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Abstract 

 
There is increased interest in the use of graphics processing units 

(GPUs) for general purpose computation. This is because GPUs 

are almost two orders of magnitude faster in terms of floating point 

throughput compared to conventional CPUs. In this paper we 

investigate the use of graphics processing units for accelerating 

signal processing algorithms, specifically FIR filters and the FFT. 

We describe optimized implementation of these that take advantage 

of the instruction-level-parallelism and the data parallel stream 

processing architecture of a GPU. We also present benchmarks 

illustrating that these signal processing algorithms are significantly 

faster when run on the GPU as compared to implementations that 

run on conventional CPUs. 

 

1. Introduction 

 
Modern graphics processors are designed to process large 
streams of graphics primitives like points and polygons. 
Since there is no dependence between the processing of one 
polygon/point and the next, GPUs are designed to have 
massive parallelism and deep pipelines. Additionally, the 
architecture tends to emphasize execution over control flow 
and branching constructs.   
 
The net result of all these factors is that modern GPUs have 
floating point performance that is two orders of magnitude 
higher than that of conventional CPUs. For instance the 
NVIDIA Tesla S870 GPU Server has a peak floating point 
throughput of 2 teraflops as compared to the Quad-Core Intel 
Xeon X5355 processor which has a floating point throughput 
of 63.5 gigaflops. [11] It should not be surprising that there is 
considerable interest in leveraging this computational power 
for general-purpose computation. Unfortunately, difficult to 
use graphics APIs which are required to control and execute 
code on the GPU and a complicated programming model for 
code running on the GPU itself together mean that the full 
computational capacity of GPUs is yet to be exploited. 

2. GPU Architecture and Programming 

Figure 1 shows a simplified block diagram of the graphics 
pipeline1. Until about six years ago the graphics pipeline was 

 
1 The graphics pipeline is the sequence of operations 
involved in converting a stream of three-dimensional 
vertices, to a two-dimensional image to be rendered on the 
screen. See [1] for more details on 3D graphics rendering. 

usually implemented by a fixed function ASIC, but 
advances in VLSI technology have made it possible for 
many parts of the pipeline to be programmable. Current 
GPUs have two logical programmable units: the vertex and 
fragment2 processors. The fragment processor on the GPU 
typically has an order of magnitude more processing power 
than the vertex processor. (Note that some modern graphics 
processors have only one type of execution unit dynamically 
assigned to either vertex or fragment program execution, so 
the distinction between vertex and fragment processors 
might not actually be present in hardware) 
 

Figure 1 : The graphics pipeline 

 
Traditional GPGPU3, has mostly focused on leveraging the 
computational capacity of the fragment processor [3]. The 
input to the fragment processor is given in textures4, and 
instead of writing the rendered output to the screen, the 
render-to-texture feature of modern graphics systems is used 
to write the results to another texture. The fragment 
processor is parallel SIMD (Single Instrument Multiple Data 
stream) processor, and applies the same operation on all the 
rendered elements in the input texture. The operation 
applied is analogous to the inner loop in CPU computation 
and is referred to as the computational kernel.  
 
Multistage algorithms (our implementation of the FFT, for 
example) are implemented using a technique called ping-
pong buffering – two textures t1 and t2 are allocated; for the 
first stage, t1 is bound as the input texture, and t2 as the 
output texture and the fragment program is run. For the next 
stage of computations, t2 is made the input texture and t1 is 
made the output texture, and the fragment program is 
executed again. This process of swapping the input and 
output textures is repeated N-1 times for an N stage 
algorithm. (Continuing on the FFT example, a 1024 point 

 
2 A fragment can be roughly defined as a potential pixel. 
3 GPGPU : General Purpose Computation on GPUs 
4 A texture is a bitmap that is projected onto a surface.  

Application Vertex 

Processor 
Rasterizer Fragment 

Processor 

Video 

Memory 

render-to-texture 

Vertices 

(3D) 

Transformed, Lit 

vertices 

Final Pixels 

Fragment 



FFT which requires 10-stages of processing will swap the 
input and output textures 9 times). 
  
 

3. FIR Filter Implementation And Benchmarks 

 
A Finite Impulse Response (FIR) Filter operating on an input 
signal x[n], to produce the output y[n] is defined by the 
equation: 
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3.1 FIR Filter Implementation Details 

 
The SIMD processors on modern GPUs have the ability to 
natively process the float4 data type5. As GPUs can perform 
addition, multiplication, and other floating point operations 
on each of these 4 components in parallel, we attempt to 
restructure the FIR filter equation to take advantage of these 
operations. 
 
Let us assume that the number of coefficients of the FIR 
filter is a multiple of 4. (This causes no loss of generality 
because the filter coefficients can always be padded with 
zeros to reach a multiple of four). Using this, (1) may be 
rewritten as: 
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Notice that the term between the parentheses can be viewed 
as the component wise multiplication of two float4 tuples – 
which means that this interpretation of the FIR filter can be 
used for an efficient implementation on the GPU. With this 
objective in mind, we stored the FIR filter input in a single 
RGBA texture. This leads to an organization similar to the 
one shown in Figure 2. However, just reordering the 
computation performed by the filter alone is not sufficient, 
because the GPU cannot load 4-tuples that span across 
texture-elements. In the example shown in Figure 2, while 
the GPU can load x[0], x[1], x[2] and x[3] into a float4 
variable in a single load operation as it is stored at texture-
coordinate (0, 0); it is not possible to load x[1], x[2], x[3] 

and x[4],  in a single operation. The elements x[1], x[2] and 

x[3] are stored at coordinates (0, 0) while the element x[4] is 
stored at coordinate (0, 1).  This means that to calculate the 
filter output at x[4], the filter will have to make two load 
operations, and then combine the two values, before the 
component-wise multiplication of the float4 tuples can be 
performed. In general, for the current data-structure, 
calculating filter outputs at all locations that are not of the 
form x[4n-1] (n being a positive integer) without additional 
load/combination operations is not possible. 

 
5 A float4 is a 4-tuple of single precision floating point 
numbers. In graphics applications, these are typically used to 
store either (x, y, z, w) coordinates or (r, g, b, a) color values. 

 

 
We avoided the additional load operators by storing four 
shifted copies of the filter coefficients. An example is shown 
in Figure 3 for a filter with 4 taps. Notice that by selecting 

the filter texture row as (arrayIndex mod 4); we can 
calculate the filter output for all input samples. 
 

3.2 FIR Filter on GPU : Pseudocode 

Pseudocode equivalent to our fragment program kernel for 
the GPU is shown below: 

for each input texture element x[n] do: 

float4 sum1 = {0, 0, 0, 0}, sum2 = {0, 0, 0, 0}; 

float4 sum3 = {0, 0, 0, 0}, sum3 = {0, 0, 0, 0}; 

float4 filteredOutput; 

for i ß 0 to (filter length / 4) do: 

sum1 ß sum1 + x[n-i]*h[0, i] 

sum2 ß sum2 + x[n-i]*h[1, i] 

sum3 ß sum3 + x[n-i]*h[2, i] 

sum4 ß sum4 + x[n-i]*h[3, i] 

filteredOutput.x = sum1.x+sum1.y+sum1.z+sum1.w; 

filteredOutput.y = sum2.x+sum2.y+sum2.z+sum2.w; 

filteredOutput.z = sum3.x+sum3.y+sum3.z+sum3.w; 

filteredOutput.w = sum4.x+sum4.y+sum4.z+sum4.w; 

store filteredOutput in output texture 

Algorithm 3.1: GPU Filtering Kernel 

 
Our implementation used direct memory access (DMA) to 
transfer the filter input samples from CPU memory to a 
texture on the GPU VRAM; Computation was done by 
drawing a screen-aligned polygon. We implemented the 
fragment kernel in Cg [5], and used the OpenGL API to 
interface with the GPU. 
 

3.3 FIR Filter Benchmarks 

 

We compared our FIR filter routine running on the GPU to a 
CPU and benchmarked the performance increase. The GPU 
we used was an NVIDIA GeForce 8600 GT, and our CPU 
was an Intel Pentium 4 “Prescott” clocked at 3.2 GHz.  

Figure 4 shows the variation of the filter execution time with 
the number of filter taps for FIR Filters implemented on the 
GPU and on the CPU when both filters are processing 2M 
samples. The GPU kernel is consistently about 8 times 
faster.  
 

texture 

row 
texture column 0 texture column 1 

0 x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] 

1 x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15] 

2 x[16] x[17] x[18] x[19] x[20] x[21] x[22] x[23] 

3 x[24] x[25] x[26] x[27] x[28] x[29] x[30] x[31] 

Figure 2: Example showing the storage of FIR filter input in an 

RGBA texture 

 

texture 
row 

texture column 0 texture column 1 

0 h[3] h[2] h[1] h[0] 0 0 0 0 

1 h[2] h[1] h[0] 0 0 0 0 h[3] 

2 h[1] h[0] 0 0 0 0 h[3] h[2] 

3 h[0] 0 0 0 0 h[3] h[2] h[1] 

Figure 3: Example showing the storage of FIR Filter coefficients 

in an RGBA Texture 

 



 
Figure 4 

 

Figure 5 shows the variation of the filter execution time with 
number of filter taps constant at 57, as the input sample 
count varies from 100 thousand samples to 4.1 million 
samples. Note that the GPU filter shows more of a 
performance increase when processing larger block sizes or 
when the filter has a higher number of taps.  

 
Figure 5 

 

4. FFT Implementation and Benchmarks 

We describe an implementation of the radix-2 decimation in 
time Cooley-Tukey FFT Algorithm for complex inputs 
below. 

4.1 FFT Implementation 

Current graphics processors impose a limit on the maximum 
size along each dimension of a texture (this varies across 
GPUs, but is usually of the order of 2K). As a consequence, 
for FFT sizes larger than a few thousand, we cannot store the 
input samples in a single row of a 2D texture. Secondly, 
since we are implementing the decimation-in-time version of 
the Cooley-Tukey algorithm, the input to the FFT will have 
to be stored in a bit-reversed fashion before the FFT 
computation can be performed on it. To take advantage of 
the float4 data-type on the GPU, we pack two complex 
numbers into a single float4 tuple, so each element in the 
input texture consists of two complex numbers. 
 

4.1.1 Naïve Implementation of FFT on GPU 

 

There are two primary challenges in porting the Cooley-
Tukey FFT algorithm to the GPU: (1) it is not possible to 

write to arbitrary memory locations6 when executing 
fragment kernel code, (2) current GPUs do not have 
efficient support for conditional statements.  
 
The location of each fragment on the grid is fixed at the time 
of fragment creation, and the fragment program kernel 
cannot alter that location. In other words, fragment 
programs running on the GPU cannot write to arbitrary 
locations. In the context of the FFT implementation this 
poses a problem because, we cannot perform a 
straightforward translation of the Cooley-Tukey algorithm - 
iterating over each butterfly, and writing out the two output 
values (shown in Algorithm 4.1).  
 
for i ß 1 to log2N : 

for each butterfly in this stage: 

x1' ß x1 + x2*Wn
k 

x2' ß x1 -  x2*Wn
k
 

Algorithm 4.1: FFT on CPU 

Instead the GPU implementation will have to work-
backwards based on the coordinate of the current fragment 
which is being computed. This implementation is shown in 
Algorithm 4.2. 
 
‘iterate over FFT stages 

for i ß 1 to log2N:  

for each output coordinate x do: 

‘points lies on the “upper” 

‘end of a butterfly 

if (x mod 2i) < 2i-1: 

output ß input[x] + Wn
k *input[x+2i-1]  

else: 

‘points lies on the “lower” 

‘end of a butterfly 

output ß input[x] - Wn
k *input[x-2i-1]  

store output value 

 

‘ping-pong texturing 

swap input and output textures 

Algorithm 4.2: Naïve GPU implementation of FFT 

 
Current graphics processors do not have complete support 
for conditional statements. Instead, conditional statements 
are implemented using predicated execution – meaning that 
the GPU will execute the code for when the if-statement 
returns true, as well as that for the case when the statement 
returns false, and finally, only one of the two results will be 
stored. As a consequence, the naïve implementation of the 
FFT will actually perform almost 2X the required number of 
operations, suffering a significant performance hit. 
 

4.1.2 Efficient FFT Implementation on GPU 

 

The conditional statements in the GPU code can be 
eliminated by using static branch resolution on the CPU [8]. 
In this technique, the algorithm is split into two specialized 
fragment programs – one containing the code that will be 
executed when the condition evaluates to true, and another 
containing the code to be executed when the condition 

 
6 The operation of writing to arbitrary memory locations is 
referred to as “scatter”. Restricting memory writes to pre-
computed locations significantly simplifies processor 
architecture. (For instance arbitration circuitry  that would 
otherwise be required to handle multiple-writer conflicts can 
be avoided) 



evaluates to false. The controlling code running on the CPU 
identifies which of the two programs is to be run on each 
input texture-element. 
 
For this technique to be efficient, the CPU should not have to 
evaluate the branching condition for each texel. Instead, sets 
of texels for which the condition evaluates to the same value 
need to be identified. Below we outline a method to identify 
these sets of texture elements when the texture width W is 
constrained to be a power of 2. 
 

Define W = 2
k
  [where k is an integer] (3) 

 
The first stage of the FFT has two special properties that are 
exploited in our implementation. Firstly, it operates on 
adjacent elements in the input texture, and because of our 
packed complex number representation, the elements of each 
butterfly diagram are going to be stored in the same texture 
element. Secondly, the twiddle factors in the FFT 
computation for the first stage are all equal to one, and need 
not be multiplied. This leads to a particularly simple GPU 
fragment kernel for the first stage of the FFT. 
 
for each texture element pt in input texture do: 

val ß float4 ( pt.xy + pt.zw, pt.xy – pt.zw) 

store val in output texture 
Algorithm 4.3:  First stage of GPU FFT Implementation 

 
The condition we use to decide whether the element at array 

index j is on the upper or lower end of each butterfly 
structure is: 
 

j mod 2i+1
 < 2

i where 0 ≤ i < log2N (4) 
 
Consider an arbitrary element in the input texture located at 
coordinates (x, y). For a row-major mapping from the input 
array to the texture, the condition (4) can be re-written as: 
 

(y·W +x) mod 2i+1 
<2

i
   (5) 

 
For stages i such that 0 < i ≤ k-1; (y·W +x) mod 2i+1 is x mod 
2

i+1, because W is a multiple of 2i. This leads to the condition 
in equation (5) reducing to: 

x mod 2i+1 < 2i
    (6) 

 
In other  words, this means that all the elements which 
satisfy condition (5) lie in a series of column-aligned 
rectangles whose diagonals are defined by points (p·2

i+1
, 0), 

(p·2
i+1

+2
i
-1, H); where 0 ≤ p < 2

k-i-1
.  

 
Let us now consider the case when 2i+1 

> W, specifically, let: 
 W·2

q 
= 2

i+1
.     (7) 

 
For a given row (i.e. constant y), x is at most W-1. Therefore: 
 max(y·W + x) = W·(y+1) – 1  (8) 
 
Using (8) in equation (5): 

(W·(y+1)-1) mod 2i+1
 < 2

i
   (9) 

 
It is easy to see that this is true when:  
 y+1 < 2

q-1 (10) 
 

Therefore the solutions to (5) are of the form: 
 y = m·2

q
+ l  (11) 

where 0 ≤ m < N/2
i+1

, 0 ≤ l < 2
p-1

. 

 
Equation (11) can be interpreted to mean that all the 
solutions to (5) are a series of row-aligned rectangles, for the 
stages k, k+1…log2N-1 of the FFT. 
 
Algorithm 4.4 shows the CPU code, that implements the 
static branch resolution for the GPU FFT. 
 
load first stage program on GPU 

perform computation on entire texture 

swap input and output textures 

 

‘iterate over stages from 1 to k-2;  

‘draw column-aligned rectangles 

for i ß 1 to k-1 do: 

load upper-point column butterfly program on GPU 

for j ß 0 to 2k-i-1 do: 

perform computation on  

 rectangle (j·2i+1, 0, j·2i+1+2i-1, H) 

load lower-point column butterfly program on GPU 

for j ß 0 to 2k-i-1 do: 

perform computation on  

 rectangle (j·2i+1+2i-1, 0, j·2i+1+2·2i-1-1, H) 

‘ping pong buffering 

swap input and output texture 

 

‘iterate over remaining stages of FFT  

‘draw row aligned rectangles now 

for i ß k to log2N – 1 do: 

load upper-point row butterfly program on GPU 

for j ß 0 to 2i-k do: 

perform computation on  

 rectangle (0, j·2i-k, W, j·2i-k+2i-k-1) 

load lower-point row butterfly program on GPU 

for j ß 0 to 2i-k do: 

perform computation on  

 rectangle (0, j·2i-k+2i-k-1, W, j·2i-k+2·2i-k-1) 

‘ping pong buffering 

swap input and output texture 

Algorithm 4.4: CPU Code 

 
The code avoids the overhead of running conditional 
statements on the GPU, by creating specialized programs 
that are controlled by code running on the CPU. Since each 
of individual fragment programs do not contain any 
conditional statements, the execution on the GPU is 
efficient. 
 
Algorithms 4.5 and 4.6 show the programs that are run for 
the stages 1 to k-1. 
 
For each texture element pt in input texture do: 

‘coords is the coordinate of the current point 

float2 lowerPointCoords ß  

 float2(coords.x+2i, coords.y)  

float4 lowerNum ß inputSamples[lowerPointCoords] 

float4 twiddle ß float4(WN
k, WN

k+1) 

store inputSamples[coords] + lowerNum * twiddle 

Algorithm 4.5: Upper Point Column Butterfly Program 

 
For each texture element pt in input texture do: 

‘coords is the coordinate of the current point 

float2 upperPointCoords ß  

 float2(coords.x-2i, coords.y)  

float4 upperNum ß inputSamples[upperPointCoords] 

float4 twiddle ß float4(WN
k, WN

k+1) 

store upperNum - inputSamples[coords] * twiddle 

Algorithm 4.6:  Lower Point Column Butterfly Program 

 
Algorithms 4.7 and 4.8 show the programs that are run for 
the stages k to log2N – 1. 
 



For each texture element pt in input texture do: 

‘coords is the coordinate of the current point 

float2 lowerPointCoords ß  

 float2(coords.x, coords.y+2i/W)  

float4 lowerNum ß inputSamples[lowerPointCoords] 

float4 twiddle ß float4(WN
k, WN

k+1) 

store inputSamples[coords] + lowerNum * twiddle 

Algorithm 4.7:  Upper Point Row Butterfly Program 

 
For each texture element pt in input texture do: 

‘coords is the coordinate of the current point 

float2 upperPointCoords ß  

 float2(coords.xi, coords.y-2i/W)  

float4 upperNum ß inputSamples[upperPointCoords] 

float4 twiddle ß float4(WN
k, WN

k+1) 

store upperNum – inputSamples[coords] * twiddle 

Algorithm 4.8:  Lower Point Row Program 

 

4.2 FFT Benchmarks 

Figure 6 shows the execution times for the GPU and CPU 
implementations of the FFT. The GPU is faster than the CPU 
by a factor of about 2.5X. 

 
Figure 6: Plot of FFT Size vs. Execution Times 

 
Figure 7 shows the speedup of the GPU FFT over the CPU 
FFT across FFT sizes. 

 
Figure 7: Plot of Speedup of GPU FFT over CPU. 

5. Conclusions and Future Work 

We presented innovative algorithms for implementation of 
FIR filters and FFT on graphics processors that take 
advantage of the data-parallel streaming architecture of these 
devices; we also provided benchmarks comparing our 
implementations to implementations running on the CPU, 
showing that a significant performance gain was achieved by 
implementing these algorithms on the GPU. We showed 
speedups of about 8X for the FIR filter, and about 2X for the 
FFT. The graphics processor we used was the NVIDIA 
GeForce 8600 GT, which retails for just $150. Our results 
show that even with inexpensive graphics processors many 

signal processing algorithms can be accelerated significantly 
using GPUs. 
 
We are in the process of investigating GPU implementations 
of routines for performing linear algebraic operations on 
large datasets. In future work, we also intend to explore 
efficient implementations of other signal processing 
algorithms which are expensive for CPU implementations. 
Specifically resampling is an application that we are 
planning to target. 
 
Sengupta et al [9] have recently outlined a set of primitives 
for GPU computation that can be used for the efficient 
implementation of many algorithms that are not seemingly 
data-parallel. An analysis of these primitives with the aim of 
implementing signal processing algorithms that require 
feedback: IIR filters for instance, could also prove to be a 
fruitful direction for future research. 
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