
All-SAT using Minimal Blocking Clauses
Yinlei Yu∗ Pramod Subramanyan† Nestan Tsiskaridze‡ Sharad Malik†

∗Two Sigma Investments LLC †Princeton University ‡University of Iowa

Abstract—The All-SAT problem deals with determining
all the satisfying assignments that exist for a given proposi-
tional logic formula. This problem occurs in verification ap-
plications including predicate abstraction and unbounded
model checking. A typical All-SAT solver is based on itera-
tively computing satisfying assignments using a traditional
Boolean satisfiability (SAT) solver and adding blocking
clauses which are the complement of the total/partial
assignments. We argue that such an algorithm is doing
more work than needed and introduce new algorithms that
are more efficient. Experiments show that these algorithms
generate solutions with up to 14× fewer partial assignments
and are up to three orders of magnitude faster.

I. INTRODUCTION

This paper considers the All-SAT problem [1], [2]
which deals with enumerating all satisfying assignments
of a propositional logic formula. The All-SAT problem
has many diverse applications such as model check-
ing [1], [3], the computation of backbones of a proposi-
tional logic formula [4], [5], quantifier elimination [6],
logic minimization [7], reachability analysis [2] and
predicate abstraction [8].

In this paper, we introduce new algorithms which
enumerate all satisfying assignments for a formula in
conjunctive normal form (CNF). The number of satis-
fying assignments for a formula can be exponential in
the size of the formula. Therefore, for All-SAT to be
practical, we enumerate partial assignments1 or cubes.
A single partial assignment encompasses a set of total
assignments. As a result, the set of all satisfying partial
assignments may be efficiently enumerable even if the set
of all satisfiable total assignments is not. Effectively, this
means that an efficient solution to the All-SAT problem
is one of converting a formula in CNF into a tractable
disjunctive normal form (DNF) representation.

One method for enumerating satisfying partial assign-
ments is as follows. We use a SAT solver to find a sat-
isfying total assignment, “enlarge” this total assignment
into a partial assignment, block this partial assignment
by adding a blocking clause to the formula and repeat
this process until the formula becomes unsatisfiable.
This template for a solution to the All-SAT problem
was introduced by McMillan [1]. We show that such

1Formal definitions of assignments and cubes are given in §II-A.

a solution results in a DNF representation with cubes
that are pairwise disjoint cubes. This trivially enables
counting the number of satisfying solutions, which is a
#P -complete problem [9]. Since most problems related
to DNF minimization are in ΣP

2 [10] and model counting
is #P -complete, it is likely that the All-SAT problem,
i.e. determining a DNF cover, is simpler than model
counting. In this paper, we present two solutions to
All-SAT, called the Non-Disjoint All-SAT algorithm and
the Non-Disjoint-Dec All-SAT algorithm that do not
produce a disjunction of pairwise disjoint cubes. Our
algorithms result in more compact DNF representations
and experiments with a diverse set of benchmarks show
that these algorithms generate DNF representations with
up to 14× fewer partial assignments and are up to three
orders of magnitude faster than the All-SAT template
described above.

II. PRELIMINARIES

A. Notation

Let B = {0, 1} be the Boolean domain. Let X be
a set of propositional variables of cardinality n: X =
{x1, x2, . . . , xn}. The logical operations over B: ∧, ∨
and ¬ are defined as usual. The set of literals over X is
LX = {xi,¬xi | xi ∈ X}. Given a literal `i ∈ LX , the
variable occurring in `i is denoted by var(`i). A cube of
size k over X is a conjunction of k literals `1∧`2∧· · ·∧`k
where each `i ∈ LX . In this paper, we consider only
cubes such that var(`i) 6= var(`j) if i 6= j. A minterm
is a cube of size n. Recall n = |X|. A clause of size k
over X is a disjunction of k literals `1∨`2∨· · ·∨`k, where
each `i ∈ LX . We assume that var(`i) 6= var(`j) if i 6=
j. We define a propositional formula F in conjunctive
normal form (CNF) as the conjunction of a finite set of
clauses over X: F = c1 ∧ c2 ∧ · · · ∧ cm. A propositional
formula G in disjunctive normal form (DNF) is defined
as the disjunction of a finite set of cubes over X: G =
q1 ∨ q2 ∨ · · · ∨ qm.

An assignment σ is a mapping from X 7→ B and σxi
denotes the value of variable xi under the assignment
σ. An assignment is called a total assignment if σ is a
total function and partial otherwise. Assignments, both
total and partial, correspond to cubes; total assignments
correspond to minterms, e.g., σ = {x1 7→ 1, x2 7→

0, x3 7→ 1} corresponds to x1 ∧ ¬x2 ∧ x3. In the
sequel, we use minterms and total assignments as well
as cubes and partial assignments interchangeably. An as-
signment σ is said to satisfy a formula F (x1, x2, . . . , xn)
iff F evaluates to 1 under the assignment σ, i.e.,
F (σx1, σx2, . . . , σxn) = 1. We write this as σ |= F .
Formulas F and G are equivalent, written as F ⇔ G, if
for every assignment σ: σ |= F iff σ |= G.

B. Problem Definition

Given a propositional formula F in CNF, we wish to
derive an equivalent formula Q as a disjunction of cubes
Q = ∨mi=1qi where each qi is a cube over X . Note this
problem corresponds exactly to converting a conjunction
of clauses (CNF) to a disjunction of cubes (DNF).

III. ALL-SAT ALGORITHMS

This section presents our algorithms for All-SAT and
proofs of their correctness.

A. Overview of Algorithms

Algorithm 1 is a template for the All-SAT algorithms
discussed in this paper. Line 3 uses a SAT solver
to compute a satisfying minterm for F . Line 4 calls
the unspecified function compute to obtain the partial
assignment (cube) qi from mi (total assignment). A
blocking clause ci is found and added to Fi preventing
these assignments from being enumerated again. This
process is repeated until Fi becomes unsatisfiable.

Algorithm 1 Algorithm Template
Input: F in CNF.
Output: Q in DNF, such that Q⇔ F .

1: i := 1, F1 = F , Q = 0
2: while not unsat(Fi) do
3: mi := sat(Fi) . get a satisfying assignment of Fi

4: (qi, ci) := compute(mi) . get cube and blocking clause
5: Q := Q ∨ qi, Fi+1 = Fi ∧ ci . update Q, Fi

6: i := i+ 1
7: end while
8: return Q.

Algorithm 1 Naı̈ve All-SAT: A very simple but ineffi-
cient All-SAT algorithm can be derived by implementing
compute as follows. We simply set qi := mi. The
blocking clause ci is the complement of qi: ci = ¬qi.
This algorithm exhaustively enumerates each satisfying
assignment of F . Since the number of satisfying assign-
ments of a Boolean formula can be exponential in the
size of the formula, this algorithm is likely not practical.
Algorithm 2 All-Clause All-SAT: This algorithm im-
proves upon the naı̈ve algorithm by enlarging minterm

mi into cube qi. Cube qi represents a set of satis-
fying minterms. Fig. 1(a) illustrates this. We define
the function compute in line 4 as: compute(mi) :=
minimal(mi, Fi). The function minimal takes as input
a minterm mi and a formula F in CNF. It returns the
enlarged cube qi along with its corresponding blocking
clause ci. The implementation of minimal is discussed
in §III-B.2 An important observation here is that cubes
derived by the All-Clause algorithm are pairwise disjoint.
Theorem (Disjoint Cubes): Let Q = ∨ki=1qi be the
disjunction of cubes produced by Algorithm 2. ∀i, j ∈
{1 . . . k} : (i 6= j)⇒ (qi ∧ qj = 0). Proof omitted.

Counting the number of satisfying assignments of
a formula is #P -complete [9]. However, this can be
computed in polynomial time given a set of pairwise
disjoint cubes, as the disjoint cube property ensures
no satisfying minterm is counted twice. However, most
problems related to computing a minimal DNF cover
are in ΣP

2 [10], so it is likely that determining a
DNF representation is simpler than model counting. This
suggests the All-Clause algorithm is doing more work
than necessary.

(a) Non-overlapping
Cubes: Naı̈ve and
All-Clause Algorithms

(b) Overlapping Cubes:
Non-Disjoint Algorithm

Fig. 1. Difference between All-Clause and Non-Disjoint Algorithms.

Algorithm 3 Non-Disjoint All-SAT: Using the above
insight, the Non-Disjoint All-SAT Algorithm computes
a disjunction of overlapping cubes Q with the ex-
pectation that Q would be more compact. We define
the function compute in line 4 as: compute(mi) :=
minimal(mi, F). Here minimal enlarges the minterm
mi into a cube qi that satisfies F but not necessarily Fi.
This is illustrated in Fig. 1(b). Cubes q1, q2, q3 etc. can
now overlap with the other cubes.

B. Finding Minimal Blocking Clauses

The minimal function takes as input a minterm msat

and a formula F and returns the “enlarged” cube qi and
corresponding blocking clause ci. Some applications of
All-SAT require existential quantification over a certain

2We note that minimal cubes correspond to prime implicants [11].

2

set of variables while computing all satisfying solutions.
This quantification can be performed on the outputs of
the minimal function.

We now describe two implementations of minimal.
1) Minimal Satisfying Cube: Given the minterm

msat, the goal here is to identify a subset of the literals
in msat which guarantee satisfiability of F . This is the
unate covering or hitting set problem. Precisely stated,
the problem is to select a subset of columns that cover
every row of a matrix Am×n. Here each of the m
rows corresponds to a clause in F while each column
corresponds to a literal in the minterm msat. Aij = 1
if the j-th literal in msat occurs in clause ci, and 0
otherwise. Column j is said to cover row i iff Aij = 1.

We solve the unate covering problem using the well-
known greedy heuristic from [11] which is as follows.
We first select all essential columns. A column j is
essential if there is at least one row i such that Aij = 1
and Aik = 0 for all k 6= j. Essential columns and rows
covered by them are eliminated from the matrix. Next
we prune dominated rows. Row i is dominated by row
j if ∀k : Ajk = 1 ⇒ Aik = 1. Column i is dominated
by column j if ∀k : Aki = 1 ⇒ Akj = 1. Dominated
columns are also pruned. These pruning techniques are
applied repeatedly until no new rows/columns can be
eliminated. At this point, we greedily select a column
that covers the most rows, remove this column and the
rows covered by it, and repeat the above procedure until
all rows are covered. The conjunction of the selected
columns (i.e., literals in msat) yields qi and its negation
is the disjunction ci, the blocking clause.

2) Decision-Based Minimal Satisfying Cube: Modern
SAT solvers based on the DPLL [12] procedure and
conflict-driven clause learning [13] work by starting
with a set of decision variables and computing values
of implied variables required for satisfiability. Given a
formula F and satisfying assignment σ, the values of the
decision variables in σ and F itself completely determine
values of the implied variables in σ. This fact can be used
to reduce the size of the blocking clauses. For example,
consider F = (a∨¬b)∧ (a∨ b∨ c). Suppose the solver
makes the decision b = 1. Then a = 1 is implied by F
and c is irrelevant to satisfiability. Now (¬b) can be used
as a blocking clause instead of (¬b ∨ ¬a). Specifying
a = 1 is unnecessary in the blocking clause as there are
no satisfying assignments of F with a = 0 when b = 1.

Given the minterm msat, define the set of required
literals R as follows: (i) R contains all literals in msat

which are sole literals evaluating to 1 in at least one
clause in F and (ii) R also contains every literal that
participates either directly or indirectly in an implication
that sets the value of a literal included due to (i). In the

example above, msat = a ∧ b ∧ c. R = {a, b}. a is
included due to condition (i) and b due to condition (ii).

The set of required literals R are treated as essential
variables in the unate covering problem and a satisfying
subset of the remaining literals is computed. Let this
subset be U. Note U contains only decision variables
because any implied variable would satisfy condition (i)
in the definition of R above. Let R be expressed as
R = RD ∪ RI, where RD contains literals which are
decision variables in the SAT solver and RI corresponds
to the implied variables. The cube qi is the conjunction
of the literals in RD ∪RI ∪U. Let qb be defined as the
conjunction of the literals in RD ∪U. Blocking clause
ci is the complement of qb. In our example, U is empty
because a = 1 and b = 1 guarantees satisfiability of all
clauses. RD = {b} and RI = {a}. So qi = a∧b, qb = b
and ci = ¬b.

C. Proofs

Properties of the Minimal Function: We will prove
termination and correctness of our algorithms assuming
the properties shown below for the minimal function.
Here we assume that (qi, ci) = minimal(mi,F).

(a) mi |= qi
(b) qi ⇒ F
(c) ∀m : (m 6|= qi ∧m |= F)⇒ (m |= ci)
(d) ∀m : (m |= qi)⇒ m 6|= ci; in particular mi 6|= ci
(e) qi ⇒ F
Property (a) states that each invocation of minimal

with the arguments mi and Fi must return a cube qi that
covers3 the minterm mi. Property (b) states that cube
qi must imply F , which means that every assignment
that satisfies qi also satisfies F . Property (c) asserts that
if there exists a satisfying assignment m for F that
is not covered by qi, then the corresponding clause ci
must not block m. Property (d) states that the blocking
clause ci must block mi itself. Finally, property (e) states
that the enlarged cube returned by minimal implies the
argument supplied to minimal (which is F).

First, we show that both implementations of minimal
introduced in this paper satisfy these properties. Next,
we prove termination and correctness of the algorithms
assuming these properties.
Minimal Satisfying Cube: It is easy to see that the
implementation of minimal satisfying cube from III-B1
satisfies the properties listed above. mi |= qi, qi ⇒ F
are true by construction. F is either Fi for Algorithm 2
or F for 3, so F ⇒ F from which qi ⇒ F . Properties
(c) and (d) are due to the fact that ci = ¬qi. o.

3We say that a cube qi covers cube qj if every literal in qi is also
present in qj . This means that every satisfying assignment of qj is
also a satisfying assignment of qi.

3

TABLE I
EXAMPLE: EXECUTION OF ALL-CLAUSE ALGORITHM FOR

F = (a ∨ ¬b) ∧ (a ∨ b ∨ c)

i mi qi ci Fi+1

1 ¬a ∧ ¬b ∧ c ¬b ∧ c b ∨ ¬c F ∧ (b ∨ ¬c)
2 a ∧ ¬b ∧ ¬c a ∧ ¬c ¬a ∨ c F∧(b∨¬c)∧

(¬a ∨ c)
3 a ∧ b ∧ c a ∧ b ∧ c ¬a∨¬b∨¬c F∧(b∨¬c)∧

(¬a ∨ c) ∧
(¬a ∨ ¬b ∨
¬c)

TABLE II
EXAMPLE: EXECUTION OF NON-DISJOINT ALGORITHM FOR

F = (a ∨ ¬b) ∧ (a ∨ b ∨ c)

i mi qi ci Fi+1

1 ¬a ∧ ¬b ∧ c ¬b ∧ c b ∨ ¬c F ∧ (b ∨ ¬c)
2 a ∧ ¬b ∧ ¬c a ¬a F ∧ (b ∨ ¬c) ∧

(¬a)

Decision-Based Minimal Satisfying Cube: We now
prove the correctness of the minimal algorithm intro-
duced in Section III-B2. First, we claim that properties
(a), (b) and (e), i.e., qi ⇒ F , qi ⇒ F and mi |= qi follow
directly from the construction of qi. The key property
that helps prove the correctness of this “asymmetric”
choice of the cube and blocking clause is the claim that
satisfying assignments to qb which also satisfy F are
identical to satisfying assignments of qi.
Lemma (Identical Satisfying Minterms): qb∧F ⇔ qi.
(1) qi ⇒ qb ∧ F . Proof. This follows directly from the
definitions of qb and qi. Note qb contains a subset of the
literals in qi.
(2) qb ∧ F ⇒ qi. Proof. Assume there exists a minterm
m such that m |= qb ∧F . Since m |= qb, a subset of the
literals in m are identical to those in RD∪U. Therefore,
the only way m 6|= qi could occur is if one of the literals
in RI is different between qi and m. However, for a
satisfying assignment of F , the values of the literals in
RI are fully determined by the values of the literals in
RD. Therefore it is not possible this to occur and the
claim must be true. o.

Properties (c) and (d) of the minimal function are a
direct consequence of the above lemma.
Theorem (Termination): Algorithms 2 and 3 terminate.
Proof. The algorithm terminates because each successive
iteration of the while loop is called on a function which
has fewer satisfying assignments. This is guaranteed by
property (d) and the construction of Fi+1 from Fi by
adding a clause ci that blocks at least the minterm mi.

D. Example: All-Clause and Non-Disjoint Algorithms

Consider F = (a∨¬b)∧ (a∨ b∨ c). The naı̈ve algo-
rithm enumerates all five minterms of F . Table I shows
one possible execution of the All-Clause algorithm for

the same function. The execution starts by finding the
minterm a = 0, b = 0, c = 1. This minterm can be
expanded to the cube (¬b ∧ c) but blocking this cube
now means that cube q2 = a cannot be found as a alone
does not satisfy the blocking clause (b∨¬c). The result
is a disjunction of three pairwise disjoint cubes. Table II
shows the execution of the Non-Disjoint algorithm for
the same function and the same initial minterm. In this
case, the ability to select overlapping cubes results in a
more compact (and in fact optimal) DNF representation.

IV. EVALUATION

We implemented the algorithms described in this pa-
per by building on MiniSat [14]. We used a subset of the
SATLIB [15] and SAT Challenge 2012 (SC’2012)[16]
benchmarks. The CPU used was Intel R© Xeon R© E5645
CPU, execution time limit was one hour and the memory
limit was 4GB. The four algorithms we evaluate are:
(a) Naı̈ve (b) All-Clause (c) Non-Disjoint using Minimal
Satisfying Cubes (“Non-Disjoint”; see §III-B1) and (d)
Non-Disjoint using Decision-Based Minimal Satisfying
Cubes (“Non-Disjoint-Dec”; see §III-B2).

We evaluate all instances in SATLIB benchmarks
except for 3SAT-CBS, FlatGC and MorphedGC. These
three have very large sets of instances so we randomly
selected 1000, 100 and 100 out of 40000, 1700 and 901
instances respectively. For the SC’2012 benchmarks, we
selected all cases that MiniSat found satisfiable within
150 seconds. There are a total of 2621 instances, of
which 2506 are satisfiable. Naı̈ve solved 2076 cases,
whereas All-Clause, Non-Disjoint and Non-Disjoint-Dec
solved 2181, 2238 and 2236 instances respectively.

A. Aggregate Results of Benchmark Groups

Table III shows the aggregate statistics. The column
“random?” indicates whether the instances are random.
AveVar, and AveCl columns are the average number of
variables and clauses respectively. #Inst and #SATInst
indicates the number of all instances and satisfiable
instances respectively. We show the number of instances
solved by the following algorithms: Naı̈ve, All-Clause,
“Non-Disjoint”, which is the Non-Disjoint algorithm
using Minimal Satisfying Cubes (III-B1) and “Non-
Disjoint-Dec” which is the Non-Disjoint algorithm using
the Decision-Based Minimal Satisfying Cube (III-B2).

In most non-random cases, we found that all four
algorithms solve the same set of All-SAT instances and
failed on the rest. In benchmarks beijing, FlatGC and
dimacs, All-Clause actually solves slightly fewer cases
than Naı̈ve as it takes more time to generate blocking
clauses. On the other hand, the new algorithms show

4

TABLE III
AGGREGATE RESULTS FOR ALL-SAT

GroupName Random? AveVar AveCl #Inst #SATInst Naı̈ve All-Clause Non-Disjoint Non-Disjoint-Dec
FlatGC No 239 882 100 100 71 64 71 74
MorphedGC No 500 3,100 100 100 41 39 40 40
planning No 1,730 2,3261 11 11 8 8 8 8
dimacs Yes/No 505 6,011 240 138 87 86 92 91
beijing No 9,119 51,706 16 15 4 3 5 5
bmc No 30,077 160,366 13 13 0 0 0 0
ais No 155 2,729 4 4 4 4 4 4
QuasiGroup No 1,043 58,470 22 10 10 10 10 10
3SAT-CBS Yes 100 449 1,000 1,000 982 997 1,000 1,000
3SAT-BMS Yes 100 360 1,000 1,000 868 960 998 994
sc2012* No 492,723 3,401,426 115 115 10 10 10 10

101 102 103 104 105

(a) Number of cubes generated by All-Clause algorithm
0

1

2

3

4

5

6

Ra
tio

 o
f i

m
pr

ov
em

en
t i

n
nu

m
be

r o
f c

ub
es

 o
ve

r A
ll-

Cl
au

se

Avg. Non-Disjoint

Avg Non-Disjoint-Dec

14.78
Non-Disjoint
Non-Disjoint-Dec

10-2 10-1 100 101 102 103 104

(b) Execution time of All-Clause (in seconds)
10-1

100

101

102

103

104

 R
at

io
 o

f i
m

pr
ov

em
en

t i
n

ex
ec

ut
io

n
tim

e
ov

er
 A

ll-
Cl

au
se

Avg. Non-Disjoint

Avg. Non-Disjoint-Dec

Non-Disjoint
Non-Disjoint-Dec

Fig. 2. Comparing All-Clause, Non-Disjoint and the Non-Disjoint-Dec Algorithms.

improvements in random SAT benchmarks like 3SAT-
CBS and 3SAT-BMS.

The lack of advantage by Non-Disjoint and All-Clause
over Naı̈ve on these non-random benchmarks is mainly
due to the properties of the underlying SAT instances.
Most non-random instances are circuit-based and con-
verted to CNF using the Tseitin Transformation [17]. To
satisfy such instances, we have to select all variables
representing internal nodes and outputs. This means the
minimal blocking clause generated by Non-Disjoint or
All-Clause contains all but a few input variables.

B. Performance comparison of algorithnms

In Fig. 2(a), we show the distribution of number of
blocking clauses for 108 hard All-SAT instances com-
pleted by All-Clause, Non-Disjoint and Non-Disjoint-
Dec but not completed by Naı̈ve . The X-axis is the
number of cubes generated by All-Clause. The Y-Axis
is the ratio by which the number of cubes improves us-
ing Non-Disjoint/Non-Disjoint-Dec. A value >1 means
more “compression” and we see the ratio is in fact
greater than 1 for most benchmarks when using the
“Non-Disjoint” algorithm. The average ratio for the Non-
Disjoint algorithm is 2.0, which means that on average

the Non-Disjoint algorithm produces a DNF representa-
tion with half as many cubes as the All-Clause algorithm.
Larger instances see greater benefit. Surprisingly, Non-
Disjoint-Dec creates more cubes than both Non-Disjoint
and All-Clause. We believe this is due to the inclusion of
blocking clauses by the implication-graph backtracking
while computing R.

Fig. 2(b) compares the execution times for the same
set of instances. The X-axis is the execution time of All-
Clause. The Y-axis is the speedup of Non-Disjoint/Non-
Disjoint-Dec compared to All-Clause. A value >1
means Non-Disjoint/Non-Disjoint-Dec are faster than
All-Clause. We see that Non-Disjoint and Non-Disjoint-
Dec are orders of magnitude faster than All-Clause
and the advantage grows for larger instances. Non-
Disjoint is 205× faster than All-Clause on average while
Non-Disjoint-Dec is 68× faster. Non-Disjoint is faster
due to more effective blocking and fewer cubes in the
DNF representation. Non-Disjoint-Dec is faster because
it creates much smaller blocking clauses.

V. RELATED WORK

SAT-based techniques for prime implicant computa-
tion were investigated by Manquinho, Marques-Silva et

5

al. [18], [19]. They formulate an integer linear program
(ILP) to find the shortest prime implicant of a Boolean
function. While this algorithm can be extended to find
all prime implicants, enumerating all prime implicants is
distinct from and computationally more expensive than
the problem tackled in this paper which is to compute
an equivalent DNF representation of a Boolean function
that consists only of prime implicants. Enumerating all
prime implicants is not necessary to derive a complete
cover and it is not clear how one would modify these
algorithms to derive a cover.

The technique of enumerating satisfiable solutions
using blocking clauses was first introduced by McMil-
lan [1]. Brauer et al. [6] introduced an elegant formu-
lation for All-SAT based on a “dual-rail” encoding that
allows enumeration of the shortest implicants first. Both
these techniques result in pairwise disjoint cubes.

Morgado et al. [20] suggested deriving a disjunction
of overlapping cubes for the All-SAT problem. How-
ever, this was not evaluated in their experiments and
they presented results which derived a disjunction of
pairwise disjoint cubes. Jin et al. [21] introduced an
All-SAT algorithm for Boolean circuits. They introduced
algorithms based on circuit-analysis for minimizing the
total assignment and generate overlapping cubes in their
solution. This requires a circuit representation and is
very distinct from our approach. Another circuit-based
approach for All-SAT using circuit cofactoring was in-
troduced by Ganai et al. [3]. Neither Morgado et al. [20]
nor Jin et al. [21] make the connection between pairwise
disjoint cubes and #P -completeness of model counting.

Exploiting the information available in the internal
state of the solver while solving the All-SAT problem
is also done in [1] and [2]. Grumberg et al. [2] in-
troduced a search based technique for All-SAT. They
explore satisfying solutions for each value of a set of
important variables. Their key advantage is that they
do not use blocking clauses and so avoid “mem outs”.
The solution still results in pairwise disjoint cubes. Our
contribution, the Non-Disjoint-Dec algorithm, generates
extremely short blocking clauses that do not contain any
of the implied variables in the solver. Note that typically
the majority of the variables in a satisfying minterm are
implied. Short blocking clauses are very beneficial for
solver performance as demonstrated by the evaluation.

VI. CONCLUSION

This paper introduced new algorithms for the All-
SAT problem which has many applications in model
checking, logic minimization, reachability analysis and
predicate abstraction. We first showed that existing so-
lutions to the All-SAT problem are likely doing more

work than necessary because they produce a result that
consists of pairwise disjoint cubes. We then introduced
new algorithms for the All-SAT problem which generate
solutions that consist of overlapping partial assignments
and a new technique for generating blocking clauses that
consist of only the decision variables in a SAT solver.
We evaluated these algorithms by experimenting with
a diverse set of SAT benchmarks and found that these
algorithms generate All-SAT solutions which have up
to 14× fewer partial assignments and are up to 1000×
faster than traditional solutions to the All-SAT problem.

REFERENCES

[1] K. L. McMillan, “Applying SAT Methods in Unbounded Sym-
bolic Model Checking,” in CAV’02, pp. 250–264.

[2] O. Grumberg, A. Schuster, and A. Yadgar, “Memory Efficient
All-Solutions SAT Solver and Its Application for Reachability
Analysis,” in FMCAD’04, pp. 275–289.

[3] M. K. Ganai, A. Gupta, and P. Ashar, “Efficient SAT-based Un-
bounded Symbolic Model Checking using Circuit Cofactoring,”
in ICCAD’04, pp. 510–517.

[4] C. Zhu, G. Weissenbacher, D. Sethi, and S. Malik, “SAT-based
Techniques for Determining Backbones for Post-Silicon Fault
Localisation,” in HLDVT’11, pp. 84–91.

[5] J. Marques-Silva, M. Janota, and I. Lynce, “On Computing
Backbones of Propositional Theories,” in ECAI’10, pp. 15–20.

[6] J. Brauer, A. King, and J. Kriener, “Existential Quantification as
Incremental SAT,” in CAV ’11, pp. 191–207.

[7] S. Sapra, M. Theobald, and E. Clarke, “SAT-Based Algorithms
for Logic Minimization,” in ICCD ’03, pp. 510–517.

[8] S. K. Lahiri, R. E. Bryant, and B. Cook, “A Symbolic Approach
to Predicate Abstraction,” in CAV ’03, pp. 141–153.

[9] C. P. Gomes, A. Sabharwal, and B. Selman, Handbook of
Satisfiability. IOS Press, 2008, ch. 20: Model Counting.

[10] D. Buchfuhrer and C. Umans, “The Complexity of Boolean
Formula Minimization,” J. Comput. Syst. Sci., vol. 77, no. 1,
pp. 142–153, Jan. 2011.

[11] G. D. Hatchel and F. Somenzi, Logic Synthesis and Verification
Algorithms, 1996, ch. 4: Synthesis of Two-Level Circuits.

[12] M. Davis, G. Logemann, and D. Loveland, “A Machine Program
for Theorem-Proving,” Comm. ACM, vol. 5, no. 7, pp. 394–397,
Jul. 1962.

[13] J. Marques-Silva and K. A. Sakallah, “GRASP - A New Search
Algorithm for Satisfiability,” in ICCAD’96, pp. 220–227.

[14] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in
SAT’03, pp. 502–518.

[15] H. H. Hoos and T. Stützle, “SATLIB: An Online Resource for
Research on SAT,” in SAT’00, pp. 283–292.

[16] A. Balint, A. Belov, M. Järvisalo, and C. Sinz, “SAT-Challenge
2012, held in conjunction with SAT 2012,” http://baldur.iti.kit.
edu/SAT-Challenge-2012/index.html, 2012.

[17] G. S. Tseitin, “On the complexity of derivation in propositional
calculus,” in Automation of Reasoning 2: Classical Papers on
Computational Logic 1967-1970, J. Siekmann and G. Wrightson,
Eds. Berlin, Heidelberg: Springer, 1983, pp. 466–483.

[18] V. M. Manquinho, P. E. Flores, J. P. Marques-Silva, and A. L.
Oliveira, “Prime Implicant Computation using Satisfiability Al-
gorithms,” in ICTAI ’97, 1997, pp. 232–239.

[19] J. P. Marques-Silva, “On Computing Minimum Size Prime Im-
plicants,” in IWLS ’97, 1997.

[20] A. Morgado and J. P. Marques-Silva, “Good Learning and
Implicit Model Enumeration,” in ICTAI ’05, 2005, pp. 131–136.

[21] H. Jin, H. Han, and F. Somenzi, “Efficient Conflict Analysis for
Finding All Satisfying Assignments of a Boolean Circuit,” in
TACAS’05, pp. 287–300.

6

