
ACCELERATING SIGNAL PROCESSING ALGORITHMS USING GRAPHICS

PROCESSORS

Ashwin Prasad and Pramod Subramanyan

RF and Communications R&D
National Instruments, Bangalore – 560095, India

Email: {asprasad, psubramanyan}@ni.com

Abstract

There is increased interest in the use of graphics processing units

(GPUs) for general purpose computation. This is because GPUs

are almost two orders of magnitude faster in terms of floating point

throughput compared to conventional CPUs. In this paper we

investigate the use of graphics processing units for accelerating

signal processing algorithms, specifically FIR filters and the FFT.

We describe optimized implementation of these that take advantage

of the instruction-level-parallelism and the data parallel stream

processing architecture of a GPU. We also present benchmarks

illustrating that these signal processing algorithms are significantly

faster when run on the GPU as compared to implementations that

run on conventional CPUs.

1. Introduction

Modern graphics processors are designed to process large
streams of graphics primitives like points and polygons.
Since there is no dependence between the processing of one
polygon/point and the next, GPUs are designed to have
massive parallelism and deep pipelines. Additionally, the
architecture tends to emphasize execution over control flow
and branching constructs.

The net result of all these factors is that modern GPUs have
floating point performance that is two orders of magnitude
higher than that of conventional CPUs. For instance the
NVIDIA Tesla S870 GPU Server has a peak floating point
throughput of 2 teraflops as compared to the Quad-Core Intel
Xeon X5355 processor which has a floating point throughput
of 63.5 gigaflops. [11] It should not be surprising that there is
considerable interest in leveraging this computational power
for general-purpose computation. Unfortunately, difficult to
use graphics APIs which are required to control and execute
code on the GPU and a complicated programming model for
code running on the GPU itself together mean that the full
computational capacity of GPUs is yet to be exploited.

2. GPU Architecture and Programming

Figure 1 shows a simplified block diagram of the graphics
pipeline1. Until about six years ago the graphics pipeline was

1 The graphics pipeline is the sequence of operations
involved in converting a stream of three-dimensional
vertices, to a two-dimensional image to be rendered on the
screen. See [1] for more details on 3D graphics rendering.

usually implemented by a fixed function ASIC, but
advances in VLSI technology have made it possible for
many parts of the pipeline to be programmable. Current
GPUs have two logical programmable units: the vertex and
fragment2 processors. The fragment processor on the GPU
typically has an order of magnitude more processing power
than the vertex processor. (Note that some modern graphics
processors have only one type of execution unit dynamically
assigned to either vertex or fragment program execution, so
the distinction between vertex and fragment processors
might not actually be present in hardware)

Figure 1 : The graphics pipeline

Traditional GPGPU3, has mostly focused on leveraging the
computational capacity of the fragment processor [3]. The
input to the fragment processor is given in textures4, and
instead of writing the rendered output to the screen, the
render-to-texture feature of modern graphics systems is used
to write the results to another texture. The fragment
processor is parallel SIMD (Single Instrument Multiple Data
stream) processor, and applies the same operation on all the
rendered elements in the input texture. The operation
applied is analogous to the inner loop in CPU computation
and is referred to as the computational kernel.

Multistage algorithms (our implementation of the FFT, for
example) are implemented using a technique called ping-
pong buffering – two textures t1 and t2 are allocated; for the
first stage, t1 is bound as the input texture, and t2 as the
output texture and the fragment program is run. For the next
stage of computations, t2 is made the input texture and t1 is
made the output texture, and the fragment program is
executed again. This process of swapping the input and
output textures is repeated N-1 times for an N stage
algorithm. (Continuing on the FFT example, a 1024 point

2 A fragment can be roughly defined as a potential pixel.
3 GPGPU : General Purpose Computation on GPUs
4 A texture is a bitmap that is projected onto a surface.

Application Vertex

Processor
Rasterizer Fragment

Processor

Video

Memory

render-to-texture

Vertices

(3D)

Transformed, Lit

vertices

Final Pixels

Fragment

FFT which requires 10-stages of processing will swap the
input and output textures 9 times).

3. FIR Filter Implementation And Benchmarks

A Finite Impulse Response (FIR) Filter operating on an input
signal x[n], to produce the output y[n] is defined by the
equation:

∑
−

=

−=

1

0

][][][
N

k

khknxny (1)

3.1 FIR Filter Implementation Details

The SIMD processors on modern GPUs have the ability to
natively process the float4 data type5. As GPUs can perform
addition, multiplication, and other floating point operations
on each of these 4 components in parallel, we attempt to
restructure the FIR filter equation to take advantage of these
operations.

Let us assume that the number of coefficients of the FIR
filter is a multiple of 4. (This causes no loss of generality
because the filter coefficients can always be padded with
zeros to reach a multiple of four). Using this, (1) may be
rewritten as:

∑
−

=

+−−

++−−

++−−

+−

=

14/

0

]34[]34[

]24[]24[

]14[]14[

]4[]4[

][
N

k

khknx

khknx

khknx

khknx

ny

 (2)

Notice that the term between the parentheses can be viewed
as the component wise multiplication of two float4 tuples –
which means that this interpretation of the FIR filter can be
used for an efficient implementation on the GPU. With this
objective in mind, we stored the FIR filter input in a single
RGBA texture. This leads to an organization similar to the
one shown in Figure 2. However, just reordering the
computation performed by the filter alone is not sufficient,
because the GPU cannot load 4-tuples that span across
texture-elements. In the example shown in Figure 2, while
the GPU can load x[0], x[1], x[2] and x[3] into a float4
variable in a single load operation as it is stored at texture-
coordinate (0, 0); it is not possible to load x[1], x[2], x[3]

and x[4], in a single operation. The elements x[1], x[2] and

x[3] are stored at coordinates (0, 0) while the element x[4] is
stored at coordinate (0, 1). This means that to calculate the
filter output at x[4], the filter will have to make two load
operations, and then combine the two values, before the
component-wise multiplication of the float4 tuples can be
performed. In general, for the current data-structure,
calculating filter outputs at all locations that are not of the
form x[4n-1] (n being a positive integer) without additional
load/combination operations is not possible.

5 A float4 is a 4-tuple of single precision floating point
numbers. In graphics applications, these are typically used to
store either (x, y, z, w) coordinates or (r, g, b, a) color values.

We avoided the additional load operators by storing four
shifted copies of the filter coefficients. An example is shown
in Figure 3 for a filter with 4 taps. Notice that by selecting

the filter texture row as (arrayIndex mod 4); we can
calculate the filter output for all input samples.

3.2 FIR Filter on GPU : Pseudocode

Pseudocode equivalent to our fragment program kernel for
the GPU is shown below:

for each input texture element x[n] do:

float4 sum1 = {0, 0, 0, 0}, sum2 = {0, 0, 0, 0};

float4 sum3 = {0, 0, 0, 0}, sum3 = {0, 0, 0, 0};

float4 filteredOutput;

for i ß 0 to (filter length / 4) do:

sum1 ß sum1 + x[n-i]*h[0, i]

sum2 ß sum2 + x[n-i]*h[1, i]

sum3 ß sum3 + x[n-i]*h[2, i]

sum4 ß sum4 + x[n-i]*h[3, i]

filteredOutput.x = sum1.x+sum1.y+sum1.z+sum1.w;

filteredOutput.y = sum2.x+sum2.y+sum2.z+sum2.w;

filteredOutput.z = sum3.x+sum3.y+sum3.z+sum3.w;

filteredOutput.w = sum4.x+sum4.y+sum4.z+sum4.w;

store filteredOutput in output texture

Algorithm 3.1: GPU Filtering Kernel

Our implementation used direct memory access (DMA) to
transfer the filter input samples from CPU memory to a
texture on the GPU VRAM; Computation was done by
drawing a screen-aligned polygon. We implemented the
fragment kernel in Cg [5], and used the OpenGL API to
interface with the GPU.

3.3 FIR Filter Benchmarks

We compared our FIR filter routine running on the GPU to a
CPU and benchmarked the performance increase. The GPU
we used was an NVIDIA GeForce 8600 GT, and our CPU
was an Intel Pentium 4 “Prescott” clocked at 3.2 GHz.

Figure 4 shows the variation of the filter execution time with
the number of filter taps for FIR Filters implemented on the
GPU and on the CPU when both filters are processing 2M
samples. The GPU kernel is consistently about 8 times
faster.

texture

row
texture column 0 texture column 1

0 x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

1 x[8] x[9] x[10] x[11] x[12] x[13] x[14] x[15]

2 x[16] x[17] x[18] x[19] x[20] x[21] x[22] x[23]

3 x[24] x[25] x[26] x[27] x[28] x[29] x[30] x[31]

Figure 2: Example showing the storage of FIR filter input in an

RGBA texture

texture
row

texture column 0 texture column 1

0 h[3] h[2] h[1] h[0] 0 0 0 0

1 h[2] h[1] h[0] 0 0 0 0 h[3]

2 h[1] h[0] 0 0 0 0 h[3] h[2]

3 h[0] 0 0 0 0 h[3] h[2] h[1]

Figure 3: Example showing the storage of FIR Filter coefficients

in an RGBA Texture

Figure 4

Figure 5 shows the variation of the filter execution time with
number of filter taps constant at 57, as the input sample
count varies from 100 thousand samples to 4.1 million
samples. Note that the GPU filter shows more of a
performance increase when processing larger block sizes or
when the filter has a higher number of taps.

Figure 5

4. FFT Implementation and Benchmarks

We describe an implementation of the radix-2 decimation in
time Cooley-Tukey FFT Algorithm for complex inputs
below.

4.1 FFT Implementation

Current graphics processors impose a limit on the maximum
size along each dimension of a texture (this varies across
GPUs, but is usually of the order of 2K). As a consequence,
for FFT sizes larger than a few thousand, we cannot store the
input samples in a single row of a 2D texture. Secondly,
since we are implementing the decimation-in-time version of
the Cooley-Tukey algorithm, the input to the FFT will have
to be stored in a bit-reversed fashion before the FFT
computation can be performed on it. To take advantage of
the float4 data-type on the GPU, we pack two complex
numbers into a single float4 tuple, so each element in the
input texture consists of two complex numbers.

4.1.1 Naïve Implementation of FFT on GPU

There are two primary challenges in porting the Cooley-
Tukey FFT algorithm to the GPU: (1) it is not possible to

write to arbitrary memory locations6 when executing
fragment kernel code, (2) current GPUs do not have
efficient support for conditional statements.

The location of each fragment on the grid is fixed at the time
of fragment creation, and the fragment program kernel
cannot alter that location. In other words, fragment
programs running on the GPU cannot write to arbitrary
locations. In the context of the FFT implementation this
poses a problem because, we cannot perform a
straightforward translation of the Cooley-Tukey algorithm -
iterating over each butterfly, and writing out the two output
values (shown in Algorithm 4.1).

for i ß 1 to log2N :

for each butterfly in this stage:

x1' ß x1 + x2*Wn
k

x2' ß x1 - x2*Wn
k

Algorithm 4.1: FFT on CPU

Instead the GPU implementation will have to work-
backwards based on the coordinate of the current fragment
which is being computed. This implementation is shown in
Algorithm 4.2.

‘iterate over FFT stages

for i ß 1 to log2N:

for each output coordinate x do:

‘points lies on the “upper”

‘end of a butterfly

if (x mod 2i) < 2i-1:

output ß input[x] + Wn
k *input[x+2i-1]

else:

‘points lies on the “lower”

‘end of a butterfly

output ß input[x] - Wn
k *input[x-2i-1]

store output value

‘ping-pong texturing

swap input and output textures

Algorithm 4.2: Naïve GPU implementation of FFT

Current graphics processors do not have complete support
for conditional statements. Instead, conditional statements
are implemented using predicated execution – meaning that
the GPU will execute the code for when the if-statement
returns true, as well as that for the case when the statement
returns false, and finally, only one of the two results will be
stored. As a consequence, the naïve implementation of the
FFT will actually perform almost 2X the required number of
operations, suffering a significant performance hit.

4.1.2 Efficient FFT Implementation on GPU

The conditional statements in the GPU code can be
eliminated by using static branch resolution on the CPU [8].
In this technique, the algorithm is split into two specialized
fragment programs – one containing the code that will be
executed when the condition evaluates to true, and another
containing the code to be executed when the condition

6 The operation of writing to arbitrary memory locations is
referred to as “scatter”. Restricting memory writes to pre-
computed locations significantly simplifies processor
architecture. (For instance arbitration circuitry that would
otherwise be required to handle multiple-writer conflicts can
be avoided)

evaluates to false. The controlling code running on the CPU
identifies which of the two programs is to be run on each
input texture-element.

For this technique to be efficient, the CPU should not have to
evaluate the branching condition for each texel. Instead, sets
of texels for which the condition evaluates to the same value
need to be identified. Below we outline a method to identify
these sets of texture elements when the texture width W is
constrained to be a power of 2.

Define W = 2
k
 [where k is an integer] (3)

The first stage of the FFT has two special properties that are
exploited in our implementation. Firstly, it operates on
adjacent elements in the input texture, and because of our
packed complex number representation, the elements of each
butterfly diagram are going to be stored in the same texture
element. Secondly, the twiddle factors in the FFT
computation for the first stage are all equal to one, and need
not be multiplied. This leads to a particularly simple GPU
fragment kernel for the first stage of the FFT.

for each texture element pt in input texture do:

val ß float4 (pt.xy + pt.zw, pt.xy – pt.zw)

store val in output texture
Algorithm 4.3: First stage of GPU FFT Implementation

The condition we use to decide whether the element at array

index j is on the upper or lower end of each butterfly
structure is:

j mod 2i+1
 < 2

i where 0 ≤ i < log2N (4)

Consider an arbitrary element in the input texture located at
coordinates (x, y). For a row-major mapping from the input
array to the texture, the condition (4) can be re-written as:

(y·W +x) mod 2i+1
<2

i
 (5)

For stages i such that 0 < i ≤ k-1; (y·W +x) mod 2i+1 is x mod
2

i+1, because W is a multiple of 2i. This leads to the condition
in equation (5) reducing to:

x mod 2i+1 < 2i
 (6)

In other words, this means that all the elements which
satisfy condition (5) lie in a series of column-aligned
rectangles whose diagonals are defined by points (p·2

i+1
, 0),

(p·2
i+1

+2
i
-1, H); where 0 ≤ p < 2

k-i-1
.

Let us now consider the case when 2i+1

> W, specifically, let:
 W·2

q
= 2

i+1
. (7)

For a given row (i.e. constant y), x is at most W-1. Therefore:
 max(y·W + x) = W·(y+1) – 1 (8)

Using (8) in equation (5):

(W·(y+1)-1) mod 2i+1
 < 2

i
 (9)

It is easy to see that this is true when:
 y+1 < 2

q-1 (10)

Therefore the solutions to (5) are of the form:
 y = m·2

q
+ l (11)

where 0 ≤ m < N/2
i+1

, 0 ≤ l < 2
p-1

.

Equation (11) can be interpreted to mean that all the
solutions to (5) are a series of row-aligned rectangles, for the
stages k, k+1…log2N-1 of the FFT.

Algorithm 4.4 shows the CPU code, that implements the
static branch resolution for the GPU FFT.

load first stage program on GPU

perform computation on entire texture

swap input and output textures

‘iterate over stages from 1 to k-2;

‘draw column-aligned rectangles

for i ß 1 to k-1 do:

load upper-point column butterfly program on GPU

for j ß 0 to 2k-i-1 do:

perform computation on

 rectangle (j·2i+1, 0, j·2i+1+2i-1, H)

load lower-point column butterfly program on GPU

for j ß 0 to 2k-i-1 do:

perform computation on

 rectangle (j·2i+1+2i-1, 0, j·2i+1+2·2i-1-1, H)

‘ping pong buffering

swap input and output texture

‘iterate over remaining stages of FFT

‘draw row aligned rectangles now

for i ß k to log2N – 1 do:

load upper-point row butterfly program on GPU

for j ß 0 to 2i-k do:

perform computation on

 rectangle (0, j·2i-k, W, j·2i-k+2i-k-1)

load lower-point row butterfly program on GPU

for j ß 0 to 2i-k do:

perform computation on

 rectangle (0, j·2i-k+2i-k-1, W, j·2i-k+2·2i-k-1)

‘ping pong buffering

swap input and output texture

Algorithm 4.4: CPU Code

The code avoids the overhead of running conditional
statements on the GPU, by creating specialized programs
that are controlled by code running on the CPU. Since each
of individual fragment programs do not contain any
conditional statements, the execution on the GPU is
efficient.

Algorithms 4.5 and 4.6 show the programs that are run for
the stages 1 to k-1.

For each texture element pt in input texture do:

‘coords is the coordinate of the current point

float2 lowerPointCoords ß

 float2(coords.x+2i, coords.y)

float4 lowerNum ß inputSamples[lowerPointCoords]

float4 twiddle ß float4(WN
k, WN

k+1)

store inputSamples[coords] + lowerNum * twiddle

Algorithm 4.5: Upper Point Column Butterfly Program

For each texture element pt in input texture do:

‘coords is the coordinate of the current point

float2 upperPointCoords ß

 float2(coords.x-2i, coords.y)

float4 upperNum ß inputSamples[upperPointCoords]

float4 twiddle ß float4(WN
k, WN

k+1)

store upperNum - inputSamples[coords] * twiddle

Algorithm 4.6: Lower Point Column Butterfly Program

Algorithms 4.7 and 4.8 show the programs that are run for
the stages k to log2N – 1.

For each texture element pt in input texture do:

‘coords is the coordinate of the current point

float2 lowerPointCoords ß

 float2(coords.x, coords.y+2i/W)

float4 lowerNum ß inputSamples[lowerPointCoords]

float4 twiddle ß float4(WN
k, WN

k+1)

store inputSamples[coords] + lowerNum * twiddle

Algorithm 4.7: Upper Point Row Butterfly Program

For each texture element pt in input texture do:

‘coords is the coordinate of the current point

float2 upperPointCoords ß

 float2(coords.xi, coords.y-2i/W)

float4 upperNum ß inputSamples[upperPointCoords]

float4 twiddle ß float4(WN
k, WN

k+1)

store upperNum – inputSamples[coords] * twiddle

Algorithm 4.8: Lower Point Row Program

4.2 FFT Benchmarks

Figure 6 shows the execution times for the GPU and CPU
implementations of the FFT. The GPU is faster than the CPU
by a factor of about 2.5X.

Figure 6: Plot of FFT Size vs. Execution Times

Figure 7 shows the speedup of the GPU FFT over the CPU
FFT across FFT sizes.

Figure 7: Plot of Speedup of GPU FFT over CPU.

5. Conclusions and Future Work

We presented innovative algorithms for implementation of
FIR filters and FFT on graphics processors that take
advantage of the data-parallel streaming architecture of these
devices; we also provided benchmarks comparing our
implementations to implementations running on the CPU,
showing that a significant performance gain was achieved by
implementing these algorithms on the GPU. We showed
speedups of about 8X for the FIR filter, and about 2X for the
FFT. The graphics processor we used was the NVIDIA
GeForce 8600 GT, which retails for just $150. Our results
show that even with inexpensive graphics processors many

signal processing algorithms can be accelerated significantly
using GPUs.

We are in the process of investigating GPU implementations
of routines for performing linear algebraic operations on
large datasets. In future work, we also intend to explore
efficient implementations of other signal processing
algorithms which are expensive for CPU implementations.
Specifically resampling is an application that we are
planning to target.

Sengupta et al [9] have recently outlined a set of primitives
for GPU computation that can be used for the efficient
implementation of many algorithms that are not seemingly
data-parallel. An analysis of these primitives with the aim of
implementing signal processing algorithms that require
feedback: IIR filters for instance, could also prove to be a
fruitful direction for future research.

References

[1] M. Woo, J. Neider, T. Davis, and D. Shreiner, “The OpenGL

Programming Guide”, Reading. Massachusetts. Addison
Wesley, 3rd ed., (1999).

[2] John D. Owens, David Luebke, Naga Govindaraju, Mark
Harris, Jens Krüger, Aaron E. Lefohn, and Tim Purcell, “A
Survey of General-Purpose Computation on Graphics
Hardware”, Computer Graphics Forum, volume 26, number 1,
2007, pp. 80-113.

[3] Mark Harris: “Mapping computational concepts to GPUs”,
Proceedings of SIGGRAPH 2005.

[4] Emmett Kilgariff and Randima Fernando, “The GeForce 6
GPU Architecture”, GPU Gems 2. NVIDIA Corp. pp. 471-
491.

[5] W. R. Mark, R. S. Glanville, K. Akeley and M. J. Kilgard,
“Cg: A system for programming graphics hardware in a C-
like language”, In Proceedings of SIGGRAPH 2003.

[6] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex fourier series”, Mathematics of
Computation. 19(90), pp. 297-301 (1965).

[7] N. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A
memory model for scientific algorithms on graphics
processors”, Proc. Supercomputing, p. 6, 2006.

[8] K. Moreland and E. Angel, “The FFT on a GPU”, Graphics
Hardware, 2003.

[9] Mark Harris and Ian Buck, “GPU Flow Control Idioms”, GPU
Gems 2. NVIDIA Corp. pp. 547-555.

[10] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John. D.
Owens, “Scan primitives for GPU computing”, Graphics
Hardware 2007.

[11] “Intel Xeon Processor: HPC Benchmarks – Dense Floating
point”. http://www.intel.com/performance/server/xeon/hpcapp.htm

[2007]
[12] “FFT Benchmark Results”, http://www.fftw.org/speed, [2007]

