propagation

Module
generation

Library Matching

Multibit Register
Analysis

RF analysis

Counter analysis

Shift register
analysis

71

Combinational component analyses

Sequential component analyses

Overlap
Resolution

Abstracted Netlist

Problem: Inferred Modules Overlap

72

FF FF FF FF FF FF FF FF

dataout

addr[2]

addr[1]

addr[0]

Inferred register file

4-bit MUX

Resolving Overlaps

Formulate an Integer-Linear Program

1. Constraints specify that modules must not overlap
2. Objective is one of the following

• Maximize the number of covered gates OR
• Minimize the number of modules given a coverage target

73

Experimental Setup

• Implemented in C++

• MiniSAT 2.2

• CUDD 2.4

• CPLEX 12.5

Toolchain

• Many from OpenCores.org

• Size ranges from few hundred to several thousand gates

• Also got a test case with 375k gates from DARPA

Designs

74

why the deluge of security breaches?
my theory of the case

75

1. attacks possible from above, below and peers
(so everything ends up in the TCB)

2. layer boundaries are ill-specified
for ex: AMD vs Intel sysret

3. security requirements not formally specified
for ex: meltdown, foreshadow

OS

App App App

OS OS

Hypervisor

FW FW FW

CPU SoC HW

what is the impact of hardware bugs?

Before/after pictures of a suspected nuclear reactor site

Suspicion that a hardware backdoor was exploited to disable the radar system

[Sally Adee, The Hunt for the Kill Switch, IEEE Spectrum May 2008]
[John Markoff, Old Trick Threatens the Newest Weapons, NY Times, 26 October 2009] 76

