
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 10 April 2013; revised 4 September 2013; accepted 21 October 2013.
Date of publication 11 December 2013;
date of current version 7 May 2014.

Digital Object Identifier 10.1109/TETC.2013.2294918

Reverse Engineering Digital Circuits Using
Structural and Functional Analyses

PRAMOD SUBRAMANYAN1, NESTAN TSISKARIDZE1, WENCHAO LI2, ADRIÀ GASCÓN3,
WEI YANG TAN2, ASHISH TIWARI3, NATARAJAN SHANKAR3,

SANJIT A. SESHIA2, AND SHARAD MALIK1

1Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA
2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 USA

3Computer Science Laboratory, SRI International, Menlo Park, CA 94025 USA

CORRESPONDING AUTHOR: P. SUBRAMANYAN (psubrama@princeton.edu)

ABSTRACT Integrated circuits (ICs) are now designed and fabricated in a globalized multivendor envi-
ronment making them vulnerable to malicious design changes, the insertion of hardware Trojans/malware,
and intellectual property (IP) theft. Algorithmic reverse engineering of digital circuits can mitigate these
concerns by enabling analysts to detect malicious hardware, verify the integrity of ICs, and detect
IP violations. In this paper, we present a set of algorithms for the reverse engineering of digital cir-
cuits starting from an unstructured netlist and resulting in a high-level netlist with components such
as register files, counters, adders, and subtractors. Our techniques require no manual intervention and
experiments show that they determine the functionality of >45% and up to 93% of the gates in each of
the test circuits that we examine. We also demonstrate that our algorithms are scalable to real designs
by experimenting with a very large, highly-optimized system-on-chip (SOC) design with over 375 000
combinational elements. Our inference algorithms cover 68% of the gates in this SOC. We also demonstrate
that our algorithms are effective in aiding a human analyst to detect hardware Trojans in an unstructured
netlist.

INDEX TERMS Digital circuits, computer security, design automation, formal verification.

I. INTRODUCTION
Contemporary integrated circuits (ICs) are designed and
fabricated in a globalized, multi-vendor environment due
to which ICs are vulnerable to malicious design changes
and the insertion of hardware trojans and malware. The
possibility that malicious chips might be used in sensi-
tive locations such as military, financial and government
infrastructure is a serious and pressing concern to both
the users and designers of contemporary ICs [1], [8], [15],
[17], [28]. For example, the DARPA IRIS program seeks
to develop techniques for reverse engineering digital, ana-
log and mixed-signal ICs to determine their integrity for
use in sensitive installations [5]. Algorithmic approaches to
reverse engineering chips can aid in the detection of hard-
ware trojans, malicious design changes and in verifying the
integrity of untrusted design components for which trustwor-
thy source code may not be available. Reverse engineering

is also important in detecting intellectual property viola-
tions, considered a ‘‘serious concern’’ for the semiconductor
industry [7].
In this paper, we study a portfolio of fully algorithmic

approaches to reverse engineer digital circuits. We analyze
an unstructured netlist with the objective of inferring a high-
level netlist with components such as register files, adders
and counters. The key challenge in analyzing an unstructured
netlist is that we have no information about the boundaries
of the modules contained in the netlist. Therefore, we tackle
the reverse engineering problem through a variety of algo-
rithms that ‘‘carve out’’ portions of the netlist to generate
potential/candidate modules and employ techniques similar
to those used in design synthesis and verification to deter-
mine the functionality of these modules. In particular, this
paper focuses on algorithmic reverse engineering of datapath
components in an unstructured netlist. The objective is to aid

VOLUME 2, NO. 1, MARCH 2014

2168-6750 
 2013 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 63



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

TABLE 1. Comparing techniques for trojan detection with this work.

a human analyst understand the functionality of an unstruc-
tured netlist by algorithmically identifying as many compo-
nents as possible.1

A. RELATED WORK
Fully algorithmic reverse engineering is a relatively new field
of research. Previous work primarily suggests strategies of
attack for a human analyst [9], [29]. For example, in their
investigation of the ISCAS ’85 benchmarks, Hansen et al.
analyze replicated structurally isomorphic blocks [9]. The
cut-based Boolean matching and aggregation algorithms pre-
sented in Section II-A and Section II-B are generalizations of
this idea.

A recent attempt at addressing the reverse engineering
problem algorithmically is by Li et al. [14]. They present
a method for behavioral matching of an unknown sub-
circuit against a library of abstract components but assume
that methods are available to generate sub-circuits from the
unstructured netlist. Therefore, our set of solutions is com-
plementary to theirs because: (a) we target different kinds of
components for reverse engineering and (b) we analyze an
unstructured netlist as opposed to sub-circuit matching.

An alternative approach to malware detection relies on
comparing side channel signals such as power and timing
between the trusted design and untrusted versions of the
designs. For instance, Agrawal et al. compare ‘‘fingerprints’’
consisting of measurements of power, electromagnetic and
thermal emissions [2]. Wang et al. use differences in cur-
rent measurements to detect trojans [31]. Jin et al. compare
path delay measurements [11]. These approaches assume
that a trusted (‘‘known good’’) version of the chip is avail-
able for experimentation, something that may not be true
when untrusted component IPs are used, the foundry itself is
untrusted or when it is not possible to determine trustworthy
chips by destructive examination.

Architectural approaches to trojan detection and avoid-
ance have also been proposed. Hicks et al. [10] proposed
an analysis that detects pairs of circuit nodes that are not
exercised by design verification tests. They suggested that

1Note that 100% identification will not be possible because of the focus
on datapath components. This is not a serious limitation as discussed in
Section V-D and Section VI.

these nodes could potentially be used to hide trojans and pro-
posed an architectural technique that eliminates such nodes
from the circuit and emulates their designed functionality
through software.2 Waksman et al. [30] proposed a set of
transformations that permute module inputs, the order in
which inputs are applied, and obfuscate reset sequences in
order to prevent Trojan activation. Both proposals assume
availability of RTL source and design verification tests for
the design being analysed.
Trojan detection through algorithmic reverse engineering

does not rely on any of these assumptions. Hence, it can
detect a wider range of malware, including, for example,
bugs/malware introduced by design automation tools. This
additional coverage comes at a cost, which is that traditionally
reverse engineering has been a labor-intensive process. We
show that fully algorithmic reverse engineering is both feasi-
ble and effective even for very large designs. A comparison of
the differences in assumptions of availability and threat mod-
els for the techniques discussed above is shown in Table 1.
This paper builds upon our past work in the area of algo-

rithmic reverse engineering in [13] and [26]. A detailed dis-
cussion of the differences between these past efforts and this
paper is deferred to Section VI-B.5. The problem of deriving
a gate-level netlist from a physical chip is outside the scope
of this work. This has been studied in [12], [19], [20], [27],
and [29]. Nohl et al. derive a gate-level netlist of an RFID
tag and examine it for cryptographic vulnerabilities [20].
Kömmerling et al. describe techniques for obtaining gate-
level descriptions of smartcard processors [12]. Tarnovsky
used electron microscopy and bus-level probing to reverse
engineer an Secure Infineon Processor which included mesh
shielding inserted in order to thwart reverse engineering [27].

B. SOLUTION OVERVIEW
In this subsection, we describe the assumptions and objectives
underlying this work and then provide an overview of our
solution.

1) ASSUMPTIONS
We tackle the problem of reverse engineering a gate-level
netlist under the following assumptions. First, we assume

2We note that this technique has been defeated [24].

64 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

that register transfer language (RTL) source code for the test
article being analyzed is not available. We also assume that
micro-architectural information as well as design-specific
information pertaining to the test article being analyzed is
also not available. We only assume availability of ‘‘datasheet-
level’’ information which usually consists of a high-level
description of the functionality of the test article and a
description of its input/output pin interface.

2) OBJECTIVE
Given these assumptions our target is to algorithmically
derive information about high-level components present in
the test article by analyzing the gate-level netlist.

3) DISCUSSION OF ASSUMPTIONS AND OBJECTIVES
In both the (a) trojan-detection and (b) intellectual property
infringement usage scenarios, our assumptions correspond to
an external analyst examining a test article to determine if it
(a) contains hardware trojans or (b) infringes relevant intel-
lectual property. Note that the analyst does not have access to
source code for the design. Therefore, traditional techniques
for trojan detection [2], [11], [31] are not applicable. Further-
more, the only plausible alternative to algorithmically assisted
reverse engineering is full manual inspection of the netlist.

In case the assumptions for trojan detection scenario are
weaker than ours, we note that our techniques are comple-
mentary to the other trojan detection techniques discussed
in the previous section. For example, when considering the
threat of trojans inserted in the RTL or by design automation
tools, analysis techniques like UCI [10] can be synergistically
applied along with algorithmic reverse engineering of the
gate-level synthesized netlist and correlating identified com-
ponents with those expected to be present. Note UCI itself
cannot detect trojans inserted by design automation tools.
Furthermore, all techniques studied in this paper rely on a
‘‘static’’ analysis of the netlist and do not consider informa-
tion derived from simulations. Combining these algorithms
with simulation-based ‘‘dynamic’’ analysis techniques will
likely yield interesting results because these approaches are
complementary.

Our algorithms focus on identifying datapath components.
The are three reasons for this design choice. First, any attack
model that is based on triggering malicious behavior through
a rare input sequence will necessarily involve some manipu-
lation of the datapath. In fact, as illustrated in Section V-D,
it is likely that this malicious logic will manifest as a col-
lection of datapath components such as counters, decoders
andmultiplexers. Thus identifying such components will help
an analyst quickly zero-in on problematic parts of the netlist.
Second, datapath components exhibit regularity and structure
and are amenable to algorithmic analysis. Finally, the major-
ity of the gates in processor-like circuits are in the datapath.
The focus on datapath components means that it will not be
possible to reverse-engineer 100% of the gates in the design.
However, as will be shown in Section V-D, this is not a major
limitation for detecting hardware trojans.

It is important to note that this work develops a set of algo-
rithms that aid trojan detection. By providing a human analyst
with an abstracted netlist containing high-level components,
it makes the job of the analyst much easier than if the analyst
were to individually examine hundreds and thousands of gates
and latches. The tool itself does not perform trojan detection.

4) SOLUTION
The objective of our work is to infer a useful high-level
description from an unstructured gate-level netlist. In par-
ticular, we focus on reverse engineering datapath elements
in digital circuits. Even when focusing primarily on the
datapath, reverse engineering is still a very hard prob-
lem because we are starting with a sea of gates for the
complete chip, including the datapath as well as the con-
trol logic, and it is not obvious how to go about finding
some meaningful subset of the gates/latches for algorith-
mic analysis. Hence, our approach integrates a number of
different techniques tackling different aspects of the prob-
lem. Figure 1 shows the techniques we introduce and their
inter-relationships.

FIGURE 1. Portfolio of the reverse engineering techniques
introduced in this paper. Superscripts refer to items in
our list of reverse engineering algorithms introduced by
this work. Algorithms 1–5 identify combinational modules
while algorithms 6–9 identify sequential modules.

Our strategy is to attack the problem in two stages. The
first stage identifies potential module boundaries using topo-
logical/functional analyses. The second stage functionally
analyzes potential modules to understand their behavior.
The reverse engineering algorithms introduced by this

paper are as follows.

VOLUME 2, NO. 1, MARCH 2014 65



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

1) We present a novel application of cut-based Boolean
matching to find replicated bitslices3 in the netlist. This
analysis helps us find circuit nodes that correspond to
functions such as 1-bit adders and 1-bit multiplexers.

2) We present algorithms that topologically analyze the
results of bitslice matching to aggregate multibit com-
ponents such as multiplexers, adders and subtractors.

3) Analyzing aggregated modules helps identify bits
which are operated upon simultaneously, allowing us
to infer words. These inferred words are then used in
our word propagation algorithm to generate additional
words.

4) Our module generation algorithm analyzes words
which are structurally connected to generate candidate
unknown modules. These are potential operators with
word arguments and results and are matched against a
component library using a Quantified Boolean Formula
(QBF) formulation.

5) We present an alternate strategy to infer combinational
modules like decoders using a BDD-based analysis of
nodes with common inputs.

6, 7) We present novel algorithms that identify word-level
registers, as well register array structures like register
files and RAM arrays using a BDD-based functional
analysis.

8, 9) We present algorithms to identify counters and shift
registers using topological analyses combined with a
satisfiability (SAT) checking formulation.

10) Modules inferred by the above-mentioned portfolio of
algorithms may ‘‘overlap’’, i.e., cover the same ele-
ments.4 These overlaps are resolved by formulating
an integer linear program (ILP) that selects a non-
overlapping subset of inferred modules that optimizes
a set of desired metrics.

The contributions of this paper include the reverse engi-
neering algorithms listed above as well as the analysis flow
shown in Figure 1.We also present a detailed evaluation of our
algorithms by experimenting with eight unstructured netlists,
details of which are shown in Table 2. The netlists marked
with a dagger (†) were obtained by synthesizing designs from
opencores.org. Results show that our inference algorithms
determine the functionality of more than 45% and up to 93%
of gates in the designs in a fully automated manner.

Furthermore, we present a case study of algorithmic
reverse engineering of a large highly-optimized system-on-
chip (SoC) design consisting of over 375,000 combinational
elements. We show a large design like this can be analyzed
through logic simplification and module partitioning. Our
results show that 68% of the gates left after simplification
in this SoC were covered by our inference algorithms. We
believe our work is the first effort to algorithmically reverse
engineer the majority of the gates in a design of this scale.

3We define a bitslice as a Boolean function with one output and a small
number of inputs that is replicated to construct multibit datapath operators.

4We use the term element to refer to gates, latches and other circuit nodes
in the input netlist.

TABLE 2. Netlists used in experiments.

A final important contribution of our work is a case study
of how our algorithms could aid the detection of hardware
trojans.We inject trojans into two test articles and discuss how
algorithmic reverse engineering helps a human analyst detect
this malicious circuitry.
The rest of this paper is organized as follows. Section II

describes our algorithms for identifying combinational com-
ponents. Section III describes our algorithms for identifying
sequential components. Section IV describes how possibly
conflicting inference results from different algorithms can
be resolved to produce the final set of inferred modules.
Section V presents the experimental evaluation of these algo-
rithms. Section VI discusses limitations and avenues for fur-
ther analysis. Section VII provides some concluding remarks.

II. IDENTIFYING COMBINATIONAL MODULES
The section describes algorithms to identify fully combina-
tional modules. Our first algorithm is based on the obser-
vation that many datapath elements consist of replicated
bitslices connected in a specific topology and is described in
Section II-A and Section II-B. We then present algorithms
for identifying word-level modules in Section II-C and
Section II-D. Finally, Section II-E presents a third attack on
combinational modules using a specific topological property.

A. BITSLICE IDENTIFICATION
The goal of bitslice identification is to identify all nodes
in the circuit that match functions from a bitslice library.
For instance, we might be interested in finding all nodes
that match the full adder carry function f (a, b, c) = ab +
bc+ ca, this might help identify multibit adders. We adopt a
functional matching approach, which matches based on the
function implemented by a set of gates instead of matching
structural patterns. This uses cut-enumeration and Boolean
matching, which was initially introduced for technology
mapping [3], [4].
A feasible cut of a circuit node G is defined as a set of

nodes in the transitive fan-in cone of G such that a consistent
assignment of truth values to each node in the set completely
determines the value of G [3]. A cut is said to be k-feasible
if it has no more than k inputs. The trivial cut {G} is always
k-feasible. The set of k-feasible cuts for a gate is recursively
computed by enumerating the union of all k-feasible cuts of
the gate’s inputs such that this union has k or fewer inputs.
Our tool enumerates all 6-feasible cuts. We found that

the average number of 6-feasible cuts per gate is between

66 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

15 and 35. The number of cuts for k > 6 is significantly
higher.5 Although we are restricted to bitslices with six or
fewer inputs, this is not a major limitation as most common
bitslices have less than six inputs; e.g., a full adder bitslice
has 3 inputs.

Once all cuts are identified, they are grouped into
equivalence classes using permutation-independent Boolean
matching. For example, nodes matching the function
f (a, b, c) = ab + c and nodes matching f (a, b, c) = bc + a
are grouped into the same class. Each equivalence class may
match a known library function.

B. AGGREGATION TO MULTIBIT COMPONENTS
Now that we have all the nodes that match a particular func-
tion, the next step is to look for matching nodes connected
in interesting patterns. Aggregating replicated bitslices which
are connected in specific patterns is our first technique for
identifying combinational modules. The following subsec-
tions expand on our aggregation algorithms.

1) COMMON SIGNALS IN REPLICATED BITSLICE
This algorithm considers all bitslices that match a particular
function and groups them using common input signals. For
instance, consider the function that represents a 2:1 multi-
plexer: f (a, b, s) = sa + ¬sb. Here we group all match-
ing bitslices which have a common6 select signal (s in this
example). Common signal aggregation finds 59 decoders and
140 multiplexers in the RISC FPU test article.
Besides aggregating functions in the bitslice library such as

multiplexers and decoders, we can also aggregate unknown
functions connected by a common signal to generate can-
didate unknown modules. These modules may be analyzed
either by a human analyst or by a permutation and phase
independent matching algorithm such as [18].

2) PROPAGATED SIGNAL(s) IN REPLICATED BITSLICES
In this case, the algorithm considers all bitslices matching a
particular function such that the output of one bitslice is the
input of another (e.g., carry chain in a ripple carry, parity tree).
Propagated signal aggregation finds 37 adders/subtractors
and 10 parity trees in the RISC FPU test article.

C. WORD IDENTIFICATION AND WORD PROPAGATION
Aggregated bitslices tell us about circuit nodes that are oper-
ated upon simultaneously. These nodes are likely to form part
of same word. Our tool groups the bits that are inputs/outputs
of aggregated modules into ‘‘word’’ data structures.

1) SYMBOLIC WORD PROPAGATION
Once somewords are identified, more words can be generated
by propagating them across gates. The idea is, given awordw,
find conditions under which its value is propagated to a new
word w′, for every possible value of w.

5These results are in line with published work on cut enumeration [3].
6A simple structural analysis is used to find functionally equivalent nodes.

Consider the circuit in Figure 2. Note that the circuit
behaves as a selector between the bitwise negation of the
word u1, u2, u3 and the bitwise negation of the word v1, v2, v3
depending on the value of c. Hence, the negated value of
u1, u2, u3 gets propagated to w1,w2,w2 if c = 0, and the
negated value of u1, u2, u3 gets propagated to w1,w2,w2,
otherwise. These are the kind of claims produced by the word
propagation algorithm.

FIGURE 2. Example: word propagation.

For efficiency reasons, we use symbolic simulation, which
allows consideration of all possible values of w simultane-
ously in a single run. Similar to Roth’s D-calculus [22], we
redefine functions of logic gates in the circuit operating on
the expanded domain {0, 1,D, D̄,X}, where D represents
a symbolic value in {0, 1}, D̄ is the negation of D, and
X represents an unknown value. Some examples of sym-
bolic evaluation are: and(D, 1) = D, and(D, 0) = 0,
and(0,X ) = 0, not(X ) = X , and not(D) = D̄.
Our word propagation algorithm follows a ‘‘guess and

check’’ approach. Given an initial word w, the guessing stage
consists on finding a set S of potential ‘‘target words’’ for the
propagation. Such set S is computed by grouping the outputs
of the gates driven by the signals in w by gate type and port
they connect to. Then, for each target word w′ ∈ S, a set
C of control wires is computed as the set of wires lying in
the intersection of the fanins (up to a small depth k) of the
gates whose output is in w′. The checking stage consists on
running several symbolic simulations of the local netlist that
is relevant to the propagation that is being checked. In such
simulations, the inputs of such local netlist are initialized as
follows.
• Each bit of w is set to the symbolic value D.
• For each combination of 3 wires taken from the set of all
control wires, all possible binary values are evaluated.

• The rest of the inputs of the local netlist are
assigned X .

VOLUME 2, NO. 1, MARCH 2014 67



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

A simulation with a particular partial assignment σ to the
control wires succeeds if all wires in the target word evaluate
to either D or D̄. In that case, w propagates to w′ under
σ and w′ can be tested for further propagation.
An analogous approach in which w′ is guessed among

the structural predecessors of w and it is checked whether
w′ can be propagated to w allows to test for backward
propagation.

D. MODULE IDENTIFICATION AND MATCHING
The two main limitations of bitslice identification are:
(i) we are limited to bitslices with a maximum of 6 inputs
due to the k ≤ 6 limitation on cut-enumeration and (ii) it
is difficult to identify combinational structures that do not
have a clean interconnection pattern. Our second approach
overcomes these limitations by constructing entire modules
and then matching them against a component library.

The intuition here is that since datapath circuits oper-
ate on word inputs and produce word outputs, cutting out
portions of the circuit that exist between words may find
interesting candidate modules. Our module identification
algorithm identifies combinatorial candidate unknown mod-
ules operating on words and checks equivalence against a
set of predefined reference modules implementing common
operations such as addition, subtraction, boolean operations,
and shifting/rotation.

For example, consider words w1,w2,w, and the largest
combinatorial sub-circuit C having w1 and w2 as inputs and
w as output. Additionally, C may have additional inputs,
to which we refer as side inputs. Let Y be the set of all
side inputs of C . Due to optimizations introduced during the
synthesis process or simply a design decision, the function
implemented by C might not be unique since the values of
some of the wires in Y determine the operation implemented
by C , e.g, addition or subtraction. For this reason, given a
reference module C ′ we model our equivalence checking as a
2QBF7 satisfiability question: is there any value for the wires
in Y such that, for every value of the inputs w1,w2, C and C ′

give the same output? More concretely, we construct a miter
formula 8(X ,Y ) from C and C ′ by inserting a comparator
between their respective outputs. Then, using a state-of-the-
art QBF solver, we find values for the side inputs in Y for C
to match the function implemented by C ′. This is illustrated
in Fig. 3.

The module matching algorithm was able to identify the
8-bit ALU performing addition, subtraction, rotation and
negation in the oc8051 test article. Each operation is per-
formed for a different setting of the side inputs, so this module
cannot be detected through bitslice aggregation. The ability to
create and identify word-level modules was key here.

E. ANALYSES BASED ON COMMON SUPPORT
In this section we introduce an algorithm that detects mod-
ules that do not necessarily have word inputs or outputs or

72QBF is the problem of evaluating a Quantified Boolean Formula (QBF)
with two levels of quantification [21].

FIGURE 3. QBF formulation showing Miter construction.

consist of small replicated bitslices. This analysis technique
can be used to detect combinational modules with the specific
property that each of the outputs of the module depend on the
same set of inputs.
Examples of modules which satisfy this property are

decoders, demultiplexers and population counters. Note that
modules like adders and multipliers do not satisfy this prop-
erty. Output bit 0 of an adder only depends on the two least
significant bits of the addend and the augend, while output
bit k of the adder depends on the k least significant bits of the
addend and the augend respectively.

1) IDENTIFYING OUTPUT NODES WITH IDENTICAL
SUPPORTS
Consider the full combinational fanin cone of a combinational
node in the circuit. The inputs of this cone are the chip inputs
and latch outputs. Suppose two combinational nodes in the
circuit are computed using the same set of circuit nodes, it is
clear that the inputs of the full combinational fanin cone of
these nodes will also be the same.
Therefore, we can group nodes into equivalence classes in

the following way. Two nodes are placed in the same class iff
the inputs of their full combinational fanin cones are the same.
These equivalence classes can computed efficiently using a
union-find data structure and give us candidate output nodes
with the property that they are fully determined by the same
set of inputs.

FIGURE 4. Nodes with common support.

68 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Consider the example shown in Figure 4. Nodes z1 and z2
will be grouped in the same equivalence class because they
are completely determined by the same set of chip inputs
and latches: x1 . . . x9. Such nodes (z1 and z2) will form the
outputs of the candidate module.

However, to determine the module boundary we still need
to find the inputs of the module, i.e., nodes y1 and y2 in
Figure 4. The module boundary is given by the set of nodes
in the full combinational fanin cone of the candidate out-
puts which are not present in the intersection of each of
these fanin cones. It is visually clear from the figure that
intersection of the combinational fanin cones contains only
module 1, so the nodes in the fanin cone which are not
present in the intersection leaves us with correct module
boundary.

2) VERIFYING MODULE PROPERTIES
We use a BDD-based formulation to verify the properties of
the modules generated by the algorithm in Section II-E.1.

To verify whether a potential module is a decoder or demul-
tiplexer, all that needs to be done is to prove that each output
is satisfiable and that no two outputs of the module are simul-
taneously high.8 This can be verified in a straightforward
manner using a BDD-based analysis.

A population counter can be detected using a similar algo-
rithm which uses BDD-based matching to compare the func-
tion of each output node against the function representing
each output bit of a population counter.9

F. POST-PROCESSING OF COMBINATIONAL MODULES
Modules generated by the inference algorithms described in
this section are subject to a post-processing step that ‘‘fuses’’
certain types of modules to generate larger modules. This
increases the level of abstraction of the inferred modules and
makes the inference output easier to understand. For example,
2:1 muxes, 3:1 muxes and 4:1 muxes which are adjacent to
each other are fused to form larger n:1 muxes. Similarly,
decoders whose outputs drive the select inputs of muxes are
fusedwith themuxes to form routing structures.Module types
which can be fused in this manner are said to be compatible.

Module fusion is performed by first constructing a mod-
ule fusion graph. The nodes in the graph are modules and
an edge between Module A and Module B exists in the
graph if and only if all the outputs of module A are inputs
of module B and respective module type are compatible.
Once the module fusion graph is constructed, connected com-
ponents in the graph are fused to form a larger combinational
module and the resulting module is added to collection of
inferred modules. The constituent modules which were the
‘‘inputs’’ of the fusion are not eliminated at this stage. The
overlap elimination algorithm (see Section IV) determines

8Assuming the decoder outputs are active-high. The case when the
decoders outputs are negated is handled using a symmetric algorithm.

9Although we verified that the population count algorithm works on
artificially constructed circuits with popcnt modules in them, we could not
find any population counters in the test circuits we experimented with.

which of these modules (fused vs. constituents) is included
in the output.

III. IDENTIFYING SEQUENTIAL COMPONENTS
A reverse engineering solution must identify commonly
occurring sequential components such as RAM arrays, reg-
ister files, counters and shift registers because these cover a
significant number of gates in circuits and also give insight
into functionality of the circuit. The challenge here is again
in finding meaningful module boundaries for these compo-
nents given the unstructured netlist. Our strategy is to devise
topological analyses to find circuit nodes that are potential
counters, RAM outputs or shift registers. We then formulate
functional analyses using SAT and BDDs that verify cor-
rectness of the ‘‘guess’’ made by the topological analysis.
The rest of this section presents algorithms to identify RAM
arrays/register files, counters, shift registers and multibit
registers.

A. COUNTER IDENTIFICATION
The specific problem in counter identification is to identify
sets of latches in the unstructured netlist that behave like
counters. The difficulty here is twofold. First, given a set of
latches that we suspect to implement a counter, we need a
functional analysis that can verify its properties. Second, we
need an efficient algorithm to enumerate candidate counters.
Simply considering all subsets of latches is computationally
infeasible.
Based on this observation, our analysis is performed in two

stages. First, potential counters are generated by finding sets
of latches whose interconnections match the counter topology
shown in Figure 5. The intuition for this topology is that
bit i of a n-bit up counter toggles when the lower order bits
1 . . . i− 1 are all high. Therefore, there needs to be a combi-
national path from the outputs of these latches to the input of
bit i, leading to the topology shown in the figure.

FIGURE 5. Latch-to-latch information flow in a counter: each
latch in the counter is driven by the latches corresponding
to the lower-order bits.

The next step uses a SAT-based functional analysis to verify
whether the functions at the inputs of the latches in the counter
satisfy the following conditions: (i) each latch toggles either
when all the low-order latches are 1 (up counter) or all the
low-order latches are 0 (down counter) and (ii) the conditions
that control when the counter is enabled/reset are the same for
all the bits of the counter.

VOLUME 2, NO. 1, MARCH 2014 69



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

1) TOPOLOGICAL CHECK USING THE LCG
The latch connection graph (LCG) is an unweighted graph
G = (V ,E) which formalizes the notion of information flow
between latches. The vertices of the graph (V ) are the latches
and flip-flops in the netlist being analyzed. A directed edge
(v1, v2) ∈ E iff there is a combinational path from the output
of latch v1 (its Q node) to the input of latch v2 (its D node).

Given the LCG, we find subgraphs which have the topol-
ogy shown in Figure 5. More precisely, given the LCG G =
(V ,E), we find ordered sets of nodes Vc = {v1, . . . , vk}, such
that Vc ⊂ V and ∀vi, vj ∈ Vc : (vi, vj) ∈ E iff i ≤ j.

2) VERIFYING COUNTER PROPERTIES
We now devise a functional analysis that verifies that the
‘‘candidate’’ counter found by the topological analysis has the
properties of a counter. First, let us formalize the behavior of
an up counter as follows.10

ci = ¬r ∧ e ∧ (q1 ∧ q2 ∧ · · · ∧ qi−1) ∧ ¬qi ∨

¬r ∧ e ∧ (¬q1 ∨ ¬q2 ∨ · · · ∨ ¬qi−1) ∧ qi ∨

¬r ∧ ¬e ∧ qi ∨ s (1)

In the equation above, ci determines the next state of bit i
of an n-bit counter. r is the function that resets the counter,
s is the function that sets its value high, e is the count-enable
function, and q1 . . . qi are the current values of latches 1 . . . i
of the counter.

Equation (1) says that bit i toggles when all the lower order
bits (1 . . . i−1) are high, the counter is enabled and not being
reset. The bit retains its value when the counter is enabled,
not reset but one of the lower order bits is zero. The counter
also holds its value when it is not reset and not enabled. Bit i
is pulled high if the set function evaluates to 1. Note since we
have left the functions r , e and s unspecified, ci is actually a
family of functions and not a specific Boolean function.

Now consider the Boolean function defined by the full
combinational fanin cone for each latch in the candidate
counter. Let this function be denoted by di where i ranges
across the bits of the counter. We compute the following
cofactors from di.11

fi = cofactor(di, q1 ∧ q1 ∧ · · · ∧ qi−1 ∧ ¬qi)

gi = cofactor(di, q1 ∧ q1 ∧ · · · ∧ qi−1 ∧ qi)

hi = cofactor(di, (¬q1 ∨ · · · ∨ ¬qi−1) ∧ qi)

The insight here is that if the function di is compliant with ci
from Equation (1), then the functions fi, gi and hi will reduce
to Equation (2).

fi = (¬r ∧ e) ∨ s

gi = (¬r ∧ ¬e) ∨ s

hi = ¬r ∨ s (2)

10For clarity of presentation the rest of this section focuses on up counters.
Our implementation uses symmetric techniques to detect down counters.

11Given Boolean functions f and g, cofactor(f, g) is the function obtained
when f is evaluated over the restricted domain specified by g = 1.

Now, the functions r , s and e should be the same for all
the bits in the counter. Hence, fi, gi and hi must also be
equivalent. Therefore, we can determine that a set of latches
is not a counter if the SAT solver finds that the functions fi, gi
and hi are not equivalent for all i.
Five counters were found in the oc8051 test article.

B. SHIFT REGISTER IDENTIFICATION
As with counters, our goal here is to identify sets of latches
that form shift registers given an unstructured netlist. The
shift register identification algorithm is similar to the counter
identification algorithm in that it uses a topological check and
a SAT formulation except that the topology and verification
conditions differ.

1) TOPOLOGICAL CHECK
The topological check for shift registers uses a pruned version
of the latch connection graph (LCG) that we call the single
path latch connection graph (SPLCG). As in the LCG, the
nodes in the SPLCG are the latches and flip-flops in the
netlist. However, the edge v1 → v2 exists in the SPLCG iff
there is exactly one combinational path from the output of
latch v1 to the input of latch v2.
The topological check for unidirectional shift registers is

as follows. Given the SPLCG G = (V ,E), we find ordered
sets of nodes Vs = {v1, v2, . . . , vk} such that Vs ⊂ V and
∀vi, vj ∈ Vs : (vi, vj) ∈ E iff j = i + 1. In other words, we
are searching for chains of latches connected by exactly one
combinational path between each latch and its successor.

2) VERIFYING SHIFT REGISTER PROPERTIES
We model the family of functions representing the next-
state function of bit i of a shift register using the following
equation.

si = ¬r ∧ (e ∧ qi−1 ∨ ¬e ∧ qi) ∨ s (3)

r, s and e are the reset, set and enable functions respec-
tively. qi is the output of the ith latch of the shift register.
Suppose di is the Boolean function determined by the full
combinational fan-in cone of latch i of the supposed shift
register. As in the counter analysis, we consider the following
cofactors of di.

fi = cofactor(di, qi−1 ∧ ¬qi)

gi = cofactor(di,¬qi−1 ∧ qi)

If di is complaint with si we will have:

fi = ¬r ∧ e ∨ s

gi = ¬r ∧ ¬e ∨ s

Therefore, the functional check verifies that the functions
fi and gi are identical for each bit of the shift register.

3) SHIFT REGISTER AGGREGATION
Shift registers may consist of multiple bits shifting in tandem
from one set of latches to another. The basic algorithm finds

70 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

each cascading chain of latches as separate shift registers.
To aggregate shift registers, first we group shift registers by
length. Next, we form equivalence classes within each group
where shift registers with the same set, reset and shift-enable
functions are classified together. Finally, each equivalence
class is output as a multibit shift register module.

Seven shift registers were found in the RISC FPU test
article.

C. IDENTIFYING RAMs
This section targets small RAM arrays and register files. Our
objective here is to find the latches/flip-flops that form the
RAM, associated logic that reads data (called ‘‘read-logic’’)
and logic that writes data into the latches (called ‘‘write-
logic’’).

1) IDENTIFYING READ LOGIC
The intuition behind identifying the read-logic is that it forms
a set of trees with the RAM cells as leaves of the tree and the
read outputs as roots.We use amarking algorithm to find such
trees. Initially, the algorithm marks all latches in the netlist.
Subsequently, it marks all gates which satisfy the following
conditions: (i) at least one of the gate’s inputs is marked and
(ii) the gate has only one fanout. This is repeated until no new
nodes are marked.

2) VERIFICATION OF READ BEHAVIOR
The next step is a functional analysis of the marked nodes.
A BDD is constructed for each marked node in terms of the
latches, inputs and unmarked nodes in the circuit. Among the
inputs of this BDD, we assume that those which are latches
are storage nodes (li) while the remaining are the read address
(si). We then verify the following properties.

1) If y = f (s1, . . . , sk , l1, . . . , ln) then y = li or y =
¬li for every value of s1 . . . sk . In other words, each
select input propagates exactly one of the latches to the
output.

2) Every latch node is propagated to the output: y = li or
y = ¬li for all i and appropriate s1 . . . sk .

Latches and nodes which pass these checks are identified as
the RAM array and its corresponding read-logic.12

3) IDENTIFYING WRITE LOGIC
The logic that controls RAM writes is shown in Figure 6. It
consists of decoders driving 2:1 muxes that select between
the write-data and the latch output. The muxes drive the
latch inputs and their select signal is the write-enable signal,
denoted by wei. Once the latches that comprise the register
file are known, cut matching can give us these muxes. Our
algorithm then computes the BDDs for each write-enable
signal using the intersection of combinational fan-in cones.

12The analysis handles each bit output of the array independently so sets
of latches with common select inputs (read addresses) are aggregated to form
an array with multibit inputs/outputs.

The following properties are then verified13:

FIGURE 6. RAM write-logic: wei is the write-enable signal
for word i and wdi is the data to be written to word i.

1) Each write-enable signal is satisfiable: wei 6= 0.
2) No two write-enable signals are simultaneously satisfi-

able: wei ∧ wej = 0 if i 6= j.

If these properties are satisfied, the set of gates that com-
prise the latch inputs, muxes and common support nodes are
identified as the write-logic.14

One RAM structure, a 32x32b register file with two read
ports and 1 write port, was detected in the RISC FPU.

D. IDENTIFYING MULTIBIT REGISTERS
We use the term multibit register to denote a set of 1-bit
registers whose values are updated in tandem.
One example of a multibit register is shown in Figure 7.

Each cycle either one of three different values: v1[7:0],
v2[7:0] or v3[7:0] or the current value of the register q7 . . . q0
is assigned to the register based on the conditions c1, c2
and c3. A structure of this form can be detected using bitslice
matching and aggregation to find the multibit multiplexer and
then examining the fanouts and inputs of the multiplexer to
detect the sequential elements around it.15

FIGURE 7. Register synthesis illustration.

39 multibit register elements were found in the
RISC FPU.

13This presentation assumes the write-enable is signal is active high, but
it could also be active-low in which case the properties are modified appro-
priately. We determine the polarity of the write-enable signal by examining
which of the mux inputs is connected to the latch output.

14We note that the analysis is unable to determine the ordering of the bits
in inputs and outputs of the RAM.

15As in the case of the RAM identification, the analysis is unable to
determine the ordering of the bits in the multibit register. In some cases,
we were able to infer the ordering of bits by seeding the symbolic word
propagation algorithm with ordered words and checking whether one of the
propagated words matched the register outputs. Note ordered words can be
inferred from aggregation algorithms for adders and subtractors.

VOLUME 2, NO. 1, MARCH 2014 71



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IV. OVERLAP RESOLUTION
The inference algorithms described in this paper operate inde-
pendently. Therefore, it is possible that a particular gate in
the netlist under analysis might be placed in multiple inferred
modules. For example, in the oc8051 design, the RAM read-
array consists of many muxes identified by the bitslice aggre-
gation algorithms and the RAM analysis algorithm.

One idea would be to output all inferred modules and
allow a human analyst to pick and choose the ‘‘correct’’ non-
overlapping description of the circuit. While this may be
a feasible option for small circuits, for some of the larger
circuits, the inference tool produces several tens of thousands
ofmodules. It would be infeasible for a human to look through
all these modules and select a non-overlapping subset.

In this section, we investigate algorithmic techniques for
generating a non-overlapping subset of inferred modules
given the output of the portfolio. In particular, we would
like to generate non-overlapping subsets that either (i) max-
imize coverage (measured by number of gates identified) or
(ii) minimize the number of inferred modules while meeting
a coverage target. The former objective is desirable because
it attempts to identify as many gates as possible. The latter is
interesting because we expect that an inference output with
fewer modules while meeting the required coverage target
would be easier to understand from a human analysts’ point
of view.

A. BASIC FORMULATION OVERVIEW
At a high-level, our solution involves formulating a binary
integer linear program (BILP; sometimes called a Zero-One
ILP) that selects a non-overlapping subset of modules that
optimizes for the desired target metric. We describe the for-
mulation of the ILP in the following subsection.

1) ILP VARIABLES
The basic formulation requires one binary variable for each
inferred module. Suppose there are a total ofM modules, then
the formulation has M binary variables x1, x2, x3, . . . , xM .
Setting variable xi = 1 denotes that module i will be selected
for output, while xi = 0 means that module i will be elided
from the output.

2) CONSTRAINTS DESCRIBING OVERLAPS
Consider an arbitrary element gk from the netlist being ana-
lyzed. Suppose this element gk is covered by inferred mod-
ules k1, k2, . . . , kl . To represent the requirement that element
gk can be covered by only one of these modules in the final
output, we introduce a constraint of the following form.

xk1 + xk2 + · · · + xkl ≤ 1

There are as many constraints as there are elements in the
netlist that are covered by multiple modules.

3) OBJECTIVE FUNCTION
The objective of maximizing coverage is encoded in a
straightforward manner. Let the ‘‘size’’ (i.e., the number of

elements covered by) module i be Si. Then the objective
function is:

maximize
M∑
i=1

xi · Si

4) ALTERNATIVE FORMULATION: MINIMIZE INFERRED
MODULES GIVEN COVERAGE CONSTRAINT
This formulation minimizes the number of output modules
while introducing a new constraint that ensures that a certain
coverage target is met.We retain the same variables as the pre-
vious formulation (described in Section IV-A.1) and use the
same constraints to encode the selection of non-overlapping
modules (see Section IV-A.2). The objective is as follows.

minimize
M∑
i=1

xi

We also need to introduce a new constraint that encodes the
fact that the coverage target of Ct elements must be met. This
is done by adding the following constraint to the ILP.

M∑
i=1

xi · Si ≥ Ct

B. SLICEABLE FORMULATION
To motivate the need for the ‘‘sliceable’’ ILP formulation
consider the example shown in Figure 8. One box shows a
5-bit 2:1 MUX aggregated using the common select signal.
This box partially overlaps with a RAM module because
two of the bitslices in the 2:1 MUX are also included in the
RAMmodule. Overlaps such as this occur because the bitslice
aggregation algorithms are ‘‘greedy’’ in the sense that these
inferred modules are created with the maximum number of
bitslices matching the common select signal.

FIGURE 8. Illustration of need for the ‘‘sliceable’’ formulation.

The basic formulation uses a single binary variable to either
select or discard an inferred module. Therefore, the formu-
lation will result in either the 2:1 MUX or the RAM being
included in the final output but not both. This is suboptimal
because there is a third option. The 2:1 MUX can be ‘‘sliced’’
to include the 3 bitslices that don’t overlap with the RAM
and then the entire RAM can be included. In this section
we develop an ILP formulation that allows modules to be
‘‘sliced’’ in this manner.

72 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

1) ILP VARIABLES
Inferred modules are grouped into two categories. Modules
like muxes and decoders which can be split up into indepen-
dent bitslices are considered ‘‘sliceable’’. If such amodule has
n slices, it is modelled in the ILP with n+ 1 binary variables:
xi0 , xi1 , . . . , xin . Variable xij where j ≥ 1 represents whether
slice j of module i is selected for output. Variable xi0 is a
special variable introduced for technical reasons. It represents
where module i itself (i.e., any slice in module i) is selected
for output. In the example shown in Figure 8, suppose the
5-bit multiplexer is module i, then MUX bitslices 1, 2, 3, 4
and 5 will be represented by variables xi1 , xi2 , xi3 , xi4 and xi5
respectively.

Modules which are not ‘‘sliceable’’, for example: counters
and RAMs, are represented as before with a single binary
variable xi which determines whether the entire module is
selected for output or discarded.

2) CONSTRAINTS DESCRIBING OVERLAPS
The formulation in Section IV-A.2 expressed the fact that if
a gate is covered by l different modules, no more than one of
these modules could be selected for output. Here, we would
like to express the same but at the finer granularity of slices
rather than modules. For this it is necessary to assign the
elements included in a module to its component slices.

Define the following function Var(gk , i) that maps an ele-
ment gk contained in module i to the ILP variable that repre-
sents the slice that gk is contained in.

Var(gk , i) =


xi if module i is unsliceable
xij if gk is contained only in

slice j of module i
xi0 otherwise

The intuition here is that for a sliceable module, elements
which are contained in exactly one slice are mapped to
that slice. Elements which are contained in more than one
slice, are mapped to the variable xi0 which is the special
variable that represents the entire module. Returning to the
example in Figure 8, the gates which are inside the boxes
labelled ‘‘MUX bitslice j’’ will be mapped to variable xij . The
inverter however, is ‘‘part of’’ all bitslices, so it is mapped
to xi0 .

As before, suppose element gk is covered by inferred mod-
ules k1, k2, . . . , kl . We add the following constraint.

Var(gk , k1)+ Var(gk , k2)+ · · · + Var(gk , kl) ≤ 1

Consider a gate that is contained within the box labelled
‘‘MUX Bitslice 4’’ in Figure 8. The specific constraint intro-
duced by a gate inside ‘‘MUX Bitslice 4’’ will be xi4+xj≤1.
This tells the solver that either bitslice 4 or the RAM can be
selected for output but not both. Unlike in the basic formula-
tion, we are not restricting the selection of the other bitslices
in the MUX.

3) SLICE-RELATED CONSTRAINTS
For each sliceable module, wewould like to specify that if any
individual slice is selected, gates that are common to more
than one slice are also selected. This leads to constraints of
the following form.

forall 1 ≤ j ≤ n: xi0 − xij ≥ 0

In the notation above, module i has n slices and is modelled
in the ILP using the variables xi0 , xi1 , . . . , xin .

We would also like to specify that each module contains
a minimum number of slices to avoid creating very small
modules. This is done using a constraint of the form:

n∑
j=1

xij − MinSlices · xi0 ≥ 0

n is the number of slices in module i.16 All results are
shown in this paper are with MinSlices = 2.

4) OBJECTIVE FUNCTION
The objective function to maximize coverage is similar to that
presented in Section IV-A.3 with the difference that we have
to count ‘‘sizes’’ on a per-slice basis. Define the size function
as follows.

Size(x) =
∣∣∣{gk | Var(gk , i) = x for some i

}∣∣∣
Clearly, Size(x) counts the number of elements covered

by the variable x. Given Size(x) the objective function can
be derived in a straightforward manner by weighting each
variable with its corresponding size.

maximize
∑

variable x

x · Size(x)

Returning to the example in Figure 8, the solver can maxi-
mize coverage by setting xi0 , xi1 , xi2 , xi3 and xj to 1 and xi4 and
xi5 to zero. This satisfies all the constraints we have described
and selects bitslices 1, 2 and 3 of the MUX and the entire
RAM.

5) ALTERNATIVE FORMULATION
The formulation that minimizes the number of inferred mod-
ules while meeting the coverage target Ct again requires the
addition of the following constraint.∑

variable x

x · Size(x) ≥ Ct

The following function returns the representative vari-
able for a module i. The representative variable determines
whether a module is selected for output.

rep(i) =

{
xi if module i is not sliceable
xi0 if module i is sliceable

16Note adding the constraint
∑N

j=1 xij ≥ MinSlices is incorrect. This
requires every module to haveMinSlices slices selected. What we want is: if
a module is selected, it must have at least MinSlices slices in it.

VOLUME 2, NO. 1, MARCH 2014 73



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

TABLE 3. Coverage results.

In the example shown in Figure 8, the representative vari-
ables for the 5-bit multiplexer and RAM are xi0 and xj respec-
tively.

Assuming the total number of modules is M and that they
are numbered from 1 toM , the objective function is now given
by the following equation.

minimize
M∑
i=1

rep(i)

V. EXPERIMENTAL RESULTS
We now present a detailed evaluation of our algorithms.

A. METHODOLOGY
We developed an inference tool using the C++ and
Python programming languages that implement the algo-
rithms described in this paper. The tool takes as input a syn-
thesized verilog netlist, analyzes it and outputs an abstracted
netlist with the inferred components. The tool uses the CU
Decision Diagram (CUDD) Package version 2.4.2 for the
BDD-based analyses [23], and MiniSat version 2.2 for sat-
isfiability checking [6]. DepQBF [16] was used as the QBF
solver and IBM CPLEX version 12.5 was the ILP-solver.

Experiments were performed on an Intel R©Xeon R©E31230
CPU clocked at 3.20GHz with 32 GB of RAM. One set of
results are shown for eight netlists. Details of these netlists
are shown in Table 2. All the designs were synthesized using
an IBM/ARM cell library for a 45nm SOI process. This paper
also shows inference results on a large highly-optimized
SoC design consisting of more than 375,000 combinational
elements. A case study describing our analysis of this test
article is given in Section V-C. Finally, we describe a case
study where we inject hardware trojans into two of the test

articles from Table 2 and discuss how our algorithms would
aid an analyst detect these trojans.

B. SUMMARY OF RESULTS
Table 3 shows the modules identified and overall coverage
obtained using our inference algorithms. Coverage is mea-
sured as a percentage of gates in the design which are covered
by inferred modules. The table also shows information about
the netlists being analyzed, the number of inferred modules
of various types and the execution time of the tool.
For each test article, we show two rows. The white row

shows the number of modules obtained before overlap reso-
lution. Thismeans that for the results shown in thewhite rows,
each gate/flip-flop/latch in the test article may be placed into
multiple different inferred modules. These results are directly
comparable to the results presented in [26]. The shaded rows
show the results after overlap resolution (Section IV) has been
performed. In this case, each gate/latch/flip-flop is placed in
atmost one inferredmodule. The process of overlap resolution
necessarily involves a small loss in coverage but we see from
the results shown that the loss is quite small.
For the three biggest netlists, coverage is above 70% and

reaches up to 93% for the 16-bit MIPS CPU. These netlists
all have a large number of replicated bitslices in the data-
path which are captured well by the bitslice identification
and aggregation algorithms. In contrast, the smaller netlists
have a significant fraction of gates devoted to irregular con-
trol logic, which is hard to identify in a fully automated
solution.
Both the execution time and memory requirements posed

by the analysis tool are very reasonable. The maximum exe-
cution time among this set of designs is a little more than three
minutes and the maximum resident set size is 4.1GB. The

74 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

most computationally-expensive algorithm in our toolbox is
the counter analysis.

1) SLICEABLE VS. BASIC ILP FORMULATION
Table 4 compares the basic ILP formulation (Section IV-A)
with the sliceable ILP formulation (Section IV-B). Recall that
the basic formulation can only select or discard an entire
module, while the sliceable formulation can select or discard
a subset of the bitslices in a multibit module. We expect that
the sliceable formulation will always have the same or better
coverage than the basic formulation. However, the trade-off
here is again that the sliceable formulation will somtimes tend
to choose a few smaller modules over one bigmodule. Results
in Table 4 are in keeping with these expectations.

C. CASE STUDY 1: ANALYSIS OF BigSoC TEST ARTICLE
We present a case study of algorithmic reverse engineering
of large, realistic SoC. This SoC consists of 375090 combi-
national elements, 34318 latches and 62 and 94 inputs and
outputs respectively. We describe the three part strategy we
used to analyze this design in the rest of this subsection.17

Besides the gate-level netlist, we were also given a datasheet
for the SoC. The datasheet listed the seven constituent cores
of the SoC and provided a brief description of the high-level
functionality of each core.

1) CIRCUIT SIMPLIFICATION
The SoC in its raw form contains many redundant combina-
tional elements such as delays, buffers and paired inverters
which were inserted presumably for electrical reasons. These
elements result in the inference of many functionally equiv-
alent modules with slightly different module boundaries and
adversely affect computational performance and scalability.
Therefore, our first step was to perform structural logic sim-
plification and eliminate buffers, delays, paired inverters and
a few other structurally equivalent gates. This reduced the
number of combinational elements in the SoC from 375090
to 168730, a reduction of about 55%!

TABLE 4. Comparing the sliceable and basic formulations.

2) PARTITIONING BY RESET TREE
Even after logic simplification, we found that the computa-
tionally expensive analysis algorithms - counter and shift reg-
ister detection - timed out on the complete design. Although

17The generic name ‘‘BigSoC’’ is used for confidentiality reasons.

these inferred modules are small, they are important in gain-
ing insight into the working of the design. Therefore, the
second step in our analysis of the SoCwas to improve analysis
scalability by partitioning the SoC into its constituent cores.
The datasheet of the SoC informed us that the SoC had

seven constituent cores. The SoC had individual reset inputs
for each of these cores andwe used these inputs in partitioning
the SoC into its constituent parts. The partitioning algorithm
marks each latch with all the reset inputs that are in its
combinational fan-in cone. The union of the set of all latches
marked with a module’s reset input and all the gates in their
respective fan-in cones yields the module partitioning.
The details of the partitioning are shown in Table 5.

Note that a very small number of gates (176 or 0.1%) of
gates are placed into more than one module. We assert that
this discrepancy can easily be resolved by a human analyst
during a later stage of the investigation. About 5% of the
gates are not placed in any partition. We believe these gates
correspond to an inter-core interconnect mentioned in the
datasheet.
TABLE 5. BigSoC partition information.

3) RESULTS FOR BigSoC
Results of analyzing the partitions as well as the entire
SOC are shown in Table 6. We note that the coverage is
between 62% and 88%. The VGAmodule contains a 12000+
gate ‘‘framebuffer read’’ structure that was detected using a
design-specific algorithm. These results demonstrate that our
inference algorithms are effective on very realistic large SoC
designs. The computational requirements for the analysis are
reasonable and the entire analysis can be performed in slightly
over two hours on a contemporary midrange server CPU.

D. CASE STUDY 2: TROJAN DETECTION
In order to demonstrate how our reverse engineering algo-
rithms can aid trojan detection, we now present a case study
where we analyze trojan-injected versions of two of the test
articles studied above. Our goal here is demonstrate how
inferences from our analysis algorithms can aid a human ana-
lyst who is trying to detect the presence of hardware trojans in
a gate-level netlist. As stated previously, we assume that the
analyst does not have access to the RTL source code and/or
known good chips and has to rely on manual and algorithmic
analysis of the gate-level netlist to detect malicious behavior.

1) DESCRIPTION OF TROJANS
We injected trojans into the oc8051 and eVoter test articles.
A comparison of the original and the trojan-inserted versions
of these test articles is shown in Table 7.

VOLUME 2, NO. 1, MARCH 2014 75



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

TABLE 6. Coverage results on BigSoC partitions.

TABLE 7. Details of trojan-inserted designs.

In the case of the eVoter, the trojan is activated a by
secret seven key sequence and allows selection of a specific
candidate. All subsequent votes now go to this candidate. The
trojan can be deactivated by pressing the secret key sequence
again. In this case, the trojan is a backdoor that can be used
to compromise the voting machine hardware.

In the case of the oc8051, the trojan circuitry is activated
when an XOR instruction is a repeated 5 times in a row.
Once the trojan is activated all outputs from the ALU to the
accumulator are set to zero. In other words, the trojan here is
a kill-switch activated by a rare sequence of instructions.

2) RESULTS OF ALGORITHMIC INFERENCE
Table 8 summarizes the results of the inference algorithms
on the trojan-inserted designs. We chose to show the results
before and after overlap resolution because the resolution
algorithm may discard modules that provide insight into the
trojan because these modules overlap with other inferred
modules.

3) eVoter TROJAN ANALYSIS
In the case of the eVoter trojan, we see that several additional
decoders and demultiplexers are inferred. These modules
correspond to the logic in the trojan that matches the specific
secret key sequence which activates the trojan. Further, we
see two additional muxes and one additional multibit register.
The mux and multibit register here are especially prominent
because there are only a few of these modules in the design. In
fact, the additional modules here precisely correspond to the
logic that overrides the user input button number (i.e., user
vote) with the secret trojan/backdoor input.

A human analyst analyzing the inferred modules with no
prior knowledge of the trojan is likely to have noticed this
mux that selects either the user input button number or a

multibit register. Further, the analyst would have noticed sev-
eral decoders, which are part of a state machine, and that these
decoders are also driven by the input button number. Combin-
ing this with some manual analysis of the state machine and
discovering that the state machine drives the select input of
this mux would very likely have led to the discovery of the
hardware trojan.

4) oc8051 TROJAN ANALYSIS
The most important additional module discovered by the
algorithms for the oc8051 trojan is a counter. This is in fact
the counter which counts the number of consecutive XOR
instructions being executed by the ALU. The tool also discov-
ered a gating function module that zeros out the ALU output.
This module is enabled by a set of decoders that are driven by
output of the counter.
Reviewing the inference results from the point of view of an

analyst with no prior knowledge of the trojan, the following
steps are necessary to discover the trojan/kill-switch. First,
the analyst needs to discover the accumulator in the 8051.
Our tool can help discover the accumulator because the ALU
adder and subtractor outputs are connected to the accumu-
lator. The next key step in detecting the trojan is combining
knowledge of which circuit registers form the accumulator
along with the gating function inferred module that zeros out
the accumulator. The third key step is piecing together the
counter output and decoders that enable this gating function.
Even if it is not entirely clear what event is being counted, the
fact that a count reaching a specific value triggers a kill-switch
which results in the accumulator being permanently zeroed
out is sufficient to determine the presence of a trojan. We
assert that these inference steps are fairly straightforward for
an analyst if given the help of our tools. Without help from an
algorithmic reverse engineering tool, the analyst would have
to resort to examining each of the several thousand gates and
registers in this designs, making detection unlikely.

VI. DISCUSSION
In this section, we discuss some of limitations and areas for
potential improvement in our tools.We also provide a detailed
comparison with our previous work which this paper builds
on.

76 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

TABLE 8. Trojan Analysis results and comparison.

A. ABSTRACTION QUALITY
Some of the inferred modules detected by the tool, such as
decoders and demultiplexers are somewhat small and cover
tens of gates leading to a moderately large number of such
modules in the output. Due to this, a human analyst would
need to spend more time looking at each of these inferred
modules. At first sight, this appears to be a major limitation.
However, it is important to note that even with these small
modules, the number of inferred modules is at least an order
magnitude and usually a few orders of magnitude fewer than
the number of gates and registers present in the article being
analyzed. As we pointed out in the discussion of the trojan
injected in oc8051, this results in a very significant reduction
in the workload for an analyst.

Furthermore, if design-specific information is available
about the types of modules expected to be present in the
design, our algorithms can be easily extended to detect such
modules. Two examples are shown in this paper. The first is
the framebuffer-read structure in the VGAmodule of BigSoC.
In this case, we designed the algorithm to detect this structure
knowing that a VGA controller and framebuffer were present
in the design.

A second example is our detection of the ALU in oc8051.
Detecting an ALU requires knowledge of the exact functions
implemented by an ALU such as add, subtract, not, negate,
and, nand, or, xor, xnor etc. These vary from design to design.
Moreover, the number of ALU operation specifier bits, the
number of input operands and their bitwidths also needs to
be known or derived. These factors make it hard to write a
completely general ALU detection algorithm. However, in the
case of the oc8051, analyzing the instruction set gave us infor-
mation about the functions performed by the ALU as well as
the width of each ALU input. In this case, we were able to
use QBF-based module matching and word identification to
precisely identify the ALU in the oc8051 design. Building
such a large library of high-level components is an important
topic for future work.

Finally, wewish to point out that it is actually advantageous
for the tool to detect small ‘‘building-block’’ type of modules
in the trojan detection scenario. Small modules like decoders,
counters, multiplexers and gating functions are the building
blocks fromwhich higher-level functionality is derived. Since
trojans can be implemented in a variety of different ways,

detecting these building blocks is a more promising approach
than designing algorithms that detect high-level modules that
correspond to trojans. Such algorithms will likely be stymied
by small differences in implementation of the trojan.

B. IMPROVING COVERAGE
Our algorithmic inference tool can automatically reverse
engineer between 45% and 93% of the gates in chip. This still
leaves a significant number of gates that need to be reverse
engineered to completely understand the chip’s functionality.
In the rest of the section, we discuss some ways of reverse
engineering these gates.
It is important to note that placing 100% of the gates and

registers in a design into inferred modules is not necessary for
trojan detection. As we showed in Section V-D, identifying a
few keymodules in the trojan is sufficient to alert an analyst to
potentially malicious behavior. And because our algorithms
can infer a rich library of logical building blocks, we assert
that a significant part of almost any trojan would be covered
by the algorithms presented here.

1) DESIGN-SPECIFIC BITSLICES AND AGGREGATION
A human analyst may extend the analysis tool with bitslices
and aggregation algorithms specific to the chip being ana-
lyzed. We used this technique to identify the VGA frame
buffer structure in the BigSoC design.

2) MANUAL ANALYSIS OF CANDIDATE MODULES
Besides fully identified modules, the tool can also be made
to output ‘‘candidate’’ modules generated by common sig-
nal aggregation of ‘‘unknown’’ bitslices (Section II-B). A
human analyst can look at the generated modules and try
to understand their functionality, for example, by simulating
with random inputs. Analyzing these modules is easier than
analyzing the entire chip because: (i) the modules only have
a fews tens or hundreds of gates and (ii) the modules have
regularity and structure unlike the full netlist.

3) MANUAL ANALYSIS OF UNCOVERED GATES
We can derive useful information about the functionality
of unidentified gates using the output of the tool. Two of
the counters identified in the router are actually head and
tail pointers which index into a FIFO. Knowing these are

VOLUME 2, NO. 1, MARCH 2014 77



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

counters helped understand the functionality of the indexing
structure. Another case is of structures that do not have a clean
interconnection pattern but have replicated bitslices that can
be detected using cut-based Boolean matching.18

4) SIMULATION-BASED ANALYSES
The techniques in this paper focuses entirely on ‘‘static’’
analysis of the netlist. Simulation of the netlist with carefully
constructed test vectors is a form of dynamic analysis that can
provide valuable information. For instance, one conceivable
way of detecting an FFT co-processor is to construct a test
program executing FFTs in a loop, simulating its execution
and observe where the (known) operands and results of the
transform show up. We are working on such algorithms.

5) DISCUSSION AND COMPARISON WITH PREVIOUS
WORK
This paper introduced a portfolio of algorithms for reverse
engineering gate-level netlists. It builds on our previous
work [13], [26] in this area. The work in [26] introduced bit-
slice matching and aggregation and provided a brief overview
of the algorithms for counter, shift register and RAM detec-
tion. This work adds new algorithms based on analyzing
nodes with common support (Section II-E), the multibit regis-
ter analysis (Section III-D) and the ILP formulation to resolve
overlapping output modules (Section IV). This paper has
also integrated the functional word propagation algorithm
(Section II-C) and QBF-based module matching algorithm
(Section II-D) from [13]. These algorithms have proven to be
more effective than the structural word propagation andBDD-
based module matching algorithms presented in [26]. This
paper also expanded on the descriptions of the algorithms for
detecting counters (Section III-A), shift registers (Section III-
B) and RAMs (Section III-C). The evaluation of our algo-
rithms (Section V) in this paper is much more detailed. In
particular, we believe that the detailed analysis of the Big-
SoC design (Section V-C) and the partitioning algorithms
used in making the analysis of BigSoC tractable significant
contributions of this paper. The trojan detection experiments
from Section V-D which demonstrate the feasibility of trojan
detection aided by algorithmic reverse engineering are also
an important novel contribution of this paper.

VII. CONCLUSION
Integrated circuits are now designed and fabricated in a
globalized and multi-vendor environment making them vul-
nerable to malicious design changes and hardware tro-
jans. Algorithmic reverse engineering can mitigate these
risks by helping detect malware and verify the integrity of
critical ICs.

The key challenge in reverse engineering digital circuits is
generating meaningful module boundaries given a very large
unstructured netlist of gates. In this paper, our main contribu-
tion is a portfolio of algorithms for reverse engineeringwhich:

18This happens for less-than/greater-than comparison circuits.

(i) find module boundaries for a variety of combinational
and sequential components and (ii) functional analyses that
verify the behavior of these modules. Experiments showed
that the functionality of 45% to 93% of the gates in a netlist
may be automatically inferred using our algorithms. We also
demonstrated that our algorithms achieve 68% coverage on
a large highly-optimized SoC consisting of over 375,000
gates. We also demonstrated that these algorithms are very
effective in aiding a human analyst detect hardware trojans in
an unstructured netlist.

REFERENCES
[1] S. Adee, ‘‘The hunt for the kill switch,’’ IEEE Spectr., vol. 45, no. 5,

pp. 34–39, May 2008.
[2] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, ‘‘Trojan

detection using IC fingerprinting,’’ in Proc. IEEE Symp. Security Privacy,
May 2007, pp. 296–310.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, ‘‘Reduc-
ing structural bias in technology mapping,’’ in Proc. IEEE/ACM ICCAD,
Nov. 2005, pp. 519–526.

[4] J. Cong and Y. Ding, ‘‘FlowMap: An optimal technology mapping algo-
rithm for delay optimization in lookup-table based FPGA designs,’’ IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 13, no. 1, pp. 1–12,
Jan. 1994.

[5] DARPA, Arlington, VA, USA. (2012). Integrity and Reliability of
Integrated Circuits (IRIS) [Online]. Available: http://www.darpa.
mil/Our_Work/MTO/Programs/Integrity_and_Reliability_of_Integrated_
Circuits_(IRIS).aspx

[6] N. Eén and N. Sörensson, ‘‘An extensible SAT-solver,’’ in Proc. 6th Int.
Conf. Theory Appl. Satisfiability Test., 2003, pp. 502–518.

[7] Semiconductor Equipment and Materials Industry (SEMI), San Jose,
CA, USA. (2012). IP Challenges for the Semiconductor Equipment and
Materials Industry [Online]. Available: http://www.semi.org/sites/semi.
org/files/docs/2012_IP_White_Paper.pdf

[8] Defense Science Board Task Force, Washington, DC, USA.
(2005). High Performance Microchip Supply [Online]. Available:
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf

[9] M. C. Hansen, H. Yalcin, and J. P. Hayes, ‘‘Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering,’’ IEEE Des. Test Com-
put., vol. 16, no. 3, pp. 72–80, Jul. 1999.

[10] M. Hicks, M. Finnnicum, S. T. King, M. K. Martin, and J. M. Smith,
‘‘Overcoming an untrusted computing base: Detecting and removing mali-
cious hardware automatically,’’ in Proc. IEEE Symp. SP, May 2010,
pp. 159–172.

[11] Y. Jin and Y. Makris, ‘‘Hardware Trojan detection using path delay finger-
print,’’ in Proc. IEEE Int. Symp. HOST, Jun. 2008, pp. 51–57.

[12] O. Kömmerling and M. G. Kuhn, ‘‘Design principles for tamper-resistant
smartcard processors,’’ in Proc. USENIX Workshop Smartcard Technol.,
1999, p. 2.

[13] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik, et al.,
‘‘WordRev: Finding word-level structures in a sea of bit-level gates,’’ in
Proc. IEEE Int. Symp. HOST, Jun. 2013, pp. 67–74.

[14] W. Li, Z. Wasson, and S. A. Seshia, ‘‘Reverse engineering circuits using
behavioral pattern mining,’’ in Proc. IEEE Int. Symp. HOST, Jun. 2012,
pp. 83–88.

[15] J. Lieberman. (2003, Jun.). National security aspects of
the global migration of the U.S. semiconductor industry.
Congressional Rec., vol. 149, pt. 10 [Online]. Available:
https://www.fas.org/ irp/congress/2003cr/s060503.html

[16] F. Lonsing and A. Biere, ‘‘DepQBF: A dependency-aware QBF solver,’’
J. Satisfiability, Boolean Model. Comput., vol. 7, no. 2–3, pp. 71–76, 2010.

[17] J. Markoff. (2009, Oct.). ‘‘Old trick threatens the
newest weapons,’’ New York Times [Online]. Available:
http://www.nytimes.com/2009/10/27/science/27trojan.html

[18] J. Mohnke and S. Malik, ‘‘Permutation and phase independent Boolean
comparison,’’ Integr., VLSI J., vol. 16, no. 2, pp. 109–129, Dec. 1993.

[19] D. Nedospasov, J.-P. Seifert, A. Schlösser, and S. Orlic, ‘‘Functional IC
analysis,’’ in Proc. IEEE Int. Symp. HOST, Jun. 2012.

78 VOLUME 2, NO. 1, MARCH 2014



Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

[20] K. Nohl, D. Evans, S. Starbug, and H. Plötz, ‘‘Reverse-engineering
a cryptographic RFID tag,’’ in Proc. 17th USENIX SS, 2008,
pp. 185–193.

[21] D. Ranjan, D. Tang, and S. Malik, ‘‘A comparative study of 2QBF algo-
rithms,’’ in Proc. 7th Int. Conf. Theory Appl. Satisfiability Test., 2004,
pp. 1–6.

[22] J. P. Roth, Computer Logic, Testing and Verification. New York, NY, USA:
Freeman, 1980.

[23] F. Somenzi. (2011). CUDD: CU Decision Diagram Package [Online].
Available: http://vlsi.colorado.edu/~fabio/CUDD/

[24] C. Sturton,M. Hicks, D.Wagner, and S. T. King, ‘‘Defeating UCI: Building
stealthy and malicious hardware,’’ in Proc. IEEE Symp. SP, May 2011,
pp. 64–77.

[25] C. Sturton, S. Jha, S. A. Seshia, and D.Wagner, ‘‘On votingmachine design
for verification and testability,’’ in Proc. 16th ACM Conf. CCS, 2009,
pp. 1–14.

[26] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and
S. Malik, ‘‘Reverse engineering digital circuits using functional analysis,’’
in Proc. DATE, Mar. 2013, pp. 1277–1280.

[27] C. Tarnovsky, ‘‘Deconstructing a ‘secure’ processor,’’ in Proc. Black Hat,
2010, pp. 1–6.

[28] M. Tehranipoor and F. Koushanfar, ‘‘A survey of hardware Trojan taxon-
omy and detection,’’ in Proc. IEEE Des. Test Comput., Jan./Feb. 2010,
pp. 10–25.

[29] R. Torrance andD. James, ‘‘The state-of-the-art in IC reverse engineering,’’
in Proc. 11th Int. Workshop CHES, 2009, pp. 363–381.

[30] A. Waksman and S. Sethumadhavan, ‘‘Silencing hardware backdoors,’’ in
Proc. IEEE Symp. SP, May 2011, pp. 49–63.

[31] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, ‘‘Hardware Tro-
jan detection and isolation using current integration and localized current
analysis,’’ in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst.,
Oct. 2008, pp. 87–95.

PRAMOD SUBRAMANYAN is currently pur-
suing the Ph.D. degree with the Department of
Electrical Engineering, Princeton University. He
received the M.Sc. (Engg.) degree from IIS and
the B.E. degree in electronics and communication
engineering from the R. V. College of Engineer-
ing. His research interests are in formal methods,
computer security, and computer architecture.

NESTAN TSISKARIDZE is a Post-Doctoral
Research Scholar and Visiting Assistant Professor
with the Department of Computer Science, Uni-
versity of Iowa. She currently works with Prof.
C. Tinelli on developing new satisfiability modulo
theories (SMT) solving techniques to aid checking
of software security properties, and on enhancing
the CVC4 SMT solver with the new techniques.
She was a Post-Doctoral Research Associate with
the Department of Electrical Engineering, Group

of Prof. Sharad Malik, Princeton University. She received the Ph.D. degree
in computer science from the Department of Computer Science, University
of Manchester, under the supervision of Prof. A. Voronkov.

WENCHAO LI is a Post-Doctoral Fellow with
the Computer Science Laboratory, SRI Interna-
tional,Menlo Park. He received theM.S. and Ph.D.
degrees in electrical engineering and computer sci-
ences from UC Berkeley. His research interests are
formal methods andmachine learning, with a focus
on building and analyzing dependable systems.

ADRIÀ GASCÓN is in the last stage of his
doctoral studies from the Technical University of
Catalonia, where he worked on unification the-
ory, term compression, rewriting theory, and tree
automata theory. His current research interests
include program synthesis, distributed algorithms,
and unification theory.

WEI YANG TAN is currently pursuing the M.Sc.
degree in computer science with UC Berkeley.
He was with the DSO National Laboratories, Sin-
gapore, as a Research Engineer. He received the
B.Eng. degree in computer engineering from the
National University of Singapore in 2008. His
research interests are in applying formal methods
to problems in embedded systems and computer
security.

ASHISH TIWARI received the B.Tech. and Ph.D.
degrees in computer science from IIT, Kanpur, and
the State University of New York at Stony Brook
in 1995 and 2000, respectively. He is currently
a member of the formal methods group in the
Computer Science Laboratory, SRI International.
His research interests are in automated deduction,
decision procedures, program analysis, and formal
methods for analysis and verification of hybrid
system models of embedded software, control sys-

tems, and biological systems.

NATARAJAN SHANKAR has been a Staff Sci-
entist with the SRI Computer Science Labora-
tory since 1989. He received the Ph.D. degree in
computer science from the University of Texas
at Austin in 1986. His interests are in the study
of formal methods for the specification and ver-
ification of hardware and software, in automated
deduction, and in computational logic. He was
the Boyer-Moore theorem prover to check proofs
of various metamathematical theorems, including

Gödel’s incompleteness theorem and the Church-Rosser theorem. His book
Metamathematics, Machines, and Gödel’s Proof was published with Cam-
bridge University Press, in 1994. He has contributed to the foundation of
linear logic and the theory of proof search in nonclassical logics. He has
co-developed the design and implementation of the PVS verification system
and has written and lectured extensively on it. He led the development of
the Symbolic Analysis Laboratory and is a co-designer of the ICS decision
procedures and has contributed to its underlying theory and implementation
of the ICS and Yices solvers for satisfiability modulo theories. He is currently
developing the evidential tool bus semantic framework for combining reason-
ing tools, and the probabilistic consistency engine for learning and inferring
probabilistic assertions. He is a Past Chairman of the IFIP Working Group
2.3 on Programming Methodology. He is a member of editorial boards of the
Journal of Theoretical Computer Science, the Journal of Automated Reason-
ing, Logical Methods in Computer Science, and the Journal of Formalized
Reasoning.

VOLUME 2, NO. 1, MARCH 2014 79



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Subramanyan et al.: Reverse Engineering Digital Circuits Using Structural and Functional Analyses

SANJIT A. SESHIA is an Associate Profes-
sor with the Department of Electrical Engineering
and Computer Sciences, University of California,
Berkeley. He received the M.S. and Ph.D. degrees
in computer science fromCarnegieMellonUniver-
sity and the B.Tech. degree in computer science
and engineering from IIT, Bombay. His research
interests are in dependable computing and com-
putational logic, with a current focus on applying
automated formal methods to problems in embed-

ded systems, electronic design automation, computer security, and program
analysis. His Ph.D. thesis work on theUCLID verifier and decision procedure
helped pioneer the area of satisfiability modulo theories (SMT) and SMT-
based verification. He is the co-author of a widely-used textbook on embed-
ded systems. His awards and honors include the Presidential Early Career
Award for Scientists and Engineers from theWhite House, theAlfred P. Sloan
Research Fellowship, and the School of Computer Science Distinguished
Dissertation Award at Carnegie Mellon University.

SHARAD MALIK received the B.Tech. degree
in electrical engineering from IIT, New Delhi, in
1985, and the M.S. and Ph.D. degrees in com-
puter science from the University of California,
Berkeley, in 1987 and 1990, respectively. Cur-
rently, he is the George Van Ness Lothrop Profes-
sor of engineering with Princeton University and
the Chair of the Department of Electrical Engi-
neering. His research focuses on design methodol-
ogy and design automation for computing systems.

His research in functional timing analysis and propositional satisfiability
has been widely used in industrial electronic design automation tools. He
received the DAC Award for the most cited paper in the 50-year history of
the conference in 2013, the CAV Award for fundamental contributions to the
development of high-performance Boolean satisfiability solvers in 2009, the
ICCAD Ten Year Retrospective Most Influential Paper Award in 2011, the
Princeton University Presidents Award for Distinguished Teaching in 2009,
as well as several other best paper and teaching awards.

80 VOLUME 2, NO. 1, MARCH 2014


