
1

Template-based Parameterized Synthesis of Uniform
Instruction-Level Abstractions for SoC Verification
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Abstract—Modern system-on-chip (SoC) designs comprise pro-
grammable cores, application-specific accelerators and I/O de-
vices. Accelerators are controlled by software/firmware and func-
tionality is implemented by this combination of programmable
cores, firmware, and accelerators. Verification of such SoCs is
challenging, especially for system-level properties maintained by
a combination of firmware and hardware. Attempting to formally
verify the full SoC design with both firmware and hardware is
not scalable, while separate verification can miss bugs.

A general technique for scalable system-level verification is
to construct an abstraction of SoC hardware and verify firm-
ware/software using it. There are two challenges in applying
this technique in practice. Constructing the abstraction to cap-
ture required details and interactions is error-prone and time-
consuming. The second is ensuring abstraction correctness so
that properties proven with it are valid.

This paper introduces a methodology for SoC design and
verification based on the synthesis of instruction-level abstrac-
tions (ILAs). The ILA is an abstraction of SoC hardware
which models updates to firmware-visible state at the granu-
larity of instructions. For hardware accelerators, the ILA is
analogous to the instruction-set architecture (ISA) definition for
programmable processors and enables scalable verification of
firmware interacting with hardware accelerators. To alleviate
the disadvantages of manual construction of abstractions, we
introduce two algorithms for synthesis of ILAs from partial
description called templates. We then show how the ILA can
be verified to be correct. We evaluate the methodology using a
small SoC design consisting of the 8051 microcontroller and two
cryptographic accelerators. The methodology uncovered 15 bugs.

Index Terms—system-on-chip, systems modeling, formal veri-
fication, accelerator architectures, model checking

I. INTRODUCTION

The end of Dennard-scaling [8] has led to power and
thermal constraints limiting performance of ICs. We are now
in the era of “dark silicon” where significant parts of an IC
must be powered-off in order to stay within its power and
thermal budgets [10]. Despite the technological limitations
imposed by the dark silicon era, the demand for increased
performance and energy-efficiency has not subsided and this
has led to rise of accelerator-rich system-on-chip (SoC) archi-
tectures [5]. Application-specific functionality is implemented
using fixed-function or semi-programmable accelerators for
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increased performance and energy-efficiency. As a result,
modern SoC designs contain a number of programmable cores,
semi-programmable accelerators, I/O devices and memories.
Modern SoCs also contain firmware; this executes on pro-
grammable cores, interacts closely with hardware and orches-
trates operation of accelerators and I/O devices.

A. Challenges in SoC Verification
The prevalence of firmware and the emergence of

accelerator-rich architectures have introduced new challenges
in SoC verification. These are described below.
Challenges due to Firmware: Firmware lies between the
operating system and hardware and interacts closely with the
hardware. Firmware and hardware make many assumptions
about the behavior of the other component. As a result,
verifying the two separately requires explicitly enumerating
these assumptions and verifying that the other component sat-
isfies them. An example from a commercial SoC highlighting
the importance of capturing these interactions is provided in
[35]. A series of I/O write operations could be executed by
malicious firmware leaving an accelerator in a “confused” state
after which sensitive cryptographic keys could be exfiltrated.
The bug was because implicit assumptions made by hardware
about the timing of firmware I/O writes were violated by
the malicious code. This points to the need for scalable co-
verification of SoC hardware and firmware.
Challenges due to Accelerator-Rich SoCs: The emer-
gence of accelerator-rich SoC architectures has obsoleted
existing hardware/software (HW/SW) and hardware/firmware
(HW/FW) abstractions. In the past, programmable hardware
meant a programmable core and this was modeled using the
core’s instruction-set architecture (ISA) specification. Software
could be compiled, verified, and reasoned about using this
ISA-specification. However, with the proliferation of semi-
programmable accelerators in today’s SoCs, the ISA abstrac-
tion is inadequate at the system-level. System functionality
may now be implemented using accelerators and so an ISA-
centric view of execution is incomplete. Firmware typically
controls and interacts with accelerators by executing memory-
mapped I/O (MMIO) reads and writes. These MMIO reads
and writes are commands to the accelerator to perform various
functions. For example, a command could instruct an acceler-
ator to fetch a block of data from memory, encrypt it using a
specified key and write the result back to memory. However,
from the perspective of the ISA, all that has occurred is an I/O
write. Therefore, there is an important need for abstractions
that model the HW/FW and HW/SW interfaces presented by
accelerators in modern SoC designs.
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B. Abstractions for SoC Verification

Aggressive time-to-market requirements mean firmware and
software for SoCs must be designed before hardware is
ready. This requires models of SoC hardware. In practice,
such models are usually transaction-level models (TLMs) of
SoC components written in SystemC [4, 28, 39]. TLMs di-
vide SoC computations into transactions and application-level
functionality is implemented as a sequence of transactions.
While TLMs are important, it is difficult to assign system-
level meaning and precise semantics to transactions written in
SystemC. Furthermore, TLMs can be quite detailed and formal
analysis of the TLM along with firmware is challenging.

TLMs illustrate one instantiation of a general solution to
the modelling problem: construction of abstractions of SoC
hardware. An abstraction of SoC functionality is constructed
and when verifying properties involving firmware, the abstrac-
tion is used instead of the bit-precise cycle-accurate hardware
model. Verification using the abstraction is more scalable
because irrelevant firmware-invisible details are not included
in the abstraction. While the general technique is well-known,
we are aware of only a few efforts that have applied this to the
co-verification of SoC hardware and firmware [27, 31, 45, 46].

Although the idea of constructing abstractions for firmware
verification is attractive, it is challenging to apply in practice.
Firmware interacts with hardware components in a myriad of
ways. For the abstraction to be useful, it needs to model all
interactions and capture all updates to firmware-visible state.
• Firmware usually controls accelerators in the SoC by

writing to memory-mapped registers within the acceler-
ators. These registers may set the mode of operation of
the accelerator, the location of the data to be processed,
or return the current state of the accelerator’s operation.
The abstraction needs to model these “special” reads and
writes to the memory-mapped I/O space correctly.

• Once operation is initiated, accelerators step through a
high-level state machine that implements the data pro-
cessing functionality. Transitions of this state machine
may depend on responses from other SoC components,
the acquisition of semaphores, external inputs, etc. These
state machines have to be modeled to ensure there are
no bugs involving race conditions or malicious external
input that cause unexpected transitions or deadlocks.

• Another concern is preventing compromised/malicious
firmware from accessing sensitive data. To prove that
such requirements are satisfied, the abstraction needs to
capture issues such as a sensitive value being copied into
a firmware-visible temporary register.

Manually constructing an abstraction which captures these
details, as proposed for example in [45, 46], is not practical
because it is error-prone, as well as tedious and very time-
consuming. Abstractions that focus on specific types of proper-
ties, like the control flow graph from [27], can address certain
verification concerns, but do not capture all of the above
requirements. A third alternative is to verify the firmware
using a software/SystemC model of the hardware [4, 18, 39].
This too misses bugs present in the hardware implementation
but not the SystemC model. The underlying problem with

these approaches is in correctness of the abstraction. If the
hardware implementation is not consistent with the abstraction,
properties proven using it are not valid.

C. Instruction-Level Abstractions for SoC Verification

In this paper, we propose a general methodology for SoC
verification based on the construction of abstractions of hard-
ware components that capture updates to all firmware-visible
state. We call such abstractions instruction-level abstractions
(ILAs) and propose techniques for semi-automatic synthesis
of ILAs and verification of their correctness.
Instruction-Level Abstractions: An instruction-level abstrac-
tion (ILA) of a hardware component is an abstraction that
models all firmware-visible state variables and associated state
updates in that component. In programmable cores, the ILA
models all architectural registers, and in accelerators it models
all memory-mapped and I/O addressable registers. The insight
underlying the ILA is that firmware only views changes in
system state at the granularity of instructions. So hardware
components need only be modelled at this granularity.
Uniform and Hierarchical ILAs: Accelerators in today’s
SoCs perform computation in response to commands sent
by programmable cores [5]. This computation is typically
bounded in length. Our insight is to view commands from
the programmable cores to the accelerators as analogous
to “instruction opcodes” and state-updates in response to
these commands as “instruction execution.” We propose a
uniform instruction-level abstraction (ILA) which models ac-
celerators using the same fetch/decode/execute sequence as a
programmable core. The command is analogous to “fetch,”
the case-split determining how the command is processed is
“decode,” and the state update is “execute.” Imposing this
structure on an abstraction for accelerators allows firmware
interactions with accelerators to be modeled using well-
understood instruction-interleaving semantics, enabling use of
standard tools like software model checkers. Verification of
SoC hardware is also easier because conformance with an ILA
can be checked compositionally on a “per-instruction” basis
leveraging work in microprocessor verification [23, 25].

We also propose hierarchical instruction-level abstractions
which allow the construction of compositional models of an
accelerator as consisting of a macroILA and possibly several
microILAs. The macroILA comprises a set of macroinstruc-
tions, each of which may be implemented by a sequence of
microinstructions that comprise a microILA at a lower level
of abstraction. This is analogous to CISC (complex instruction
set computer) instructions being implemented as a series of
microinstructions. Hierarchy helps manage complexity and
models different levels of abstraction in hardware components.
ILA Synthesis: Manual construction of ILAs is tedious and
error-prone. These challenges are exacerbated for third-party
IPs as ILAs have to be constructed post hoc from existing
implementations. Therefore, techniques for automated syn-
thesis of ILAs are important. To address this challenge, we
propose techniques for the synthesis of ILAs from partial
descriptions known as templates. Instead of manually con-
structing the complete abstraction, the verification engineer
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Fig. 1: Overview of the ILA-based SoC Verification Methodology.

now has an easier task of writing a template that partially
defines the operation of hardware components. The synthesis
framework infers the complete abstraction and fills in the
missing details by using a blackbox simulator1 of the hardware
component. Simulators are often constructed for SoC design
and validation, e.g., for simulation-based testing of firmware.
In principle, it may be possible to extract abstractions through
automated analysis of such simulators. However, in practice,
the scale and complexity of simulator codebases make this
infeasible. Our work helps constructs ILAs in this scenario.
The template abstraction, synthesis framework and blackbox
simulator are shown in boxes 1, 2 and 3 in Figure 1.
ILA Verification: To validate the ILA and ensure that the
hardware implementation is consistent with the ILA, a set of
temporal refinement relations are defined by the verification
engineer. These relations specify equivalence between ILA
and the register-transfer level (RTL) hardware implementation.
These refinement relations are verified using hardware model
checking to ensure that RTL behavior matches the ILA. If the
refinement relations are proven, we have a guarantee that the
abstraction is a correct over-approximation of hardware and
any properties proven using the abstraction are in fact valid.
If the proof fails, we get counterexamples that can be used to
fix either the implementation or the template. ILA verification
is shown in boxes 5, 6 and 7 in Figure 1.
Methodology: Figure 1 is an overview of the methodology.
Blue boxes (1 and 7) show the components that are provided
by the verification engineer. We assume the RTL model and a
simulator are already available; these are gray (boxes 3 and 5).
Automatically generated artifacts are green (box 4) and off-
the-shelf tools are red (boxes 6 and 8). The synthesis algorithm
(box 2) is in yellow.

D. Contributions

We introduce a general methodology for template-based
synthesis of instruction-level abstractions for SoC verification.
The methodology has three advantages. It helps verification
engineers easily construct correct abstractions that are useful
in verifying system-level properties of SoCs.

We introduce a language for template-based synthesis that
is tailored to modeling hardware components in modern SoCs.

1The term blackbox simulator (also referred to as an I/O oracle [21]) means
the simulator can be used to find the next state and outputs of the component
given a specific current state and input value.

We introduce two synthesis algorithms based on the counter-
example guided inductive synthesis (CEGIS) paradigm [21,
22]. Our first algorithm adapts CEGIS to our context – the
synthesis of SoC abstractions. Our second algorithm improves
upon this by taking advantage of the instruction-based struc-
ture of the ILA and is up to 18× faster than the first algorithm.
Together, these algorithms enable scalable synthesis of SoC
ILAs. Finally, we show how synthesized ILAs can be verified
to be correct abstractions of SoC hardware.

We present a case study applying the methodology to the
verification of a simple SoC design built from open-source
components. The SoC consists of the 8051 microcontroller
and two cryptographic accelerators. We discuss synthesis and
verification of instruction-level abstractions in this SoC and
describe the bugs found during verification. The methodology
helped find a total of 15 bugs in the simulator and RTL.

This methodology was first presented in a conference arti-
cle [38]. This journal paper introduces the notion of uniform
and hierarchical ILAs (§II). While similar abstractions involv-
ing fetch, decode and execute have been proposed before, our
contribution is in showing how a uniform abstraction can be
used for both processors and semi-programmable acclerators.
This in turn allows us to build on work in software verification
to analyze programs that interact with accelerators. This paper
also introduces a novel parameterized synthesis algorithm
(§IV) which is up to 18× faster (geometric mean 1.9×) than
the algorithm presented in [38]. We also include new experi-
mental results (§VI) that evaluate applicability of uniform and
hierarchical ILAs and the new synthesis algorithm.

This paper describes synthesis and verification of ILAs, as
opposed to system-level verification using ILAs (boxes 8 and
9 in 1). An example of security-verification using ILAs in
part of a commercial SoC with a 32-bit microcontroller and
other peripherals is published in [37]. ILA-based verification
was successful in finding bugs in this commercial SoC.

II. INSTRUCTION-LEVEL ABSTRACTIONS

This section provides an overview of uniform and hierar-
chical instruction-level abstractions (ILAs).

A. Architectural State and Inputs

The architectural state variables of an ILA are modelled as
Boolean, bitvector or memory variables. As with ISAs, the
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architectural state refers to state that is persistent and visible
across instructions.

Let B = {0, 1} be the Boolean domain and let bvecl
denote all bitvectors of width l. Mk×l : bveck → bvecl
maps from bitvectors of width k to bitvectors of width l and
represents memories of address width k bits and data width l
bits. Booleans and bitvectors are used to model state registers
while the memory variables model hardware structures like
scratchpads and random access memories. A memory variable
supports two operations: read(mem, a) returns data stored at
address a in memory mem . write(mem, a, d) returns a new
memory which is identical to mem except that address a maps
to d, i.e., read(write(mem, a, d), a) = d.

Let S represent the vector of state variables of an ILA
consisting of Boolean, bitvector and memory variables. In
an ILA for a microprocessor, S contains all the architectural
registers, bit-level state (e.g., status flags), and data and
instruction memories. In an accelerator, S contains all the
software-visible registers and memory-structures. A state of
an ILA is a valuation of the variables in S.

Let vector W represent the input variables of the ILA; these
are Boolean and bitvector variables which model input ports
of processors/accelerators.

Let typeS[i] be the “type” of state variable S[i]; typeS[i] =
B if S[i] is Boolean, typeS[i] = bvecl if S[i] is a bitvector of
width l and typeS[i] = Mk×l if S[i] is a memory.

B. Fetch/Decode/Execute
1) Fetching an Instruction: The result of fetching an in-

struction is an “opcode.” This is modelled by the function
Fo : (S × W ) → bvecw, where w is the width of the
opcode. For instance, in the 8051 microcontroller, Fo(S,W ) ,
read(S[IMEM], S[PC]) where S[IMEM] is the instruction
memory and S[PC] is the program counter. We are using the
notation S[IMEM] to denote the fact that IMEM is a member
of the state vector S.

Programmable cores repeatedly fetch, decode and execute
instructions, i.e., they always “have” an instruction to execute.
However, accelerators may be event-driven and execute an
instruction only when a certain trigger occurs. This is mod-
elled by the function Fv : (S × W ) → B. For example,
suppose an accelerator executes an instruction when either
I[Cmd1Valid] or I[Cmd2Valid] is asserted, then Fv(S,W ) ,
I[Cmd1Valid]∨ I[Cmd2Valid]. Here Cmd1Valid refers to an
input and the notation I[Cmd1Valid] denotes that this is a
member of the input vector I .

2) Decoding an Instruction: Decoding an instruction in-
volves examining an opcode and choosing the state update
operation that will be performed. We represent the different
choices by defining a set of functions D = {δj | 1 ≤ j ≤ C}
for some constant C where each δj : bvecw → B. Recall
Fo : (S ×W ) → bvecw is a function that returns the current
opcode. Each δj is applied on the result of Fo. The functions
δj must satisfy the condition: ∀j, j′, S,W : j 6= j′ =⇒
¬(δj(Fo(S,W ))∧ δj′(Fo(S,W ))); i.e., the functions δj use a
“one-hot” encoding.

For convenience let us also define the predicate opj ,
δj(Fo(S,W )). When opj is 1, it selects the jth instruction.

For example, in the case of the 8051 microcontroller, D =
{δ1(f) , (f = 0), δ2(f) , (f = 1), . . . , δ256(f) , f =
255}.2 Recall we had defined Fo for this microcontroller as
Fo(S,W ) , read(S[IMEM], S[PC]). Therefore, opj ⇐⇒
read(S[IMEM], S[PC]) = (j − 1). We are “case-splitting”
on each of the 256 values taken by the opcode and each
of these performs a different state update. The functions δj
choose which of these updates is to be performed.

3) Executing an Instruction: For each state element S[i]
define the function Nj [i] : (S × W ) → typeS[i]. Nj [i]
is the state update function for S[i] when opj = 1. For
example, in the 8051 microcontroller, opcode 0x4 increments
the accumulator. Therefore, N4[ACC] = ACC + 1.

The complete next state function N : (S × W ) → S is
defined in terms of the functions Nj [i] over all i and j.

C. Hierarchical ILAs

Hierarchical ILAs handle different levels of abstraction in
hardware components and allow ILAs to contain other ILAs.
We call the inner ILAs microILAs while the outer/parent
ILA is called a macroILA. Each microILA has its own state
and input variables, fetch, decode and next state functions:
Sµ,Wµ, Fµo , Fµv , Dµ and Nµ respectively. Each microILA
is associated with a Valid function V µ : S × W → B
where S and W are the state and input variables of the
macroILA containing it. V µ = 1 iff the valuation of the state
variables Sµ is legal, and the microILA only executes when
V µ = 1 MacroILAs and microILAs execute concurrently and
asynchronously.

Communication between the macro and micro ILAs hap-
pens in two ways. The microILA can read all macro-state
and use these in its next state computations. Similarly, the
macroILA can read microILA state when V µ = 1 and use
these variables in the macroILA’s next state computation.

An example of hierarchical ILAs in our experimental
platform is an ILA for an accelerator that implements the
Advanced Encryption Standard (AES) algorithm. The AES
accelerator has two parts. One part contains the configuration
registers and the processor core interface. The other is a state
machine that repeatedly fetches data from the shared RAM,
encrypts it and writes back the encrypted data. We model
the encryption state machine as a microILA, and each state
in it is modeled as a “microinstruction.” The interface that
interacts with the processor and controls the state machine is
the macroILA.

D. Putting it all Together

To summarize, an instruction-level abstraction (ILA) is the
tuple: A = 〈S,W,Fo, Fv, D,N,Lµ〉. S and W are the state
and input variables. Fo, Fv, D and N are the fetch, decode and
next state functions respectively. Lµ = {(V µp , Aµp), ...} is a
set of microILAs contained within this ILA. V µp : (S×W )→
B is the valid function associated with the microILA Aµp .

2We are abusing notation here by writing elements of bvec8 as 0 . . . 255.
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E. Syntax

The language of expressions allowed in Fo, Fv, D and
Nj [i] is shown in Figure 2. Expressions are quantifier-free
formulas over the theories of bitvectors, bitvector arrays and
uninterpreted functions. They can be of type Boolean, bitvector
or memory, and each of these has the usual variables, constants
and operators with standard interpretations. The synthesis
primitives, shown in bold, will be described in §III.

〈exp〉 ::= 〈bv-exp〉 | 〈bool-exp〉 | 〈mem-exp〉 | 〈func-exp〉
| 〈choice-exp〉

〈bv-exp〉 ::= var 〈id〉 width | cnst val width
| bvop 〈exp〉 ...
| read 〈memexp〉 〈addrexp〉
| read-block 〈memexp〉 〈addrexp〉
| apply 〈func〉 〈bv-exp〉 ...
| extract-bitslice 〈bv-exp〉 width
| extract-subword 〈bv-exp〉 width
| replace-bitslice 〈bv-exp〉 〈bv-exp〉
| replace-subword 〈bv-exp〉 〈bv-exp〉
| in-range 〈bv-exp〉 〈bv-exp〉

〈bool-exp〉 ::= var | true | false
| boolop 〈exp〉 ...

〈mem-exp〉 ::= 〈id〉 |
| write 〈mem-exp〉 〈bv-exp〉 〈bv-exp〉
| write-block 〈mem-exp〉 〈bv-exp〉 〈bv-exp〉

〈func-exp〉 ::= func 〈id〉 widthout widthin1 ...

〈choice-exp〉 ::= choice 〈exp〉 〈exp〉 ...

Fig. 2: Syntax for Expressions

III. ILA SYNTHESIS

The goal of ILA synthesis is to help semi-automatically
synthesize the functions Nj [i]. To do this, we build on work
in oracle-guided program synthesis [21, 22]. In particular, we
assume availability of a simulator that models state updates
performed by the accelerator. In practice, this simulator can
be either an RTL description of the hardware component, or
a high-level C/C++/SystemC simulator. Note this is a black-
box simulator, also called an I/O oracle, which can be used to
simulate the execution of a component given an initial state
and an assignment to the component’s inputs.

A. Notation and Problem Statement

Let Sim : (S × W ) → S be the I/O oracle for the next
state function N . Define Simi : (S ×W ) → typeS[i] to be
the function that projects the state element S[i] from Sim .3 In
order to help synthesize the function implemented by Simi,
the SoC designers write a template next state function, denoted
by Ti : (Φ× S ×W )→ typeS[i].

Φ is a set of synthesis variables, also referred to as
“holes” [33], and different assignments to Φ result in different
next state functions. Unlike N [i], Ti is a partial description
and is therefore easier to write. It can omit certain low-level

3Simi(S,W ) = Sim(S,W )[i].

details, such as the mapping between individual opcodes and
operations, opcode bits and source and destination registers,
etc. These details are filled-in by the counter-example guided
inductive synthesis (CEGIS) algorithm by observing the output
of Simi for carefully selected values of (S,W ).
(Problem Statement: ILA Synthesis): For each state element
S[i] and each opj , find an interpretation of Φ, Φij , such that
∀S,W : opj =⇒ (Ti(Φij , S,W ) = Simi(S,W ))).

Note the synthesis procedure is repeated for each instruction
(each j) and each state element (each i), and the corresponding
synthesis result is Φij .

B. Template Language

The template identifies: (i) elements of architectural state,
(ii) components of each instruction: the fields and ranges on/in
which the instruction operates, (iii) a skeleton of possible state
updates, and (iv) the direction of data-flow. Most importantly,
the template implicitly decouples the orthogonal concerns of
precisely matching low-level bitfields in order to identify op-
codes and the state updates performed by each opcode. In our
experience, these tightly-coupled concerns are often the most
error-prone and tedious parts of manual model construction.

The synthesis primitives in the currently implemented tem-
plate language are shown in bold in Figure 2. Note our
algorithms/methodology are not dependent on these specific
synthesis primitives. The only requirement placed on the
primitives is that they can be “compiled” to some quantifier-
free formula over bitvectors, arrays and uninterpreted func-
tions. These theories are typically supported in all modern
satisfiability modulo theory (SMT) solvers, e.g., Z3 [7].
Synthesis Primitives: The expression choice ε1 ε2 asks the
synthesizer to replace the choice primitive with either ε1 or
ε2 based on simulation results. choice ε1 ε2 is translated to
the formula ITE(φb, ε1, ε2) where φb ∈ Φ is a new Boolean
variable associated with this instance of the choice primitive.
Its value is determined by the synthesis procedure.

The primitives extract-slice and extract-subword, synthe-
size bitvector extract operators. The synthesis process deter-
mines the indices to be extracted from. The replace-slice and
replace-subword are the counterparts of these primitives; they
replace a part of the bitvector with an argument expression.
The primitive in-range synthesizes a bitvector constant that is
within the specified range. Adding new synthesis primitives is
easy and straightforward in our framework.

C. An Illustrative Example

We illustrate the definition of an ILA and template next state
function using the processor shown in Figure 3. The instruction
to be executed is read from the ROM. Its operands can either
be an immediate value (data) from the ROM or from the 4-
entry register file. For simplicity, we assume that the only
two operations supported by the processor are addition and
subtraction.

The architectural state for the processor is S =
〈ROM,PC,R0,R1,R2,R3〉 and input set W is empty.
typeROM = M8×8 while all the other variables are of type
bvec8. The opcode which determines the next instruction is
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stored in the ROM and so Fo , read(ROM,PC); Fv , 1.
D = {δj | 1 ≤ j ≤ 256} where each δj(f) , f = j−1.4 The
template next state functions, TPC and TRi

, are as follows.

TPC = choice (PC + 1) (PC + 2)
imm = read(ROM,PC + 1)
src1 = choice R0 R1 R2 R3

src2 = choice R0 R1 R2 R3 imm
res = choice (src1 + src2) (src1 − src2)
TRi

= choice res Ri (0 ≤ i ≤3)

Algorithm 1 CEGIS Algorithm

1: function SYNTHESIZEALL(T ,Sim)
2: for all S[i] ∈ S do
3: for all opj do
4: Φij ← SYNCEGIS(opj , Ti,Simi)
5: Nj [i](S,W )← Ti(Φij , S,W )
6: end for
7: end for
8: end function
9: function SYNCEGIS(opj , Ti,Simi)

10: k ← 1
11: R1 ← opj ∧ (θ ↔ (Ti(Φ1, S,W ) 6= Ti(Φ2, S,W )))
12: while sat(Rk ∧ θ) do
13: ∆← MODEL(S,W )(Rk ∧ θ) . get dist. input ∆
14: O ← Simi(∆) . simulate ∆
15: O1 ← (Ti(Φ1,∆) = O)
16: O2 ← (Ti(Φ2,∆) = O)
17: Rk+1 ← Rk ∧O1 ∧O2 . enforce output O for ∆
18: k ← k + 1
19: end while
20: if sat(Rk ∧ ¬θ) then
21: return MODELΦ1

(Rk ∧ ¬θ)
22: end if
23: return ⊥
24: end function

D. CEGIS Algorithm

The counter-example guided inductive synthesis (CEGIS)
algorithm for synthesizing Nj [i] from template next state

4In the rest of this paper, we shall refer to the elements of the state vector
as ROM, PC etc., instead of S[ROM ] or S[PC] in order to keep notation
uncluttered.

function Ti and the simulator Sim is shown in Algorithm 1.
The function SYNTHESIZEALL calls SYNCEGIS for each
opj (the different “opcodes”) and each S[i] (each of element of
architectural state). In each case, SYNCEGIS returns Φij which
is used to compute the next state function as Nj [i](S,W ) =
Ti(Φij , S,W ).

SYNCEGIS tries to find an interpretation of (S,W ), say
∆, which for some two interpretations of Φ: Φ1 and Φ2,
is such that Ti(Φ1,∆) 6= Ti(Φ2,∆). To understand the
algorithm, observe that Ti(Φ, S,W ) defines a family of next-
state functions. Different functions are selected by different
assignments to Φ. The key idea is to repeatedly find distin-
guishing inputs [21] while ensuring the simulation input/output
values observed thus far are satisfied. A distinguishing input
for Φ1 and Φ2 is an assignment to S and W such that the
Ti(Φ1, S,W ) 6= Ti(Φ2, S,W ). The distinguishing input ∆ is
found in line 13. Next we use the simulator Simi to find
the correct output O and assert that the next distinguishing
input must satisfy the condition that the output for ∆ is O
(lines 15, 16 and 17). When no more distinguishing inputs can
be found, then all assignments to S define the same transition
relation and we pick one of these assignments in line 21.

IV. PARAMETERIZED SYNTHESIS

In this section, we present an improved synthesis algorithm.
We start with a high-level discussion of how the algorithm
works before presenting its details.

A. Motivating Parameterized Synthesis

As the inner loop of SYNTHESIZEALL in Algorithm 1
shows, SYNCEGIS is executed for each of the different de-
code functions represented by opj . For the illustrative example
from §III-C, this means that we execute Algorithm 1 for
each opcode: {op1 ⇐⇒ read(ROM,PC) = 0, op2 ⇐⇒
read(ROM,PC) = 1, . . . , op256 ⇐⇒ read(ROM,PC) =
255}. Consider the synthesis of one element of architectural
state: PC. Excluding a few instructions that operate on an
immediate value, for most opcodes, the next state function
for the PC is PC + 1.5 However, Algorithm 1 repeatedly
rediscovers the same next state function (PC+1) by computing
new distinguishing inputs and then pruning the search space
according to the corresponding simulator outputs. Finding dis-
tinguishing inputs is the most computationally expensive part
of synthesis. The parameterized synthesis algorithm attempts
to avoid this computation as much as possible.

To understand how parameterized synthesis works, let us
first consider a strawman proposal. For the first opcode, i.e.,
when executing SYNCEGIS(op1, Ti,Simi) we will execute
SYNCEGIS as usual. However, we will record the distin-
guishing inputs, the corresponding simulator outputs and next
state function computed by the algorithm. Let the sequence
of pairs of distinguishing inputs and simulator outputs be
〈(∆1, O1), . . . , (∆k, Ok)〉. Now suppose we are executing

5 This is a common scenario. For all elements of architectural state, there
are often a few next state functions that occur across many different opcodes.
For example, in the case of R0, the most common next state function is the
identity function R0.
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∆1 = 〈ROM : [0],PC : 0,RF : (0, 0, 0x47, 0x1)〉

O1 = SimR0 (∆1) = 0

∆2 = 〈ROM : [0],PC : 0,RF : (0x47, 0xF, 0, 0)〉

O2b = SimR0
(∆2) = 0x47O2a = SimR0 (∆2) = 0x8E

∆3b = 〈ROM : [1 7→ 0x80, else :

1], PC : 0,RF : (0x47, 0xF, 0, 0)〉

Na[R0] = R0 +R0

O3b = SimR0
(∆2) = 0x80

Nb[R0] = R0

Fig. 4: Distinguishing Input Tree (DIT). The notation ROM =
[0] means that all entries in the ROM map to value zero. The
notation ROM = [0 7→ 1, else : 0x0] means that ROM address
0 maps to 1, but all other addresses map to 0. The notation
RF = (0, 0, 0x47, 0x1) refers to the valuation of the register
file; it means that R0 = R1 = 0, R2 = 0x47 and R3 = 0x1.

SYNCEGIS(op2, Ti,Simi). The strawman proposal does not
recompute distinguishing inputs but instead presents the dis-
tinguishing inputs computed for op1: 〈∆1, . . . ,∆k〉 to the
simulator and evaluates its output. Suppose these outputs
are the same as those observed for op1: 〈O1, . . . , Ok〉. This
means the search space has been pruned identically and so
the next state functions are the same for both op2 and op1.
If this occurs, the SMT solver need never be invoked for the
computation of distinguishing inputs!

Unfortunately, this strawman proposal is flawed. This is be-
cause the distinguishing inputs are computed for a specific opj :
∆ |= opj ∧ (θ ↔ (Ti(Φ1, S,W ) 6= Ti(Φ2, S,W ))). However,
∀j, j′ : j 6= j′ =⇒ ¬(opj ∧ opj′). The distinguishing inputs
for opj and op′j must be different. To make this idea work,
we need a way of transforming distinguishing inputs computed
for opj into distinguishing inputs for opj′ . If we could do this,
then we would not need to recompute distinguishing inputs if
the next state function was “seen” before.

B. An Intuitive Explanation

We start with an explanation of the algorithm using a
worked out example for the processor shown in §III-C.
Figure 4 shows a distinguishing input tree (DIT). A distin-
guishing input tree (DIT) consists of three types of nodes:
(i) distinguishing input nodes (shown in red), (ii) simulator
outputs (green), and (iii) symbolic expressions for the next
state (blue). Each path from the root to a leaf node in the
tree represents an equivalence class of semantically equivalent
next state functions (Nj [i]) and the distinguishing inputs and
corresponding outputs that occur along this path uniquely
identify this next state function.

The tree shown in Figure 4 shows the computa-
tion of Nj [R0] over different opj . Consider the path
〈(∆1, O1), (∆2, O2a), Na[R0]〉 in Figure 4. This path starts
at the root (∆1) and terminates at a leaf (Na[RA]). It
corresponds to the computation of N1[R0] where op1 ⇐⇒

read(ROM,PC) = 0x0. For the first opcode (op1), pa-
rameterized synthesis works identically to SYNCEGIS with
the only difference being that distinguishing inputs, simulator
outputs and the next state function are inserted into the DIT.

Now suppose we are synthesizing N2[R0]. Recollect that
op2 ⇐⇒ read(ROM,PC) = 1. As described earlier,
our goal is to reuse the previously computed distinguishing
input ∆1. The distinguishing characteristic of ∆1 is in the
assignments to R0,R1,R2,R3 and read(ROM,PC + 1). The
distinguishing nature does not depend on read(ROM,PC)
which contains the opcode. We would be able to reuse this
distinguishing input for op2 if we changed the assignment
to ROM such that read(ROM, 0) = 0x1 while “keeping
everything else the same.” The tricky part here is formalizing
“keeping everything else the same.”

Let us consider a strawman proposal to achieve this. Sup-
pose we use an SMT solver and find an assignment ROM′ such
that ROM′ |= op2. One such assignment is all ROM addresses
in ROM′ map to 1: ROM′ = [1]. Now consider the distinguishing
input ∆1′

, 〈ROM′ = [1],PC = 0,RF = (0, 0, 0x47, 0x7)〉.
∆1′

is exactly the same as ∆1, except that ROM′ has been
changed so that ROM′ |= op2. But ∆1′

and ∆1 are not
equivalent in terms of distinguishing power. ∆1 can distinguish
between the functions R3 +R3 and R3 +read(ROM,PC+1).
The former evaluates to 2 while the latter evaluates to 1 under
the assignment ∆1. However, ∆1′

cannot distinguish between
these functions (both evaluate to 2) and is weaker in terms
of distinguishing power than ∆1. Therefore, a more precise
formulation of “keeping everything else the same” involves
showing that the new input does not weaken the original
assignment’s distinguishing power. The algorithm introduced
in this section allows us to reuse distinguishing inputs by
making simple syntactic substitutions while retaining the same
distinguishing power.

Let ∆1′
= 〈ROM : [0 7→ 1, else : 0],PC : 0,RF :

(0, 0, 0x47, 0x1)〉 be a “minimally changed” version of ∆1.
Note ∆1′

retains the distinguishing power of ∆1 while also
satisfying op2. We call ∆1′

an SD-variant interpretation of
∆1. A formal definition of SD-variant interpretations is in
the next section.6 Our algorithm computes SD-variant dis-
tinguishing inputs by solving a simple SMT instance for the
predicate opj , and then performs a syntactic substitution on
the distinguishing inputs in the DIT.

Now suppose ∆1′
results in the same output O1′

= 0

from the simulator. This means that the search space can be
pruned in the same was with O1. Therefore, we continue
following this path in the DIT and compute the next SD-
variant distinguishing input of ∆2. Now the simulator returns
an output we have not seen before. We insert this into the
tree as node O2b. We are now on a new path in the tree and
use the SMT solver to compute distinguishing input ∆3b. At
this point, we do not have any reusable information and the
algorithm devolves into CEGIS. And this eventually results
in the computation of N2[R0] as R0. Now for all the other
opcodes which have the same next state function R0, we can

6S stands for support and D is the set of decode functions, so an SD-variant
interpretation varies only over the support of the decode functions.
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just follow this path in the DIT instead of solving many more
new SMT instances.

C. Definitions

(Definition 1: Supporting Subexpressions) Let ε be an
expression and σ be some subexpression (some node in the
abstract syntax tree) of ε. We say σ is a supporting subex-
pression of ε if there exist ν1 and ν2 such that substituting σ
with ν1 and ν2 in ε causes ε to differ: i.e., ε[σ/ν1] 6= ε[σ/ν2].
In other words, σ is a subexpression that affects the value
of ε. For example, let ε , read(ROM,PC + 1) = 0. Then
ν1 , PC + 1 is a supporting subexpression of ε.
(Definition 2: Complete Set of Supporting Subexpressions)
Let Sε = {σ1, . . . , σp, . . . , σL} be a set of supporting subex-
pressions of ε. We say Sε is a complete set of supporting
subexpressions, if for all interpretations I1 and I2 of ε, if
JεKI1 6= JεKI2 then there exists some σp ∈ Sε such that
JσpKI1 6= JσpKI2 .7 In other words, if two interpretations differ
in the value of ε, then at least one of the expressions in a
complete set of supporting expressions of ε must also differ.
Let us return to example of ε , read(ROM,PC + 1) = 0.
The singleton set {read(ROM,PC+1)} is in fact a complete
set of supporting subexpressions for ε. This is because ε is a
Boolean, and if its truth value changes from 0 to 1 or vice
versa, it must be because read(ROM,PC + 1) changed.

We can extend this definition to a set of expressions
E = {ε1, . . . , εq, . . . , εQ}. SE = {σ1, . . . , σp, . . . , σL} is a
complete set of supporting subexpressions for the set E if for
all interpretations I1, I2 and all εq ∈ E, if JεqKI1 6= JεqKI2
then there exists some σp ∈ SE such that JσpKI1 6= JσpKI2 .
Consider the set of expression E , {read(ROM,PC) =
0, read(ROM,PC) = 1, . . . , read(ROM,PC) = 255}. The
singleton set SE , {read(ROM,PC)} is a complete set of
supporting expressions for E. Any change in the truth value
of any element of E must necessarily be accompanied by a
change in the valuation of the sole member of SE .
(Definition 3: σp-variant Interpretations) Given a subex-
pression σp, we say that two interpretations I1 and I2 are
σp-variant if for all expressions ε, JεKI1 6= JεKI2 =⇒
JσpKI1 6= JσpKI2 . In other words, if two interpretations are
σp-variant, then they differ only in their assignments to σp
and expressions that depend on σp and nothing else. Let
σp , read(ROM,PC). Then the assignments ∆1 = 〈ROM :
[0],PC : 0,RF : (0, 0, 0x47, 0x1)〉 and ∆1′

= 〈ROM : [0 7→
1, else : 0],PC : 0,RF : (0, 0, 0x47, 0x1)〉 are σp-variant.

This definition can be extended to a set of subexpressions
SE . Two interpretations are SE-variant if for all expres-
sions ε, if JεKI1 6= JεKI2 , there exists σp ∈ SE such
that JσpKI1 6= JσpKI2 . If we define SE as the singleton
set {read(ROM,PC)}, then ∆1 and ∆1′

as defined in the
previous paragraph are SE-variant.

D. Sketch of the Algorithm

Suppose we have a complete set of supporting subexpres-
sions SD for the set of decode predicates {opj | 1 ≤ j ≤ C}.

7Notation JεKI refers to expression ε evaluated under interpretation I .

Algorithm 2 Parameterized synthesis

1: procedure SYNTHESIZEALL(D, T ,Sim)
2: for all S[i] ∈ S do
3: SD ← GETSUPPSET(D)
4: reextract ← CHECKSUPPINVARIANT(Ti, SD)
5: ∆t ← ⊥
6: for all opj do
7: if SD is non-empty then
8: Nj [i]← SYNPARAM(opj , Ti,Simi,∆t)
9: else

10: Nj [i]← SYNCEGIS(opj , Ti,Simi)
11: end if
12: end for
13: end for
14: end procedure
1: function SYNPARAM(opj , Ti,Simi,∆t )
2: k ← 1
3: R1 ← opj ∧ (θ ↔ (Ti(Φ1, S,W ) 6= Ti(Φ2, S,W )))
4: while true do
5: if ∆′ found in ∆t then
6: ∆← FIXUP(∆′, opj)
7: else
8: ∆← MODEL(S,W )(Sk ∧ θ)
9: end if

10: if ∆ = ⊥ then
11: return EXTRACT(Rk)
12: end if
13: O ← Simi(∆)
14: O1 ← (Ti(Φ1,∆) = O)
15: O2 ← (Ti(Φ2,∆) = O)
16: Rk+1 ← Rk ∧O1 ∧O2

17: if O not in ∆t then
18: INSERT(∆t ,∆, O)
19: end if
20: end while
21: end function

Now consider the template next state function Ti. Suppose for
all SD-variant interpretations I1 and I2, JTiKI1 = JTiKI2 , then
we say Ti is SD-invariant. TRi

are all SD invariant for the
definitions given in §III-C.

The key insight is the following: if Ti is SD-invariant, given
a set of distinguishing inputs ∆1,∆2, . . . ,∆k, all SD-variants
of these inputs will also prune the search space in the same
way (assuming of course that the simulator outputs are the
same for each of these inputs). Ti is SD-invariant, so it does
not “depend” on the interpretation of the predicates opj . The
distinguishing nature of ∆k is not “affected” by SD, therefore
it can be replaced by an SD-variant of itself.

The above suggests Algorithm 2. It starts by comput-
ing a complete set of supporting expressions SD using
GETSUPPSET in line 3. In our current implementation, GET-
SUPPSET returns a set containing bitvector and boolean vari-
ables and expressions of the form read(M,addr) occurring in
the opj’s. The computation of SD need not always succeed. In
our implementation, we do not handle the case when the op-
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code involves expressions involving modified memories; e.g.,
read(write(M,addr1), addr2) and failover to SYNCEGIS.8

Line 4 checks if the template Ti is SD-invariant for the
SD we computed. This is stored as the flag reextract . It
is important to note that even if Ti is not SD-invariant, we
can still speculatively reuse distinguishing inputs. However,
in this case, we do need to verify that Rk ∧ θ is unsatisfiable
when we reach the leaf node of the DIT. We then use either
SYNPARAM or SYNCEGIS (if computation of SD failed) to
compute the Nj [i] for each opj .

Line 5 of SYNPARAM checks if we already have a
distinguishing input in the DIT ∆t . If so, we find a SD-
variant interpretation such that ∆ |= opj . This is done by the
procedure FIXUP in line 6. FIXUP finds a model for opj and
then performs a syntactic substitution on the distinguishing
input ∆′ in the tree. If we have reached a leaf node in the
tree, we use EXTRACT to get the result of the synthesis. In
most cases, EXTRACT just returns the function stored in the
leaf node of the tree. However, if Ti was not SD-invariant
(reextract = false) or if we are on a new path in the tree,
EXTRACT uses the SMT solver to compute the result. tree.
Note even if we are just following an existing path in the
DIT, we update the formula Rk in lines 14-16. This is just
the construction of syntax trees for these formulas. The SMT
solver is not used to compute distuishing inputs using the
Rk unless we diverge from the outputs stored in the tree.
Procedure INSERT adds a new output node to the DIT.

V. ILA CORRECTNESS AND VERIFICATION

In this section, we discuss correctness of the ILA synthe-
sized by the algorithms presented in Sections III and IV, de-
scribe why additional verification of the ILA may be necessary
and then describe how this verification is done.

A. Correctness of Synthesized ILA

The template next state function Ti represents a family of
possible next state functions. The synthesis algorithms pick
a function from this family consistent with the I/O relations
exhibited by the simulator Sim . The synthesized result N is
guaranteed to be correct if the next state function implemented
by the simulator Sim is one of functions represented by the
family Ti. We now formalize this notion of correctness.

1) Template Bugs: Consider the ILA A =
〈S,W,Fo, Fv, D,N,Lµ〉 and the template next state
function Ti. We say that Ti can express N if for all state
elements S[i] and each opj , there exists Φij such that
opj =⇒ Ti(Φij , S,W ) = Nj [i](S,W ).

We refer to the scenario when Ti cannot express N as
a template bug because this occurs when the template next
state function Ti has not been constructed correctly by the
verification engineer. A template bug may result in the SMT
solver returning an unsatisfiable result when attempting to
find a distinguishing input. When this happens, our synthesis
framework prints out the unsat core of Rk. In our experience,

8Note, this restriction only applies to the opcode (Fo from §II), not to the
next state function. This corner case does not occur in any of the designs in
our evaluation.

examining the simulation inputs and outputs present in the
unsat core is sufficient to identify the bug.

Unfortunately, a unsatisfiable result from the SMT solver is
not guaranteed if Ti cannot express N . In such a scenario, the
algorithm may also return an incorrect transition relation and
this will be discovered when verifying the ILA (see §V-B1).

2) Simulator Bugs: Since Sim models a simulator and real-
world simulators may contain bugs, it is possible that Sim
is not equivalent to the idealized transition relation N , i.e.,
Sim(S,W ) = N(S,W ) does not hold for all S and W . This
will also either cause an unsatisfiable result or an incorrect
transition relation. The former can be debugged using the unsat
core of Rk while the latter will be detected during verification.

3) Correctness of Synthesis: In the absence of template and
simulator bugs, we have the following result about correctness
of the synthesized next state functions.9

(Theorem 1) If Ti can express N and ∀S,W : Sim(S,W ) =
N(S,W ) then for each state element S[i] and for each opj ,
Algorithms 1 and 2 will terminate with result Φij and ∀S,W :
opj =⇒ Ti(Φij , S,W ) = Nj [i](S,W ).

B. Verification of Synthesized ILAs

Once we have an ILA, the next step is to verify that
it correctly abstracts the hardware implementation. This is
required because Theorem 1 only guarantees correctness of
synthesis in the absence of template and simulator bugs. For
strong guarantees of correctness, including correctness in the
presence of potential template and simulator bugs, we need
to verify correctness of the synthesized ILA against the RTL
hardware implementation.

1) Verifying Abstraction Correctness: For state variables
that model outputs of hardware components, we expect that
ILA outputs always match implementation outputs. In this
case, refinement relations are of the form G(xILA = xRTL).

However, if we are considering internal state variables of
hardware components, the above property is likely to be
false. For example, consider a pipelined microprocessor with
branch prediction. The processor may mispredict a branch
and execute “wrong-path” instructions. Although these in-
structions will eventually be flushed, while they are being
executed registers in the RTL will contain the results of these
“wrong-path” instructions and so xRTL will not match xILA.
Therefore, we consider refinement relations of the following
form: G(cond ij =⇒ xILA = xRTL) [25]. The predicate
cond ij specifies when the equivalence between state in the
ILA and the corresponding state in the implementation holds;
e.g., in a pipelined microprocessor, we might expect that
when an instruction commits, the architectural state of the
implementation matches the ILA.

2) Compositional Verification: Defining the refinement re-
lations as above allows compositional verification [23]. Con-
sider the property ¬(φU (cond ij∧(xILA 6= xRTL))) where φ
states that all refinement relations hold until time t−1. This is
equivalent to G(cond ij =⇒ xILA = xRTL), but we can now
abstract away irrelevant parts of φ when proving equivalence

9The absence of template and simulator bugs corresponds to the notion of
a valid structure hypothesis in the terminology of [32].
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of xILA and xRTL. For example, when considering opj , we
can abstract away the implementation of other opcodes opj′
and assume these are implemented correctly. This simplifies
the model and verifies each opcode separately.

3) Examples of Refinement Relations: One part of our case
study is a pipelined microcontroller with limited speculative
execution. Here the refinement relations are of the form
G(inst finished =⇒ (xILA = xRTL)). These relations
state that the ILA state variables and implementation state
variables must match when each instruction completes.

The other part of our case study involves the verification of
two cryptographic accelerators. Here the refinement relations
are of the following form: G(hlsm state changed =⇒
xILA = xRTL). The predicate hlsm state changed is true
whenever the high-level state machine in the accelerator
changes state. This refinement relation states that the high-
level state machines of the ILA and RTL have the same
transitions. The RTL state machine also has some “low-level”
states but such states do not exist in the ILA and are not visible
to the firmware, and hence do not need to match ILA state.

4) Verification Correctness: If we prove the refinement
relations for all outputs of the ILA and implementation, then
we know that the ILA and implementation have identical
externally-visible behavior. Hence any properties proven about
the behavior of the external inputs and outputs of the ILA are
also valid for the implementation.

Proving the property G(xILA = xRTL) for all external
outputs may not be scalable, so we adopt McMillan’s compo-
sitional approach. We prove refinement relations of the form
¬(φ U (cond ij ∧ xILA 6= xRTL)) for internal state and use
these to prove the equivalence of the outputs.

If such compositional refinement relations are proven for
all firmware-visible state in the ILA and implementation, this
shows that all firmware-visible state updates are equivalent
between the ILA and the implementation. Further, transitions
of the high-level of state machines in the ILA are equivalent
to those in the implementation. This guarantees that firm-
ware/hardware interactions in the ILA are equivalent to the
implementation, thus ensuring correctness of the abstraction.

VI. EVALUATION

This section presents an evaluation of the proposed method-
ology and algorithms. We describe the evaluation methodol-
ogy, the example SoC used as a case study, and then presents
the synthesis and verification results.

A. Methodology

This section describes our implementation and the libraries
and tools used, the structure of the example SoC, its firmware
programming interface and our verification objectives.

1) Implementation Details, Tools and Libraries: Our syn-
thesis framework (box 2 in Figure 1) was implemented in C++
using the Z3 SMT solver [7]. The synthesis framework can be
invoked using a domain-specific language (DSL) embedded
in Python. This DSL is used to describe ILAs and template
next state functions (box 1 in Figure 1). ILA verification
(box 6 in Figure 1) was done using ABC’s hardware model

checker [40]. ABC performs verification on gate-level netlists,
while the RTL description (box 5 in Figure 1) of our SoC is in
behavioral Verilog. We used a modified version of Yosys [44]
to synthesize netlists from behavioral Verilog. Experiments
were run on a machine with an Intel Xeon E3-1230 CPU
and 32 GB of RAM. Our synthesis framework, templates and
synthesized ILAs are available at [36].

8051

IRAM

REGS

ROM

I/O Ports Arbiter

XRAM

AES

SHA

Fig. 5: Example SoC Block Diagram

2) Example SoC Structure: We evaluate this methodology
using an SoC design consisting of the 8051 microcontroller
and two cryptographic accelerators. A block diagram of design
is shown in Figure 5. The RTL (Verilog) implementation of
the 8051 is from OpenCores.org [41]. We used i8051sim
from UC Riverside as a blackbox instruction-level simula-
tor of the 8051 [24]. One accelerator [19] implements en-
cryption/decryption using the Advanced Encryption Standard
(AES) [11]. The second accelerator [34] implements the
SHA-1 cryptographic hash function [12]. We wrote interface
modules that exposed the AES and SHA-1 accelerators to the
8051 using a memory-mapped I/O interface. The accelerators
and microcontroller share access to the XRAM, which stores
input and output data for the accelerators. We implemented
high-level simulators in Python for the two accelerators.

3) Firmware Programming Interface: Firmware running on
the 8051 configures the accelerators by writing to memory-
mapped registers. Operation is started by writing to the start
register which is also memory-mapped. The accelerators use
direct memory access (DMA) to fetch the data from the
external memory (XRAM), perform the operation and write
the result back to XRAM. Firmware determines completion
by polling a memory-mapped status register.

4) Verification Objectives: In this work we focus on pro-
ducing a verified ILA of the SoCs hardware components. The
objectives here are to verify that: (i) each instruction in the
8051 is executed according to the ILA, (ii) firmware pro-
gramming the cryptographic accelerators by reading/writing to
appropriate memory-mapped registers produces the expected
results, and (iii) ensure that implementation of the crypto-
graphic accelerators matches the high-level state machines in
the ILA. We do not verify correctness of encryption/hashing
and model these as uninterpreted functions.

B. Synthesis and Verification of the 8051 ILA

This section describes synthesis of the 8051 ILA from its
template and verification of the ILA against RTL.

1) Synthesizing the 8051 ILA: We constructed a template
ILA of the 8051 which models all opcodes and elements of
architectural state. We used i8051sim as the blackbox simu-
lator. Note this is equivalent to synthesizing the instruction
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set architecture (ISA) of the 8051. Our methodology ensures
that the constructed ILA specification is precisely-defined and
correct; this is a significant challenge in practice. For example,
Godefroid et al. [14] report that ISA documents only partially
define some instructions and leave some state undefined.
They also report instances where implementation behavior
contradicts the ISA document and cases where implementation
behavior changes between different generations of the same
processor-family. Our methodology avoids these pitfalls.

Model LoC Size
Template ILA ≈ 500 22 KB
C++ instruction-level simulator ≈ 3000 106 KB
Behavioral Verilog implementation ≈ 9600 360 KB

TABLE I: Lines of code (LoC) and size in bytes of each model.

As one indication of the effort involved in building the
model, Table I compares the size of the template ILA with
the simulator and the RTL implementation. The template ILA
is smaller than the high-level simulator (i8051sim) by a factor
of 5. Note the simulator is much smaller than the RTL. This
supports our claim that ILAs can be synthesized with lesser
effort than manual construction.

Figure 6(a) shows the execution times for synthesis of each
element of architectural in the ILA for the 8051. The blue
bars show the execution time for Algorithm 1 (SYNCEGIS)
while the yellow bars show the execution time for Algorithm 2
(SYNPARAM), which improves upon SYNCEGIS using the
distinguishing-input tree. Note the y-axis is in log-scale. We
see that for the challenging synthesis problems, e.g., the
IRAM, SYNPARAM is about 18× faster than SYNCEGIS.
Similarly for PSW, SYNPARAM is about 2× faster. Overall,
SYNPARAM is significantly faster than SYNCEGIS, with
speedup increasing for challenging instances. Average and
geometric mean speedups of SYNPARAM over SYNCEGIS
are 2.6× and 2.0× respectively.

2) Monolithic Verification of 8051 ILA: We first attempted
to verify the 8051 by generating a large monolithic Verilog
model from the ILA that implemented the entire functionality
of the processor in a single cycle. The IRAM in this model was
abstracted from a size of 256 bytes to 16 bytes. This abstracted
model was generated automatically using the synthesis library.
We manually implemented the abstraction reducing the size of
the IRAM in the RTL implementation.

We used this model to verify properties of the form
G(inst finished =⇒ xILA = xRTL). For the external
outputs of the processor, e.g., the external ram address and data
outputs, the properties were of the form G(output valid =⇒
xILA = xRTL). Verification was initially done using bounded
model checking (BMC) with ABC using the bmc3 command.
After fixing some bugs and disabling the remaining (17) buggy
instructions, we were able to reach a bound of 17 cycles after
5 hours of execution.

3) Compositional Verification of 8051 ILA: To improve
scalability, we generated a set of “per-instruction” models
which only implement the state updates for one of the 256
opcodes, the implementation of the other 255 opcodes is
abstracted away. We then verified a set of properties of the

form: ¬(φ U(inst finished ∧opcode = oi∧xILA 6= xRTL)).
Here φ states that all architectural state matches until time t−1.
We then attempted to verify five important properties stating
that: (i) PC, (ii) accumulator, (iii) the IRAM, (iv) XRAM data
output and (iv) XRAM address must be equal for the ILA and
the implementation.

Property BMC bounds Proofs
CEX ≤ 20 ≤ 25 ≤ 30 ≤ 35

PC 0 0 25 10 204 96
ACC 1 0 8 39 191 56
IRAM 0 0 10 36 193 1
XRAM/dataout 0 0 0 0 239 238
XRAM/addr 0 0 0 0 239 239

TABLE II: Results with per-instruction model.

Results for these verification experiments are shown in
Table II. Each row of the table corresponds to a particular
property. Columns 2-6 show the bounds reached by BMC
within 2000 seconds. For example, the first row shows that
for 25 instructions, the BMC was able to reach a bound
between 21 to 25 cycles without a counterexample; for 10
instructions, it achieved a bound between 26 to 30 cycles and
for the remaining 204 instructions, the BMC reached a bound
between 31 and 35 cycles. The last column shows the number
of instructions for which we could prove the property. These
proofs were done using the pdr command which implements
the IC3 unbounded model checking algorithm [3] with a time
limit of 1950 seconds. Before running pdr, we preprocessed
the netlists using the gate-level abstraction [26] technique with
a time limit of 450 seconds.

4) Bugs Found During 8051 Verification: Seven bugs were
found in the simulator during ILA synthesis. Bugs in CJNE,
DA, MUL and DIV instructions were due to signed integers
being used where unsigned values were expected. Another was
a typo in AJMP and the last was a mismatch between RTL and
the simulator when dividing by zero.

An interesting bug in the template was for the POP instruc-
tion. The POP <operand> instruction updates two items of
state: (1) <operand> = RAM[SP] and (2) SP = SP -
1. But what if operand is SP? The RTL set SP using (1)
while the ILA used (2). This was discovered during model
checking and the ILA was changed to match the RTL. This
shows one of the key benefits of our methodology: there are
no undefined corner cases and all state updates are precisely-
defined and consistent between the ILA and RTL.

In the RTL model, we found a total of 7+1 bugs. One of
these is an entire class of bugs related to the forwarding of
special function register (SFR) values from an in-flight instruc-
tion to its successor. This affects 17 different instructions and
all bit-addressable architectural state. We partially fixed this.
A complete fix appears to require significant effort. Another
interesting issue was due to reads from reserved/undefined
SFR addresses. The RTL returned the previous value stored
in a temporary buffer which could potentially have security
implications and result in unintended leakage of information
through undefined state. Various corner-case bugs were found
in the AJMP, JB, JNB, JBC, AJMP, DA and POP instructions.
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Fig. 6: Execution time: Baseline vs. Parameterized Synthesis.

C. Synthesis and Verification of Accelerator ILAs

We constructed 5 ILAs for the accelerators. One ILA for
the AES accelerator is a monolithic ILA (aes-py), the two
others are hierarchical and contain a macroILA that responds
to commands from the processor core and a microILA for
encryption state machine. These hierarchical ILAs were syn-
thesized using a high-level python simulator (aes-py-uinst)
and from the RTL (aes-verilog-uinst). Similarly, two SHA-1
ILAs were synthesized: a monolithic ILA (sha1-py) and a
hierarchical ILA containing a microILA similar to the AES
accelerator (sha1-py-uinst).

Model Template Size Simulator Size
LoC kB LoC kB

aes-py 163 5.4 225 6.5
aes-py-uinst 176 5.5 235 7.6
aes-rtl-uinst 203 7.1 1905 58

sha-py 126 4.7 207 6.5
sha-py-uinst 157 5.4 231 7.1

TABLE III: Lines of code and size of each model.

1) Synthesis Results: Table III compares the sizes of the
template ILA with the simulators. The template ILA is again
smaller in size than the simulator, but the difference in size is
not as pronounced as with the 8051. This is mainly because
the accelerators are simpler than the 8051 and so the python
simulators constructed for them are also small. However, these
results again demonstrate that ILAs can be synthesized for
non-trivial accelerators fairly easily.

Figure 6(b) shows the execution time for the two synthesis
algorithms – SYNCEGIS and SYNPARAM. Except for a few
outliers, SYNPARAM is faster than SYNCEGIS with average
and geometric mean speedups of 2.1× and 1.4× respectively.
These synthesis instances are easier those for the 8051 and so
the potential speedup is lower.

2) Verifying Accelerator ILAs: To simplify verification,
we reduced the size of the XRAM to just one byte as we
were not looking to prove correctness of reads and writes
to XRAM. We then examined set of properties of the form
G(hlsm state change =⇒ (xILA = xRTL)). We were
able to prove that the AES:State, AES:Addr, and AES:Len in
the implementation matched the ILA using the pdr command.
For other firmware-visible state, BMC found no property
violation up to 199 cycles with a time limit of one hour.

D. Scaling ILA-Based Verification to Larger Designs

Experimental results in this paper and the case study in [37]
show that ILAs can be constructed for non-trivial designs.
We now discuss the challenges in applying this methodology
on larger SoCs. Our methodology consists of two parts:
synthesis and verification. A complex processor, such as an
x86 processor, has thousands of instructions and hundreds of
architectural state variables. Constructing a template for such
a processor will be challenging. However, this is known to be
a difficult problem and [14, 17] have shown that synthesis is
very helpful in constructing models of ISAs.

Turning to verification, while a more complex processor
would indeed be harder to verify, the ILA does not add
new additional complexity here. If the design is too large
for formal verification, techniques like randomized testing and
simulation-based verification may be used. Since the ILA is
a precise machine-readable description of SoC hardware, it is
amenable to such semi-formal verification techniques.

VII. RELATED WORK

Abstraction Synthesis: We build on recent progress in syntax-
guided synthesis [1, 33]. Our synthesis algorithm is based on
oracle-guided synthesis [21], the theoretical underpinnings of
which are studied in [22]. Our contribution is the application
of synthesis to constructing abstractions for SoC verification
and the parameterized formulation which makes ILA synthesis
tractable. Godefroid et al. applied Oracle-guided synthesis to
construct a model for a subset of x86 ALU instructions [14].
Heule et al. [17] also tackled the same problem but combined
stochastic search techniques with modern constraint solvers.
Both [14] and [17] require processor-specific knowledge of
the opcode format and argument format and associated manual
effort to encode instruction functionality in templates. This
manual effort may be acceptable when building a single model,
such as the target of their work: part of an x86 CPU. Unlike
[14] and [17], we are interested in constructing complete ILAs
for diverse accelerators and processor cores and repetitive
manual analysis can be a significant bottleneck in this.
Processor Modeling and Verification: Formal modeling of
ISAs for processors is now a well-studied topic. An early
effort was the construction of a specification for and formal
verification of the FM8501 microprocessor by Hunt [20]. More
recently, Fox and Myreen [13] as well as the ISA-Formal
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project at ARM have constructed formal specifications of
ARM ISAs [29, 30]. Goel and colleagues [15] constructed
a specification of both user-level and system-level instructions
in the x86 ISA. All these specifications can be used to reason
about software and also to verify that hardware correctly
implements the ISA. While our goals for the ILA are similar,
we wish to go beyond modeling programmable cores and also
model application-specific accelerators. A second difference is
our use of synthesis for semi-automatic construction.

The refinement relations we use in proving that the abstrac-
tion and the implementation match are based on the refinement
relations for processor verification presented in [23, 25]. Also
helpful in our verification effort were techniques for memory
modeling and abstraction in model checking, such as Velev’s
memory model [43]. While these verification techniques are
very important, these are not the focus of our paper. We focus
on synthesizing abstractions. To verify their correctness, we
can leverage the rich body of work in hardware verification.
SoC Verification: A number of efforts have studied
transaction-level modeling (TLM) of SoCs using System-
C [4, 16, 28, 39, 42] and the Spec-C language [9]. A
key difference between ILAs and TLMs is that ILAs seek
to precisely delineate the HW/FW interface while showing
refinement between the ILA and SoC hardware. Both of these
remain challenging with TLMs. Also, ILA synthesis can help
construct models bottom-up for existing legacy SoC IPs.

Although many studies in recent years have investigated
the problems of firmware and hardware verification, most of
these studies have typically focused on separate verification of
hardware and firmware. Examples include [2, 6, 18, 31], all of
which use symbolic execution to analyze firmware. These ef-
forts do not address co-verification of hardware and firmware,
a critical requirement for SoC verification. One approach to
compositional SoC co-verification of hardware and firmware
is by Xie et al. [45, 46] which involves the construction of
“bridge” specifications. Our methodology makes it easy to
construct the equivalent of the bridge specifications while also
ensuring this specification (abstraction) is correct.

VIII. CONCLUSION

Modern SoCs consist of programmable cores, accelerators
and peripheral devices as well as firmware running on the
programmable cores. Functionality of the SoC is derived
by a combination of firmware and hardware. Verifying such
SoCs is challenging because formally verifying a unified SoC
description with firmware and hardware is not scalable, while
verifying the two components separately may miss bugs.

In this paper, we introduced a methodology for SoC verifica-
tion based on synthesizing instruction-level abstractions (ILA)
of SoCs. The ILA captures updates to all firmware-accessible
states in the SoC and can be used instead of the bit-precise
cycle-accurate hardware model while proving system-level
properties involving firmware and hardware. One advantage of
our methodology is that the ILA is verifiably correct: we prove
that the behavior of the ILA matches the implementation.
Another advantage is that instead of specifying the complete
ILA, the verification engineer has an easier task of writing a

template ILA which partially defines the operation of the hard-
ware components, and our synthesis algorithm reconstructs
the missing details. We demonstrated the applicability of our
methodology by using it to verify a small SoC consisting of
the 8051 microcontroller and two cryptographic accelerators.
The verification process uncovered several bugs substantiating
our claim that the methodology is effective.
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