
UCLID5: Integrating Modeling, Verification,
Synthesis and Learning

Sanjit A. Seshia
EECS Department

University of California, Berkeley
sseshia@berkeley.edu

Pramod Subramanyan
CSE Department

Indian Institute of Technology, Kanpur
spramod@cse.iitk.ac.in

Abstract—Formal methods for system design are facing a con-
fluence of transformative trends. First, systems are increasingly
heterogeneous, comprising some combination of hardware, soft-
ware, networking, and physical processes. Second, these systems
are increasingly being designed with data-driven methods, in
addition to traditional model-based design techniques. Third,
traditional automated reasoning techniques based on deduction
are being combined with new techniques for inductive inference
and machine learning. In this paper, we present UCLID5, a
new system for formal modeling, verification, and synthesis that
addresses the challenges and opportunities arising from this
confluence. UCLID5 can model heterogeneous computational sys-
tems, provides term-level abstraction supported by satisfiability
modulo theories (SMT) solvers, enables compositional reasoning,
and implements the paradigm of verification by reduction to
synthesis, leveraging the advances in algorithmic synthesis and
machine learning. We describe the key features of UCLID5 using
illustrative examples.

Index Terms—Formal methods, machine learning, specifica-
tion, verification, synthesis, hardware, software, cyber-physical
systems, security

I. INTRODUCTION

Formal methods is a field of computer science and engi-
neering concerned with the rigorous mathematical specifica-
tion, design, and verification of systems [1], [2]. Progress in
formal methods has led to a spectrum of effective techniques
ranging from sequential program verification, model checking,
simulation-based verification of temporal properties, abstract
interpretation, interactive theorem proving, etc. However, in
spite of this progress, several challenges remain for the wider
adoption of formal methods, including in environment mod-
eling, incompleteness in specifications, and the hardness of
underlying decision problems (see [3] for further details).

A promising trend that addresses these challenges, as iden-
tified earlier by the first author [3], [4], is the combination of
traditional deductive methods with new techniques based on
inductive inference and machine learning. This trend combines
traditional computational engines for formal methods, such as
Boolean satisfiability solving (SAT) [5], Binary Decision Di-
agrams (BDDs) [6], and satisfiability modulo theories (SMT)
solvers [7], with inductive learning, resulting in new class of
solvers for syntax-guided and oracle-guided inductive synthe-
sis (e.g., [8]–[11]). These solvers underpin an approach of
performing verification by reduction to synthesis, to generate
environment models, specifications, and other artifacts that
ease the process of computational proving.

At the same time, we are facing a new trend that has to do
with the nature of systems designed and the design process

itself. Modeling languages for verification have traditionally
been siloed by the class of system, with very different for-
malisms used for hardware, software, protocols, and cyber-
physical systems. However, in recent times, systems are be-
coming more heterogeneous, and thus, verification problems
often involve combinations of these domains. For instance,
during a recent project on the verification of security properties
of trusted platforms such as Intel SGX and RISC-V Sanc-
tum [12], the authors realized that the task requires modeling
both hardware (e.g., microarchitectural details) as well as
software (e.g., OS, libraries, applications). Existing languages
for constructing verification models, especially for highly-
automated verification, are not adequate. Moreover, the types
of properties to be verified include not only traditional asser-
tions and temporal properties, but also hyperproperties [13].
Additionally, with the increasing use of machine learning in
systems, traditional model-based design methods are being
combined with new data-driven approaches. This is both a
challenge and an opportunity. On the one hand, models need
to be able to capture learning-based systems. On the other
hand, there is a growing amount of data that can be used
more effectively in modeling and verification.

The confluence of these trends indicates there is a need
and an opportunity for a new class of formal modeling and
verification systems. In this paper, we present UCLID5, a
new software toolkit for the formal modeling, specification,
verification, and synthesis of computational systems. The key
novelty in UCLID5 is the integration of ideas in formal
modeling, verification, synthesis, and learning to address the
needs identified above by
1. Enabling compositional (modular) modeling of finite and

infinite state transition systems across a range of concur-
rency models and background logical theories;

2. Performing highly-automated, compositional verification
of a diverse class of specifications, including pre/post-
conditions, assertions, invariants, temporal logic, refine-
ment, and hyperproperties, and

3. Integrating modeling and verification with algorithmic syn-
thesis and learning.

Importantly, we intend UCLID5 to be a laboratory for exper-
imenting with new ideas in formal methods for the design of
computational systems.

UCLID5 draws inspiration from the earlier UCLID system
for modeling and verification of systems [14]–[16], in particu-
lar the idea of modeling concurrent systems at the “term level”
— in first-order logic with a range of background theories —978-1-5386-6195-6/18/$31.00©2018 IEEE.

and the use of proof scripts within the model. However, as we
will describe in subsequent sections, the UCLID5 modeling
language and verification capabilities go well beyond the
original modeling language, and the integration with synthesis
and learning is entirely novel.

In the rest of this paper, we describe the major needs of
modeling and verification tools (Sec. II), an illustrative exam-
ple (Sec. III), the key modeling features of UCLID5 (Sec. IV),
and the key verification features (Sec. V), concluding with a
summary of the main novel aspects of UCLID5 and an outlook
towards the future (Sec. VI).

II. DESIDERATA

Selecting the right modeling formalism and language can
be crucial for verification. As explained in a recent chapter
in the handbook of model checking [17], there are several
factors one must consider while selecting a modeling language
for verification, including (1) type of system; (2) type of
properties; (3) type of environment; (4) level of abstraction;
(5) level of modularity; (6) form of composition; (7) computa-
tional engines available, and (8) practical ease of modeling and
(9) expressiveness. In this section, we review the key desired
features for formal modeling, verification, and synthesis that
led us to design UCLID5. We also survey related work and
place UCLID5 in the context of other systems for formal
verification and automated reasoning.

A. Key Desired Features

The rationale for designing UCLID5 includes not only cer-
tain desiderata for formal modeling, but also desired properties
for formal verification and synthesis. Our desired features are
as follows:
• Concurrent System Modeling: The modeling language must

easily express concurrent transition systems and concur-
rent updates to state variables. Many systems of interest,
including hardware designs, operating systems, protocols,
distributed systems, and cyber-physical systems (CPS) ex-
hibit concurrency, and can be captured by a suitable class
of transition systems.

• Sequential Program Modeling: The modeling language
must provide constructs to easily express basic constructs
of sequential programs including sequential updates, con-
ditionals, iteration, procedure calls, etc. Additionally, it is
desirable to be able to combine such constructs with con-
current system modeling, as we observed while modeling
trusted platforms that include both hardware and software
components [12].

• Expressive Abstract Datatypes: The modeling language
should support not only low-level primitive datatypes such
as Booleans and bit-vectors, but also mathematical and
abstract datatypes, including integers, arrays, memories,
uninterpreted functions, etc.

• Diverse Specifications: In our experience, there is usually
not just one type of property that needs to be verified.
We wish to have a system that can support specifications
for sequential software (e.g., pre/post-conditions, assertions,
assumptions, loop invariants), temporal specifications for
concurrent systems (invariants, temporal logic, etc.), speci-
fying refinement/simulation relations between systems, and

hyperproperties to capture security policies and other richer
classes of properties.

• High Degree of Automation: It is desirable to have a system
that provides a high degree of automation in verification,
especially with respect to the tedious aspects or the steps
in the proof that require analyzing large state spaces. At
the same time, we recognize that there is a balance to be
achieved between high expressiveness of models and the
degree of automation.

• Diverse Verification Methods: There are typically multi-
ple algorithmic techniques for verifying the same class
of properties on the same class of models, with often
complementary performance. We wish to develop a system
that supports this range of techniques.

• Modular Specification and Verification: Modularity, also
termed compositionality, is key to scaling modeling and
verification to large, real-world systems. We therefore desire
a modeling language that supports modular system design,
modular specification, and modular verification.

• Leverage Emerging Computational Engines for For-
mal Reasoning: SAT solvers, Binary Decision Diagrams
(BDDs), and SMT solvers are the traditional computational
engines used for automated reasoning and formal verifi-
cation. However, in recent years, a new class of solvers
for synthesis and learning have emerged (e.g., syntax-
guided synthesis, SyGuS solvers [9]). It is desirable for
new verification tools to be able to leverage these emerg-
ing computational engines for more efficient and effective
automated reasoning.

• Meaningful Counterexample Generation and Feedback:
One of the most important uses of formal methods is to
find corner-case counterexamples, i.e. hard-to-find behav-
iors that result in a violation of desired properties. Any
verification tool must support high-quality counterexample
generation and other forms of feedback. In particular, the
tool must be able to provide detailed counterexamples
(showing values of all pertinent variables at all pertinent
time points) while also permitting the user to customize
counterexamples (e.g., giving the user the ability to restrict
attention to a specific subset of state or times).

B. Related Work

There is a galaxy of software systems and tools for au-
tomated reasoning, formal verification, and formal synthesis,
more than enough to fill a book on the topic. Many systems are
designed for specific needs. Our goal in this section is not to
provide a survey of all these tools; on the contrary, it is much
more modest and focused entirely on the desiderata listed
in Sec. II-A above. We will discuss a selection of the most
closely related tools with respect to how well they provide
those desired features, and argue for the need for a new system
such as UCLID5.

A fundamental trade-off in automated formal reasoning is
between expressiveness and automation. On one end of this
spectrum are interactive theorem provers for higher-order log-
ics such as PVS [22], HOL [23], Isabelle [24], ACL2 [25], and
Coq [21], just to provide a few examples. These systems are
very expressive, and so can capture both concurrent transition
system models and sequential programs. However, they require

TABLE I
FEATURES WE DESIRE IN A FORMAL MODELING AND VERIFICATION SYSTEM.

Feature / Tool ABC [18] NuXMV [19] Boogie [20] Coq [21] UCLID [14]

Concurrent systems/updates H H L M H
Sequential programs/updates L L H H L
Abstract Datatypes L M H H H
Diverse Specifications H M L M L
Diverse Verification Methods H M L M M
High Degree of Automation H H H L H
Modular Specification/Verification M M H H L
Detailed, Customizable Counterexamples H M L L M

We compare a selection of verifiers on the degree of support for these features: H – high, M – medium, L – low.

significant manual effort (even though many of them integrate
other automated reasoning engines for specific tasks). We
desire a much greater level of automation than these systems
can provide.

On the other end of the spectrum are tools for bit-
level (finite-state) modeling and model checking, including
SPIN [26], SMV and NuSMV [27], and ABC [18]. These
tools are highly automated, leveraging bit-level reasoning
engines such as SAT solvers and BDD packages. They are
effective for modeling finite-state concurrent systems, and can
specify a range of temporal property languages. However, the
representation is too low-level to perform effective system-
level verification efforts, especially those that also require
reasoning about software and richer datatypes.

In between lie several systems that have an intermedi-
ate level of expressiveness and automation. These systems
typically rely on computational engines for reasoning in
fragments of first-order logics with specialized background
theories, including SMT solvers and custom solvers. The
pioneering tools of this kind include Alloy [28], SAL [29],
and UCLID [14]. Alloy is very effective for reasoning about
software with relational logic, but not a good fit for low-level
reasoning or modeling concurrent hardware. UCLID is a good
fit for bounded verification of safety properties of concurrent
transition systems, but does not provide a natural way to model
sequential software or reason about more complex temporal
logic properties. SAL supports a range of concurrent transition
systems with different underlying logics, spanning applications
in hardware, software, and CPS, but, like UCLID, does not
naturally model sequential software. Support for compositional
reasoning is also limited in these tools. More recent tools
such as nuXmv [19] and KIND [30] also provide SMT-based
verification methods for synchronous concurrent systems, and
share the limitations of the afore-mentioned SMT-based tools
with respect to sequential software. There is a plethora of
program verification systems, such as Boogie [20], that provide
excellent features for modular specification and verification
of sequential software. Certain concurrent systems can be
modeled using the non-deterministic constructs provided by
these systems. However, modeling concurrent software and
hardware using these systems is not straightforward, since one
has to manually model the details of scheduling concurrent
processes, performing synchronous composition, etc., which
is tedious and error-prone.

One of the most exciting developments in formal methods
over the last decade is the advance in algorithmic synthesis, ap-

plied to specifications, programs, controllers, etc. The syntax-
guided synthesis (SyGuS) problem [9], the development of
SyGuS solvers, and advances in inductive inference (machine
learning) have opened up new automatic ways to synthesize
artifacts arising in verification, including inductive invariants,
assume-guarantee contracts, etc. (see [3] for further details).
While a few systems for program synthesis (e.g., [31], [32])
include support for performing such syntax-guided synthesis,
their objectives are different from those of formal verification
systems, and they do not provide native support for modeling
concurrent transition systems or specifying and verifying tem-
poral properties. Moreover, few systems today make effective
use of the advances in machine learning.

Thus, UCLID5 was created to meet a combination of needs
expressed in Sec. II-A that is not adequately met by any of
the existing tools. Table I summarizes the desired features
and provides a high-level comparison with a small selection
of the tools discussed. The table is intended not so much to
point out limitations of these tools, but instead to highlight
the unique combination of desired features we seek that is
not adequately addressed by existing tools. UCLID5 seeks
to supply a high level of support for all these features. It
seeks to provide a natural way to model both concurrent
transition systems and sequential software, using expressive
abstract datatypes, specify a range of properties, provide a
diverse palette of verification methods supported by state-of-
the-art computational reasoning engines including those for
synthesis and learning, support compositional reasoning, and
give high-quality counterexamples and feedback to users. In
the following sections, we describe how UCLID5 provides
these desired features.

III. ILLUSTRATIVE EXAMPLE

This section provides a brief overview of UCLID5’s mod-
eling and verification features with an illustrative example:
verifying a hyperproperty of a simple CPU model. Code for
the complete model is split over Examples 1, 2, 3, 4 and 5.

A. The Structure of a UCLID5 Model

The atomic unit of modeling and verification in UCLID5
is a module. From the modeling perspective, each module
can describe the functionality of a transition system. Multiple
modules can be composed for modular construction of com-
plex transition systems from a simpler ones. Modules also
serve as the unit of re-use when declaring commonly used
types, symbolic constants and uninterpreted functions.

1 module common {
2 // address type: an uninterpreted type.
3 type addr_t;
4 // word type: a bitvector type.
5 type word_t = bv32;
6 // type of operations supported by the CPU.
7 type op_t = enum {
8 op_alu, op_load, op_store,
9 op_imode_enter, op_nmode_exit

10 };
11 // CPU mode.
12 type mode_t = enum { normal_mode, isolated_mode };
13 // CPU memory type: an array type.
14 type mem_t = [addr_t]word_t;
15
16 // define zero constant of the word_t type.
17 const k0_word_t : word_t;
18 axiom k0_word_t == 0bv32;
19
20 // the entry address for isolated mode.
21 const imode_enter_addr : addr_t;
22 // the exit address for isolated mode.
23 const nmode_exit_addr : addr_t;
24 // the above two constants MUST be different.
25 axiom imode_enter_addr != nmode_exit_addr;
26 }

Example 1. Module common of the CPU model

1 module cpu {
2
3 // import all types from module common
4 type * = common.*;
5
6 type regindex_t;
7 type regs_t = [regindex_t]word_t;
8
9 input imem : mem_t; // program memory.

10 var dmem : mem_t; // data memory.
11 var regs : regs_t; // registers.
12 var pc : addr_t; // program counter.
13 var inst, result : word_t; // inst reg, result
14 var mode : mode_t; // normal/isolated?
15
16 // range of isolated memory.
17 const isolated_rng_lo, isolated_rng_hi : addr_t;
18 // uninterpreted predicate for the above.
19 function in_rng (a : addr_t, b1 : addr_t, b2 :

addr_t) : boolean;
20 // uninterpreted functions for decoding insns.
21 function inst2op
22 (i : word_t) : op_t;
23 function inst2reg0
24 (i : word_t) : regindex_t;
25 function inst2reg1
26 (i : word_t) : regindex_t;
27 function inst2addr
28 (i : word_t, r0 : word_t, r1 : word_t) : addr_t;
29 // uninterpreted functions for insn. execution
30 function aluOp
31 (i : word_t, r0 : word_t, r1 : word_t) : word_t;
32 function nextPC
33 (i : word_t, pc : addr_t, r0 : word_t) : addr_t;
34
35 // macro: is an addr in isolated memory?
36 define in_isolated_memory (a : addr_t) : boolean
37 = in_rng(a, isolated_rng_lo, isolated_rng_hi);
38
39 // assumptions on imode entry and exit addresses
40 axiom (forall (a : addr_t) ::
41 (a == common.imode_enter_addr)
42 ==> in_isolated_memory(a));
43 axiom (forall (a : addr_t) ::
44 (a == common.nmode_exit_addr)
45 ==> !in_isolated_memory(a));
46
47 // code removed for formatting reasons:
48 // 1. code for procedure exec_inst (see Example 3)
49 // 2. init and next blocks (see Example 4)
50 }

Example 2. Type and variable declarations of the cpu module

1 procedure exec_inst(instr : word_t, pc : addr_t)
2 returns (pc_next : addr_t)
3 modifies regs, result, dmem, mode;
4 {
5 var op : op_t;
6 var r0ind, r1ind : regindex_t;
7 var r0, r1 : word_t;
8 var addr : addr_t;
9 // get opcode.

10 op = inst2op(instr);
11 // get operands.
12 r0ind,r1ind = inst2reg0(instr),inst2reg1(instr);
13 r0,r1 = regs[r0ind],regs[r1ind];
14 // get next pc (overwritten by enter/exit).
15 pc_next = nextPC(instr, pc, r0);
16 // get memory address
17 addr = inst2addr(instr, r0, r1);
18 // If we are in isolated mode, we only
19 // set pc_next to isolated addresses.
20 assume (mode == isolated_mode) ==>

in_isolated_memory(pc_next);
21 // If we are in isolated mode, we only
22 // read from isolated memory.
23 assume (mode == isolated_mode && op == op_load)

==> in_isolated_memory(addr);
24 // If we are already in isolated mode,
25 // we don’t execute enters.
26 assume (mode == isolated_mode)
27 ==> (op != op_imode_enter);
28 case
29 // alu operation.
30 (op == op_alu) : {
31 result = aluOp(instr, r0, r1);
32 regs[r0ind] = result;
33 }
34 // load instruction.
35 (op == op_load) : {
36 // check permissions.
37 if (mode == isolated_mode ||
38 !in_isolated_memory(addr))
39 {
40 // perform load
41 result = dmem[addr];
42 } else {
43 // load failed, return 0.
44 result = common.k0_word_t;
45 }
46 regs[r0ind] = result;
47 }
48 // store instruction.
49 (op == op_store) : {
50 result = common.k0_word_t;
51 // check permissions.
52 if (mode == isolated_mode ||
53 !in_isolated_memory(addr))
54 {
55 // perform store.
56 dmem[addr] = r0;
57 }
58 }
59 // enter isolated mode.
60 (op == op_imode_enter) : {
61 assert (mode == normal_mode);
62 result = common.k0_word_t;
63 // zero out registers.
64 havoc regs;
65 assume (forall (r : regindex_t)
66 :: regs[r] == common.k0_word_t);
67 // set pc.
68 pc_next = common.imode_enter_addr;
69 mode = isolated_mode;
70 }
71 // exit to normal mode.
72 (op == op_nmode_exit) : {
73 result = common.k0_word_t;
74 // zero out registers.
75 havoc regs;
76 assume (forall (r : regindex_t)
77 :: regs[r] == common.k0_word_t);
78 // set pc.
79 pc_next = common.nmode_exit_addr;
80 mode = normal_mode;
81 }
82 esac
83 }

Example 3. Procedure exec inst in the CPU model

1 init {
2 // reset registers.
3 assume (forall (r : regindex_t)
4 :: regs[r] == common.k0_word_t);
5 // set instruction to some deterministic value.
6 inst = common.k0_word_t;
7 // start execution at deterministic address.
8 pc = common.nmode_exit_addr;
9 // in normal mode.

10 mode = normal_mode;
11 }
12
13 next {
14 inst’ = imem[pc];
15 call (pc’) = exec_inst(inst’, pc);
16 }

Example 4. The init and next blocks of the cpu module

Structure of the CPU Model: The CPU model is split into
three UCLID5 modules.
1. Module common, shown in Example 1 provides the def-

initions for the datatypes (addr t, word t, etc.) and
symbolic constants (e.g., imode enter addr) used in
the rest of the model. Note this module does not define
a transition system, it only provides type and variable
definitions used elsewhere in the model.

2. Module cpu, shown in Examples 2, 3 and 4 models the
functionality of a CPU with separate instruction and data
memories and an isolated mode of execution. We describe
the functionality of the cpu module in more detail in
Section III-C.

3. Module main, shown in Example 5 is the verification
driver. It models the environmental assumptions for the
verification and contains a proof script that proves, via
induction, a 2-safety integrity property for the CPU module.

B. Modeling Objectives

The cpu model presented in Examples 2, 3 and 4 models
the functionality of a CPU with the following features: (i)
a read-only instruction memory (imem), (ii) a read-write
data memory (dmem), (iii) a program counter (pc), (iv)
an unbounded number of registers (regs), (v) two modes
of operation (mode): normal mode and isolated mode and
(vi) a range of addresses between isolated rng lo
and isolated rng hi which defines a memory region
exclusively accessible to isolated mode.

The module uses uninterpreted functions to model instruc-
tion decoding (inst2op, inst2reg0 etc.) and instruction
execution (aluOp and nextPC). Further, the register file
index type (regindex t) and the address type (addr t)
are both uninterpreted types. This means the number of
registers is unbounded, as is the size of the data and instruction
memories. Abstracting away the specific details of each these
features lets this UCLID5 model capture a wide variety of CPU
implementations.

C. CPU Module Overview

The CPU module is shown in Examples 2, 3 and 4.
Example 2 shows the declarations of the types, symbolic con-
stants, uninterpreted functions, input variables, state variables
and assumptions used by the module. The initial state and
the transition relation of the transition system are shown in

1 module main {
2 // Import types.
3 type * = common.*;
4 type regindex_t = cpu.regindex_t;
5
6 // Instruction memory for the CPUs.
7 var imem1, imem2 : mem_t;
8
9 // Create two instances of the CPU module.

10 instance cpu1 : cpu(imem : (imem1));
11 instance cpu2 : cpu(imem : (imem2));
12
13 init {
14 // Assume same isolated rngs.
15 assume (cpu1.isolated_rng_lo == cpu2.

isolated_rng_lo);
16 assume (cpu1.isolated_rng_hi == cpu2.

isolated_rng_hi);
17 // Supervisor memory starts off identical.
18 assume (forall (a : addr_t) :: (cpu.in_rng(a,

cpu1.isolated_rng_lo, cpu2.isolated_rng_hi))
==> (cpu1.dmem[a] == cpu2.dmem[a]));

19 assume (forall (a : addr_t) :: (cpu.in_rng(a,
cpu1.isolated_rng_lo, cpu1.isolated_rng_hi))
==> (imem1[a] == imem2[a]));

20 }
21
22 next {
23 next (cpu1); next (cpu2);
24 // imodes are taken in sync
25 assume (cpu.inst2op(cpu1.inst) == op_imode_enter

|| cpu.inst2op(cpu2.inst) == op_imode_enter)
==> (cpu1.inst == cpu2.inst);

26 }
27
28 // PROPERTY: isolated mode memory is identical.
29 property eq_dmem : (forall (a : addr_t) :: (cpu.

in_rng(a, cpu1.isolated_rng_lo, cpu2.
isolated_rng_hi)) ==> (cpu1.dmem[a] == cpu2.
dmem[a]));

30 // The two CPUs change mode in sync.
31 invariant eq_mode : (cpu1.mode == cpu2.mode);
32 // CPUs have the same PC when in isolated mode.
33 invariant eq_pc : (cpu1.mode == isolated_mode)

==> (cpu1.pc == cpu2.pc);
34 // In isolated mode, CPUs execute the same code.
35 invariant eq_inst : (cpu1.mode == isolated_mode)

==> (cpu1.inst == cpu2.inst);
36 // In isolated mode, CPUs have same reg values.
37 invariant eq_regs : (forall (ri : regindex_t) :: (

cpu1.mode == isolated_mode) ==> (cpu1.regs[ri
] == cpu2.regs[ri]));

38 // Supervisor rng of memory is the same.
39 invariant eq_sup_rng : (cpu1.isolated_rng_lo ==

cpu2.isolated_rng_lo) && (cpu1.
isolated_rng_hi == cpu2.isolated_rng_hi);

40 // In isolated mode, PC is in isolated rng.
41 invariant in_pc_rng1 : (cpu1.mode == isolated_mode

) ==> cpu.in_rng(cpu1.pc, cpu1.
isolated_rng_lo, cpu1.isolated_rng_hi);

42 invariant in_pc_rng2 : (cpu2.mode == isolated_mode
) ==> cpu.in_rng(cpu2.pc, cpu2.
isolated_rng_lo, cpu2.isolated_rng_hi);

43 // Same for instruction memory.
44 invariant eq_imem : (forall (a : addr_t) :: (cpu.

in_rng(a, cpu1.isolated_rng_lo, cpu1.
isolated_rng_hi)) ==> (imem1[a] == imem2[a]))
;

45
46 control {
47 v = induction;
48 check;
49 print_results;
50 v.print_cex(
51 cpu.inst2op(cpu1.inst), cpu.inst2op(cpu2.

inst), cpu1.result, cpu2.result, cpu1.mode,
cpu2.mode, cpu1.pc, cpu2.pc, cpu1.
isolated_rng_lo, cpu2.isolated_rng_lo, cpu1.
isolated_rng_hi, cpu2.isolated_rng_hi, cpu.
in_rng(cpu1.pc, cpu1.isolated_rng_lo, cpu1.
isolated_rng_hi), cpu.in_rng(cpu2.pc, cpu2.
isolated_rng_lo, cpu2.isolated_rng_hi));

52 }
53 }

Example 5. Module main in the CPU model

Example 4. Example 3 lists the procedure exec inst which
implements the execution of a single instruction.

1) Module Declarations: Datatypes used in the cpu model
are defined in the module common shown in Example 1. These
include uninterpreted types: addr t, bit vectors: word t
which is defined as a synonym for 32 bit vectors (bv32), enu-
merated types: op t and mode t and array types: mem t
which is defined as a synonym for arrays with index type
addr t and range type word t. Line 4 of Example 2 shows
how all of the datatypes declared in the module common can
be “imported” into the module cpu.

Line 9 declares the input variable imem, which is the
instruction memory for the CPU. Lines 10–14 declare the state
variables of the CPU: dmem is the data memory, regs is
the register file, pc is the program counter, and mode tracks
whether the CPU is in normal or isolated mode.

The uninterpreted functions that model instruction decoding
and execution are declared between lines 21–33. Line 36
defines a macro that determines whether an address is in
isolated memory.

Finally, lines 40–45 encode two important assumptions on
the behavior of the CPU. Entering isolated mode always jumps
to an address in isolated memory and exits to normal mode
transfer control to an address not in isolated memory.

2) Defining the Transition System: The initial state of the
transition system is defined by the init block (lines 1–
11) of Example 4. This block ensures that all registers are
initialized to 0, sets the initial value of the program counter
to a deterministically chosen address that is guaranteed to not
be in isolated memory, and sets the CPU to normal mode.

The transition relation is defined by the next block shown
on lines 13–16 of Example 4. The instruction is fetched from
instruction memory and executed by invoking the procedure
exec inst. This procedure is defined in Example 3 and
models the execution of an instruction in the CPU using
straightforward imperative code.

D. Verification Objectives
The verification objective for this UCLID5 model is to

show the following: if two CPUs start off with identical
values in the isolated memory (but possibly different normal-
accessible memories), and further, these CPUs enter isolated
mode identically and in lockstep, then the two CPUs’ isolated
memory ranges will remain identical. This is an integrity
property showing that normal mode cannot affect isolated
memory. This property is stated on line 29 of the main module
in Example 5.

This specification, which is a 2-safety property, is verified
in UCLID5 by creating two instances of the cpu module
(lines 10 and 11 of Example 5). The verification environment
is set up to satisfy the antecedents of the property in order to
ensure that the two CPUs start with identical values in isolated
memory and that they enter isolated mode in lockstep; see the
init (lines 13–20) and next blocks (lines 22–26) of the
main module.

E. Verification Strategy
We prove the 2-safety property by induction; this requires

the specification of a number of “strengthening” inductive
invariants. These are specified on lines 31–44 of Example 5.

The proof script itself is in the control block of the main
module (lines 46–52). Line 47 specifies that an inductive proof
is to be attempted, invocation of the proof engines is done
on line 48 and results of the verification and any potential
counterexamples are printed on lines 49, 50 and 51.

IV. MODELING FEATURES

UCLID5 integrates multiple features for modeling to address
the desiderata discussed in Sec. II-A. In this section, we give
an overview of these modeling features through illustrative ex-
amples. The full language reference and additional information
may be found in the UCLID5 tutorial [33].

A. Term-Level Abstraction
UCLID5 borrows from the original UCLID [14] system

the idea of term-level abstraction. In term-level abstraction,
concrete functions or functional blocks are replaced by un-
interpreted functions or partially-interpreted functions. Con-
crete low-level datatypes such as Booleans, bit-vectors, and
finite-precision integers are abstracted away by uninterpreted
symbols or more abstract datatypes (such as the unbounded
integers). UCLID5 is designed to use all the major background
logical theories supported by SMT solvers.

Term-level abstraction is useful in hiding details that are
unnecessary for verification. Consider the CPU model given
as Example 2. In this example, uninterpreted functions, defined
using the function declaration, are used to abstract away
the details of instruction decoding (inst2op, inst2addr,
etc. on lines 21–28). These functions model the mapping from
instructions to the operations performed by them, the source
and destination registers of an instruction, and any memory
addresses referenced by the instruction. The uninterpreted
function aluOp (line 30) models the execution of non-
memory instructions while the function nextPC (line 32)
models instructions that affect control flow. The specific details
of the implementation of these functions are not required for
reasoning about the properties specified in the main module
given as Example 5.

Interpreted or partially-interpreted functions may be defined
using a combination of the function and define con-
structs. Further details on performing term-level abstraction
may be found in [14], [15], [34], [35].

B. Blending Sequential and Concurrent System Modeling
UCLID5 combines constructs for modeling sequential pro-

grams with those for modeling concurrent transition systems.
1) Sequential Program Modeling: Inspired by systems

such as ESC/Java [36] and Boogie [20], UCLID5 sup-
ports constructs to perform modular program verification.
A procedure is the unit of sequential programming in
UCLID5. Within a procedure, one can use most standard
constructs of imperative, sequential programming, including
variable declarations, sequencing, assignments, conditionals,
and iteration (including bounded for-loops and unbounded
while loops). No recursion is currently permitted. In addi-
tion, similar to verification languages such as Boogie, non-
deterministic constructs can be modeled. An arbitrary as-
signment to a variable may be performed using the havoc
construct: the statement “havoc v;” assigns an arbitrary
value to v from the domain associated with its type. See

the procedure exec inst in Example 3 for examples of
the various code constructs. Simultaneous assignment is also
possible. Specifications can also be associated with procedures
in the usual way; we defer discussion of these to Sec. IV-C.

2) Concurrent System Modeling: Many automated veri-
fication tools, including model checkers, model concurrent
systems as transition systems. A transition system comprises
a set of variables modeling input, output, and state of the
system along with definitions of the set of initial states and
the transition relation. UCLID5 also provides this ability. In
UCLID5, a module is the unit of concurrent modeling.

Consider the code in Examples 2, 4 and 5. The cpu module
includes variable declarations, an init block that defines the
set of initial states, and a next block that defines the transition
relation. The init block is treated similar to sequential code
within a procedure; thus, sequential updates are possible. How-
ever, a next block only permits synchronous (concurrent)
updates to next-state variables, where the next-state variable
for v is denoted by priming it, as v’. Examples 2, 4 and 5
give illustrations of the code in modules. We also note that
the next block of a module can be stepped selectively,
allowing one to select when a module executes relative to
other modules.

While previous and existing modeling languages have ei-
ther supported modeling sequential programs or concurrent
systems, UCLID5 is the first, to our knowledge, that supports
the ability to model both for the purpose of formal verification.
This gives one the ability to combine both formalisms to deal
with the modeling challenges of combined hardware-software
systems such as enclave platforms [12].

C. Diversity in Specification

UCLID5 supports a variety of ways to formally specify prop-
erties of the system being modeled. Currently, the following
kinds of properties can be directly specified with associated
keywords.
Procedure specifications: In UCLID5, similar to program ver-
ifiers such as Boogie, one can accompany the definition of
a procedure with pre-conditions (specified using requires)
and post-conditions (specified using ensures), as well as
specify variables that are modified by the procedure using
modifies. An example of a procedure with pre-/post-
conditions is shown in Example 7. The procedure searchQ
searches through the queue data structured modelled by the
array data. The procedure pre-condition (line 5) states that
count — the number of items currently in the queue —
should be a non-negative value less than the maximum size
of the queue. The post-condition (line 6) states that the return
value found is true if and only if data exists in the queue.
Assertions and Assumptions: An assertion specifies that a
Boolean condition over program variables must always hold
at a point inside a procedure; it forms a proof obligation
for UCLID5. An assumption imposes a Boolean condition
over program variables at a particular point in a procedure;
it is added to the assumptions UCLID5 uses to discharge
proof obligations from that point onwards. Assertions and
assumptions are specified per usual with the assert and
assume keywords respectively. Use of these statements is
demonstrated on lines 61 and 65 of Example 3.

1 module queue {
2 // types and constants.
3 type op_t = enum { push, pop, search };
4 type queue_t = [integer]integer;
5 const SIZE : integer = 4;
6 // inputs, outputs and state variables
7 input op : op_t;
8 input data : integer;
9 output head : integer;

10 output valid, full, empty, found : boolean;
11 var contents : queue_t;
12 var head, tail, count : integer;
13 var inited : boolean;
14 // macros
15 define itemIndex(i : integer) : integer =
16 if ((i + head) >= SIZE)
17 then (i + head) - SIZE
18 else (i + head);
19 define in_queue(v : integer) : boolean =
20 (exists (i : integer) ::
21 (i >= 0 && i < count) &&
22 contents[itemIndex(i)] == v);
23 // Procedure searchQ shown in Example 7.
24 init {
25 head, tail, count = 0, 0, 0;
26 valid, full, empty = false, false, false;
27 inited, found = false, false;
28 }
29 next {
30 inited’ = true;
31 head’ = contents[head];
32 full’ = (count’ == SIZE);
33 empty’ = (count’ == 0);
34
35 case
36 (op == push && !full) : {
37 call (contents’, tail’, count’) = pushQ();
38 }
39 (op == pop && !empty) : {
40 call (head’, count’) = popQ();
41 }
42 (op == search) : {
43 call (found’) = searchQ();
44 }
45 esac;
46 }
47 // Symbolic constant to "capture" pushed value
48 const pushed_data : integer;
49 property[LTL] pushed_value_becomes_head :
50 // pops occur infinitely often
51 G(F(op == pop)) ==>
52 // every value that is pushed
53 G((inited && op == push &&
54 data == pushed_data && !full) ==>
55 // eventually becomes the head of the queue
56 F(head == pushed_data));
57 control {
58 vQ = bmc(5);
59 vPush = verify(pushQ);
60 vPop = verify(popQ);
61 vSearch = verify(searchQ);
62 check;
63 print_results;
64 vQ.print_cex(op, data, pushed_data,
65 head, tail, head, count, contents[0],
66 contents[1], contents[2], contents[3]);
67 } }

Example 6. Queue model in UCLID5

Invariants: Sequential programs may also include unbounded
while loops. Partial correctness of programs using while
loops can be checked by specifying loop invariants using the
invariant keyword. Example 7 shows two invariants for
the while loop (lines 13 and 14) which respectively state that:
(i) the loop index is always within the bounds of array data,
and (ii) and that found is set to true iff one of the array
elements accessed by the loop is equal to the value data.

Temporal invariants (i.e., inductive invariants of the tran-
sition system corresponding to a module) can also specified

1 // Procedures pushQ and popQ not shown for brevity
2
3 procedure searchQ()
4 returns (found : boolean)
5 requires (count >= 0 && count <= SIZE);
6 ensures (in_queue(data) <==> found);
7 {
8 var i : integer;
9

10 i = 0;
11 found = false;
12 while (i < count)
13 invariant (i >= 0 && i <= count);
14 invariant
15 (exists (j : integer) ::
16 j >= 0 && j < i &&
17 contents[itemIndex(j)] == data)
18 <==> found;
19 {
20 if (contents[itemIndex(i)] == data) {
21 found = true;
22 }
23 i = i + 1;
24 }
25 }

Example 7. Procedure searchQ in the Queue model

using the invariant keyword. Several examples of such
inductive invariants are shown in Example 5.

Linear Temporal logic (LTL): LTL specifications (see [37])
can be provided by using the [LTL] decorator along with the
property keyword. Temporal operators currently supported
in UCLID5 are: G (globally), F (eventually), U (strong until), W
(weak until) and X (next). An example of an LTL specification
is shown on line 49 of Example 6. This property states that
every value pushed will eventually reach the head of the queue
assuming the queue is popped infinitely often.

In addition, UCLID5 currently supports indirect specifica-
tion of other kinds of properties as listed below.

Hyperproperties (k-safety): An important application of
UCLID5 is to reason about security properties, many of which
are hyperproperties [13]. While support for directly specifying
hyperproperties in UCLID5 is currently being investigated
(e.g., using logics such as HyperLTL [38]), one can spec-
ify a sub-class of hyperproperties indirectly by encoding to
safety properties (temporal invariants). Specifically, k-safety
properties [13] can be specified by the standard approach of
composing k copies of the system together and specifying a
safety property on the resulting composition. Example 5 gives
an example of a 2-safety property on the CPU model that
is encoded as a safety property on a self-composition of 2
instantiations of the CPU module.

Simulation/Correspondence between Modules: UCLID5 can
also be used to check if one system simulates another, i.e.,
that steps of one module can be mimicked by the other. (See
Chapter 14 of [39] for background material on simulation.)
Typically, each system is modeled a UCLID5 module, and
the simulation check can be set up in the main module.
A prototypical example of such a check is the Burch-Dill
correspondence checking for processor verification [40], where
one checks whether the instruction set architecture (ISA) spec-
ification model of a processor simulates its implementation.
An example of correspondence checking may be found in the
UCLID5 tutorial [33].

D. Modularity in Modeling and Specification
Modular (compositional) reasoning is essential for scalable

verification and synthesis. UCLID5 provides multiple features
for modular reasoning, including:
• Modules: UCLID5 models are composed of modules and

these provide a mechanism for both compositional and
hierarchical modeling. Modules are instantiated using the
instance declaration as shown in Example 5. By de-
fault, modules are composed together synchronously, but
asynchronous composition and partially synchronous com-
position can be performed using the appropriate scheduling
logic. State variables are private to modules, but they
can share variables declared in a parent module using a
sharedvar declaration. The main module is always the
top-level module. Overall, these features are similar to other
verification tools for reactive and concurrent systems.

• Procedures: Procedures provide a mechanism to modularize
the sequential program logic of a UCLID5 model. Proce-
dures can be decorated with [inline] and [noinline]
decorators that direct UCLID5 to inline them during verifi-
cation, or instead use their specifications instead of inlining
them, respectively. These features are similar to those
provided by other tools for sequential program verification.

• Modular Specification and Verification: UCLID5 extends
modularity to specifications in the natural way. Procedures
can be specified with pre/post-conditions and modifies
clauses. Properties defined within a module are local to
it and can include both assumptions as well as proof obli-
gations to be verified (including invariants, LTL properties,
etc.). Modular verification of concurrent systems can be
performed via assume-guarantee reasoning. The control
block of each module can be used to specify a proof script
that is local to that module. By default, only the proof script
of the main module is executed. In this manner, the user
can control the granularity of verification within UCLID5.

V. VERIFICATION FEATURES

UCLID5 support a variety of verification methods to go with
the diverse modeling and specification formalisms it provides.
In this section, we give a brief overview of the major kinds
of verification currently supported by UCLID5.

A. Sequential Program Verification
Sequential program verification is supported in UCLID5

using the verify command. This command checks par-
tial correctness of procedures. It translates procedure pre-
conditions, post-conditions and loop invariants into a set of
verification conditions (VCs) using an algorithm similar to
ESC/Java [41]. VCs are discharged using an SMT solver.
Like most other program verifiers including Boogie, UCLID5
requires loop invariants to be manually specified. However, as
we describe in Sec. V-C below, one can leverage underlying
synthesis solvers to generate such invariants in certain settings.

B. Induction, Bounded Model Checking, and Symbolic Simu-
lation

Temporal invariants of transition systems can be verified
using the induction(k) command. The argument k is the
‘k’ in k-induction and defaults to one. Example 5 uses the
induction command on line 47.

LTL specifications can verified using the bmc(n) command
which performs bounded model checking up to a bound of
‘n’ transitions. Verification is based on the construction of
monitors à la Claessen et al. [42] Liveness properties are
verified by reduction to safety through “lasso” detection.
Example 6 uses the bmc command on Line 58 to perform
bounded model checking of the LTL property on Lines 49-56
in the queue model.

Similar to UCLID, UCLID5 can also be used to perform
symbolic simulation (execution) of the transition system in a
configurable manner, which allows one to set up simulation/re-
finement checks (see [33] for an example).

C. Synthesis-Driven Verification
UCLID5 seeks to implement the paradigm of verifica-

tion by reduction to synthesis [3]. In particular, it seeks to
leverage the advances in algorithmic synthesis, particularly
counterexample-guided inductive synthesis [8], syntax-guided
synthesis [9] and formal inductive synthesis [11], to automate
tricky or tedious sub-tasks of verification.

One of these sub-tasks is that of finding invariants
or strengthenings of invariants to perform proofs by (k-
)induction. For this, UCLID5 currently provides a command,
synthesize invariant, that calls an underlying syn-
thesis solver to find a (strengthened) inductive invariant that
completes a proof by induction. Currently, this command is
discharged by syntax-guided synthesis (SyGuS) [9] solvers.

More generally, UCLID5 is designed to provide for syntax-
guided synthesis of other model and proof artifacts. The
language has constructs to specify functions to be synthesized
as well as syntactic restrictions via grammars. These “synthesis
functions” are then replaced with implementations generated
by the back-end solvers whenever proof obligations involving
those synthesis functions are discharged. As discussed in [3],
such an approach can be used to synthesize not just inductive
invariants, but also abstractions, pre/post-conditions, assume-
guarantee contracts, and many more proof and model artifacts
that are essential for formal verification.

D. Other Features
UCLID5 supplements its suite of verification methods with

constructs that allow users to perform modular verification
and to control the level of information provided to them via
counterexamples and other forms of feedback. Two sample
features are described below.

1) Modular Proof Scripting: UCLID5 borrows from
UCLID [14], [16] the notion of a control block, which is the
part of a model that specifies a proof script, a list of commands
to UCLID5 specifying the sequence of proof steps and other
auxiliary steps. It is important to note that each of these proof
steps is typically a fully automated verification command, not
the detailed guidance one has to give to an interactive theorem
prover or proof assistant such as Coq or PVS. Two examples
of a control block are given in Lines 46–52 of Example 5 and
Lines 57–67 of Example 6.

UCLID5 goes beyond UCLID in having control blocks that
are local to each module. Thus, one can use it to perform local
reasoning. For example, the control block in Example 6 is local
to the queue module. This module can be instantiated within
another module, but the verification steps specified in the

queue module do not need to be repeated when performing
verification in the module that instantiates it. However, any
properties proved about the queue model can be used in the
instantiating module.

2) Counterexample Generation: When a property is vio-
lated, UCLID5 can generate a detailed counterexample show-
ing the values of all variables of the corresponding module.
For a proof by induction, this is a counterexample-to-induction
(CTI), a 2-state counterexample. For a program verification
problem involving proving a post-condition of a procedure,
it will similarly print out the pre-state and the post-state of
that procedure. For temporal properties, including temporal
invariants and LTL properties, it will print out a sequence of
states showing how the property is violated (including lasso-
like counterexamples for liveness properties).

Counterexamples are associated with verification objects —
objects that store the results of a verification command. For
example, vQ and vPush are the verification objects associated
with the bmc and verify commands used on Lines 68
and 69 of Example 6 respectively. Each has an associated
counterexample when it is violated, which can be displayed by
the user. By default, UCLID5 prints out all variables, but the
user can restrict the counterexample to a subset for readability
and ease of understanding. UCLID5 counterexamples can also
be translated into output for third-party viewers; e.g., currently,
there is a translator to the value change dump (VCD) format
used commonly in circuit simulation and verification.

VI. CONCLUSION

UCLID5 is a new system for formal modeling, verification,
and synthesis whose key novel contribution is the integration
of several features in a single language and toolkit: (1) blend-
ing concurrent system and sequential program modeling; (2)
combining term-level abstraction with the ability to perform
low-level reasoning; (3) integrating algorithmic synthesis and
machine learning with verification; (4) combining the ability
to specify a diverse range of properties with diverse highly-
automated verification capabilities, and (5) enabling modular
reasoning and verification. Initial experience with UCLID5 has
shown that this combination of features can be effective at
tackling the challenges identified at the beginning of this paper.
Several case studies are underway.

There are several exciting ongoing projects through which
we are actively improving and extending the capabilities of
UCLID5. We are working on improving the support for syn-
thesis through more efficient and expressive SyGuS solvers.
Additionally, we are adding support for a broader class of
oracle-guided inductive synthesis (OGIS) [11] solvers, so as
to enable the generation of models from implementations [43].
Support for direct specification and verification of hyperprop-
erties is being added. We are also integrating UCLID5 more
closely with machine learning for various tasks including
importing data, inferring specifications, and auto-tuning the
parameters of the underlying reasoning engines. Finally, we
are exploring the extension of UCLID5 to a broader class of
systems, including cyber-physical systems.

ACKNOWLEDGMENTS

We gratefully acknowledge several people who have con-
tributed to the development of UCLID5, including Kevin

Cheang, Albert Magyar, Cameron Rasmussen, and Rohit
Sinha. We thank Randy Bryant for being an early user and
providing encouragement, crucial feedback, and critical in-
sights. UC Berkeley students in EECS 219C, Spring 2018,
also provided valuable feedback. The second author did much
of the work reported in this paper while at UC Berkeley. This
work was funded in part by the National Science Foundation
under grants CNS-1528108 and CNS-1545126, by SRC con-
tract 2638.001, by the Intel ADEPT Center, by the iCyPhy
center, and by TerraSwarm, one of six centers of STARnet, a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

REFERENCES

[1] J. M. Wing, “A specifier’s introduction to formal methods,” IEEE
Computer, vol. 23, no. 9, pp. 8–24, September 1990.

[2] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Computing Surveys (CSUR), vol. 28, no. 4, pp.
626–643, 1996.

[3] S. A. Seshia, “Combining induction, deduction, and structure for veri-
fication and synthesis,” Proceedings of the IEEE, vol. 103, no. 11, pp.
2036–2051, 2015.

[4] ——, “Sciduction: Combining induction, deduction, and structure for
verification and synthesis,” in Proceedings of the Design Automation
Conference (DAC), June 2012, pp. 356–365.

[5] S. Malik and L. Zhang, “Boolean satisfiability: From theoretical hardness
to practical success,” Communications of the ACM (CACM), vol. 52,
no. 8, pp. 76–82, 2009.

[6] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691,
August 1986.

[7] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, A. Biere, H. van Maaren,
and T. Walsh, Eds. IOS Press, 2009, vol. 4, ch. 8.

[8] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in Proc. Intl. Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 2006, pp. 404–415.

[9] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in Proceedings of the IEEE International
Conference on Formal Methods in Computer-Aided Design (FMCAD),
October 2013, pp. 1–17.

[10] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Proceedings of the 32nd Inter-
national Conference on Software Engineering (ICSE), 2010, pp. 215–
224.

[11] S. Jha and S. A. Seshia, “A Theory of Formal Synthesis via Inductive
Learning,” Acta Informatica, vol. 54, no. 7, pp. 693–726, 2017.

[12] P. Subramanyan, R. Sinha, I. A. Lebedev, S. Devadas, and S. A. Seshia,
“A formal foundation for secure remote execution of enclaves,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2435–2450.

[13] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

[14] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions,” in Proc. Computer-Aided Verification
(CAV’02), ser. LNCS 2404, E. Brinksma and K. G. Larsen, Eds., July
2002, pp. 78–92.

[15] S. A. Seshia, “Adaptive eager boolean encoding for arithmetic reasoning
in verification,” Ph.D. dissertation, Carnegie Mellon University, May
2005.

[16] “UCLID Verification System, version 3.1,” Available at http://uclid.eecs.
berkeley.edu.

[17] S. A. Seshia, N. Sharygina, and S. Tripakis, “Modeling for verification,”
in Handbook of Model Checking, E. M. Clarke, T. Henzinger, H. Veith,
and R. Bloem, Eds. Springer, 2018, ch. 3, pp. 75–105.

[18] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in International Conference on Computer Aided Ver-
ification. Springer, 2010, pp. 24–40.

[19] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic model
checker,” in International Conference on Computer Aided Verification.
Springer, 2014, pp. 334–342.

[20] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: a modular reusable verifier for object-oriented programs,”
in International Symposium on Formal Methods for Components and
Objects. Springer, 2005, pp. 364–387.

[21] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez,
H. Herbelin, G. Huet, C. Munoz, C. Murthy et al., “The Coq proof
assistant reference manual: Version 6.1,” INRIA, https://coq.inria.fr/,
1997.

[22] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in 11th International Conference on Automated Deduction
(CADE), vol. 607, Jun. 1992, pp. 748–752.

[23] M. J. Gordon, “HOL: A proof generating system for higher-order logic,”
in VLSI specification, Verification and Synthesis. Springer, 1988, pp.
73–128.

[24] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof
assistant for higher-order logic. Springer Science & Business Media,
2002, vol. 2283.

[25] M. Kaufmann and J. S. Moore, “An industrial strength theorem prover
for a logic based on Common Lisp,” IEEE Transactions on Software
Engineering, vol. 23, no. 4, pp. 203–213, 1997.

[26] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions on
software engineering, vol. 23, no. 5, pp. 279–295, 1997.

[27] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new
symbolic model checker,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 410–425, 2000.

[28] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 11, no. 2, pp. 256–290, 2002.

[29] L. De Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari, “SAL 2,” in International Conference on Computer Aided
Verification. Springer, 2004, pp. 496–500.

[30] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind
2 model checker,” in International Conference on Computer Aided
Verification. Springer, 2016, pp. 510–517.

[31] A. Solar-Lezama, “Program synthesis by sketching,” Ph.D. dissertation,
EECS Department, UC Berkeley, 2008.

[32] E. Torlak and R. Bodik, “Growing solver-aided languages with rosette,”
in Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software. ACM,
2013, pp. 135–152.

[33] P. Subramanyan and S. A. Seshia, “Getting started with Uclid5,”
Available at https://github.com/uclid-org/uclid.

[34] B. A. Brady, R. E. Bryant, S. A. Seshia, and J. W. O’Leary, “ATLAS:
automatic term-level abstraction of RTL designs,” in Proceedings of the
Eighth ACM/IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE), July 2010, pp. 31–40.

[35] B. Brady, R. E. Bryant, and S. A. Seshia, “Learning conditional
abstractions,” in Proceedings of the IEEE International Conference on
Formal Methods in Computer-Aided Design (FMCAD), October 2011,
pp. 116–124.

[36] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended static checking for Java,” in Proc. ACM Conference
on Programming Language Design and Implementation (PLDI), 2002,
pp. 234–245.

[37] N. Piterman and A. Pnueli, “Temporal logic and fair discrete systems,”
in Handbook of Model Checking. Springer, 2018, pp. 27–73.

[38] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in International
Conference on Principles of Security and Trust. Springer, 2014, pp.
265–284.

[39] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A
Cyber-Physical Systems Approach, 2nd ed. MIT Press, 2016. [Online].
Available: http://leeseshia.org

[40] J. R. Burch and D. L. Dill, “Automated verification of pipelined
microprocessor control,” in Computer-Aided Verification (CAV ’94), ser.
LNCS 818, D. L. Dill, Ed. Springer-Verlag, June 1994, pp. 68–80.

[41] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion: Generating
compact verification conditions,” in Proc. 28th ACM Symposium on
Principles of Programming Languages (POPL), 2001, pp. 193–205.

[42] K. Claessen, N. Een, and B. Sterin, “A circuit approach to LTL model
checking,” in Proceedings of the IEEE International Conference on
Formal Methods in Computer-Aided Design (FMCAD), October 2013,
pp. 53–60.

[43] P. Subramanyan, Y. Vizel, S. Ray, and S. Malik, “Template-based
synthesis of instruction-level abstractions for soc verification,” in Formal
Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015., 2015, pp. 160–167.

http://uclid.eecs.berkeley.edu
http://uclid.eecs.berkeley.edu
https://coq.inria.fr/
https://github.com/uclid-org/uclid
http://leeseshia.org

