
Template-based circuit understanding

Adrià Gascón∗, Pramod Subramanyan†, Bruno Dutertre∗, Ashish Tiwari∗ Dejan Jovanović∗, Sharad Malik†
∗SRI International

adria.gascon@sri.com, bruno@csl.sri.com, tiwari@csl.sri.com, dejan.jovanovic@sri.com

†Princeton University
psubrama@princeton.edu, sharad@princeton.edu

Abstract—When verifying or reverse-engineering digital cir-
cuits, one often wants to identify and understand small compo-
nents in a larger system. A possible approach is to show that
the sub-circuit under investigation is functionally equivalent to a
reference implementation. In many cases, this task is difficult as
one may not have full information about the mapping between
input and output of the two circuits, or because the equivalence
depends on settings of control inputs.

We propose a template-based approach that automates this
process. It extracts a functional description for a low-level
combinational circuit by showing it to be equivalent to a reference
implementation, while synthesizing an appropriate mapping of in-
put and output signals and setting of control signals. The method
relies on solving an exists/forall problem using an SMT solver,
and on a pruning technique based on signature computation.

I. INTRODUCTION

Digital circuits are designed and implemented in a top-
down fashion, typically using computer-aided design (CAD)
tools that provide several levels of abstraction. Hence, a variety
of components must be understood separately to derive the
high-level functionality of the whole system. However, after
the original high-level description is mapped to a low-level
digital circuit—i.e., a flattened netlist—most of the modularity
that made the original description understandable is lost. For
this reason, an unavoidable task in reverse-engineering of
industrial size digital circuits is to extract subcircuits of the
original design to verify them independently. This task is
referred as the functional block identification step in [1]. Tech-
niques that tackle this problem include structural, functional,
and mixed approaches such as

1) FSM extraction [2]
2) Functional aggregation and matching [3]
3) Word identification and propagation [4]
4) Identification of repeated structures [5]

After identification of a component C by these methods,
an important step is understanding C’s functionality. Ideally,
we would like a systematic way of obtaining a reasonable
approximation of the high-level description of C in some
Hardware Description Language (HDL). A possible approach
is to try matching the function computed by C against a
library of predefined components. However, this option is
typically too strict in practice. A source of difficulty is that
the mapping between the inputs of C and the component
to be matched is usually unknown. Permutation-Independent

The research presented in this paper has been partially supported by the
National Science Foundation under grant CCF-1423296.

Equivalence Checking (PIEC) addresses this problem [6], [7],
[8]. It has been applied in the context of technique 2) above.
Once the wires in a flattened netlist have been grouped into
unordered words, and a combinational subcircuit C operating
on those words has been extracted, C is checked for equiva-
lence with known library components modulo a permutation
of such words that is determined by the matching algorithm.

Even with an equivalence checking algorithm that syn-
thesizes a suitable input/output permutation, another practical
difficulty may be that suitable library components are not avail-
able. Because of optimization steps applied in the flattening
process, and the specifics of the design, C does not necessarily
have a standard functionality. For example, our benchmark
includes a subcircuit automatically obtained from a real design
by unfolding an FSM found using a technique in the first
category above. The circuit has 170 wires and 120 components
from a circuit synthesis library, and it has 30 inputs out of
which six are control signals. The circuit implements a 22-
bit up counter modulo (220 + 221) with synchronous reset
and hold. This design can be described in fewer than ten
lines of VHDL, but it is not reasonable to assume that we
have a predefined reference circuit that exactly matches its
functionality, even modulo a permutation of inputs and outputs.
This motivates the need for more flexible functional matching
algorithms that enables reverse engineering without prior low-
level knowledge of the circuit under investigation.

Ideally, we would like to synthesize a suitable permutation
of the inputs and the corresponding VHDL code for C.
Unfortunately that is not possible in practice. Instead, we
solve a more constrained version of this synthesis problem:
the combinational circuit C is checked for equivalence against
a template spanning a finite, but possibly huge, family of
high-level circuit descriptions. More specifically, our goal is
to describe the functionality of a combinational circuit C
using word-level operations such as concatenation, extraction,
shifting, and rotation, as well as arithmetic functions on words
such as addition, subtraction, multiplication, modulo, and the
usual arithmetic comparison functions for signed and unsigned
integers.

Our solution is inspired by recent progress in the area of
program synthesis. Synthesizing a program from an abstract
specification is not achievable in practice, but template-based
synthesis is much more practical [9]. In this approach, the
designer provides a template that captures the shape of the
intended solution(s) together with the specification. A syn-
thesis algorithm fills in the details. This general idea has

been successfully applied to several domains. For example,
imperative programs can be obtained from a given sketch,
as long as their intended behavior is also provided [10];
efficient bitvector manipulations can be synthesized from naı̈ve
implementations [11]; agent behavior in distributed algorithms
can be synthesized from a description of a global goal [12];
circuits can be repaired given a specification of their intended
behavior [13]; deobfuscated code can be obtained using similar
ideas [14]. Although all these applications rely on template-
based synthesis, different synthesis algorithms are used in
different domains.

In our setting, the functional specification is the circuit C
itself, and our goal is to generate a high-level description of
its functionality by instantiating a user-provided template that
operates at the word level. The template is a convenient way
of integrating user knowledge to reduce the search space. Our
approach automatically synthesizes both an input/output per-
mutation and a set of Boolean conditions on some inputs, under
which the circuit C is equivalent to a high-level description.
We call this problem Permutation-Independent Conditional
Equivalence Checking (PICEC).

Our approach to solving PICEC relies on (i) a set of
syntactic transformations similar to the ones used in [15], (ii)
an efficient implementation of validity checking for Boolean
formulas over the theory of bitvectors with two levels of
quantification, i.e., ∃∀ QF BV formulas, and (iii) the use of
distinguishing signatures to handle the search for suitable input
and output permutations.

We evaluated our techniques on a set of reverse-engineering
benchmarks that were generated by synthesizing a variety of
circuits described in high-level (behavioral) Verilog using the
Synopsys Design Compiler (DC). All our benchmarks and
circuits, both as high-level Verilog and as flattened netlist,
are available at [16]. Our results indicate that our functional
matching approach can be very effective in practice for any
task that requires getting a precise understanding of the high-
level functionality of a digital system.

In Section II, we introduce some notation and precisely
state the Permutation Independent Conditional Equivalence
Checking problem. In Section III, we briefly present our
approach for solving the synthesis problem, including the
preprocessing techniques. In Section IV, we review previous
work on the use of output and input distinguishing signatures
for solving PIEC and show how we used it in our context. In
Sections V and VI, we present our experimental results and
future lines of research.

II. TEMPLATE-BASED CIRCUIT UNDERSTANDING

As mentioned in the previous section, our goal is to
extract a high-level understanding of the behavior of a given
combinational circuit C. More specifically, we would like
to raise the level of abstraction of the description of the
functionality of C from bits and standard logical gates to a
variety of word-level manipulation operations and arithmetic
functions. Motivated by this goal, we first formulate a generic
Permutation Independent Conditional Equivalence Checking
(PICEC, pronounced “pieces”) problem, then present a refined
PICEC problem. Finally, we show how it can be solved using
an exists-forall solver.

Let I and O be disjoint sets of variables ranging over
some domain D. Intuitively, I and O correspond to the inputs
and outputs of our circuit C. In all our experiments, D is the
Boolean domain, but the PICEC problem can be defined for
arbitrary domains. Given a set V of variable ranging over D,
by Wordsk(V) we denote the set of words over V of length k.
We simply refer to Words(V) when k is clear from the context
or irrelevant.

Since our goal is to raise the level of abstraction of the
description of the functionality of C from bits to words, a key
challenge is finding the right words from the sets I and O.
To do so, our procedure must consider all possible functions
that produce a word of a certain size from I and O, so-called
extraction functions. An extraction function is a function that
maps a set V of variables to a word in Wordsk(V), for some
positive constant k.

We are now ready to define our problem precisely. As
commented in Section I, our goal is to provide a flexible
procedure for checking whether a circuit exhibits a certain
behavior, that is, checking whether a circuit may compute a
certain function under conditions to be determined and for
some selection of its inputs and outputs that is also to be
determined. The Generic PICEC Problem captures this idea.
The goal of the following definition is to provide the reader
with a high-level intuition of the goal of our formalization.
As comented above, this general definition is then refined to
the formulation of the problem being addressed in this work,
which is presented in Definition 3 below.

Definition 1 (Generic PICEC): Given a quantifier-free
formula C(I,O) (over free variables I and O), and a function
φ : Words(D)×Words(D) 7→ Words(D), the PICEC problem
seeks to find
(a) a partition IC ∪ ID of I into control variables IC and data
variables ID,
(b) a satisfiable formula ψ(IC) with free variables in IC ,
(c) extraction functions ex1, ex2 on ID, and
(d) an extraction function ex3 on O,
such that the sentence

∀I,O : C(I,O)⇒
(ψ(IC)⇒ (ex3(O) = φ(ex1(ID), ex2(ID))))

is valid in the theory of the underlying domain Words(D).

Intuitively, a solution of the generic PICEC problem shows
that, under the condition ψ(IC), the circuit C behaves like the
function φ on some suitably identified input and output words.
Solving the generic PICEC problem amounts to synthesizing
the parts (a)–(d) in Definition 1.

Example 1: Consider a circuit C(I,O) with set of binary
inputs I = {i1, i2, i3, i4, c} and a single output o. Assume that
C implements the following function

f(i1, i2, i3, i4, c) =

{
i1i2 > i3i4, if c = 0

i1i1 ≥ i3i4, otherwise.

and consider the function φ(w1, w2) = (w1 ≥ w2). An
interesting solution of this PICES instance consists of: (a)
the partition I = {c} ∪ {i1, i2, i3, i4}, (b) the Boolean for-
mula ψ({c}) = c, (c) extraction functions ex1(I \ {c}) =

i1i1, ex2(I \ {c}) = i3i4, and (d) the extraction function
ex3({o}) = o.

We have defined φ as a binary function to keep the
presentation simple, but the definition generalizes to functions
of any arity. Furthermore, in practice, we do not have just
one function φ that we are “searching for” in a circuit C, but
a whole set φ1, . . . , φm of functions. In this case, we want
to share the partition synthesized in Part (a) across all the
m functions, but synthesize different Parts (b)–(d) for the m
different functions. This extension corresponds to the Generic
m-PICEC problem defined as follows:

Definition 2 (Generic m-PICEC): Given a quantifier-free
formula C(I,O) (over free variables I and O), and given
m functions φ1, . . . , φm each with signature Words(D) ×
Words(D) 7→ Words(D), the generic m-PICEC problem seeks
to find
(a) a partition IC ∪ ID of I into control variables IC and data
variables ID,
(b) m satisfiable formulas ψi(IC) with free variables in IC ,
(c) 2m extraction functions exi,1, exi,2 on ID, and
(d) m extraction functions exi,3 on O,
(where i ∈ {1, . . . ,m} in Items (b)–(d)) such that the sentence

∀I,O : C(I,O)⇒(∧
i

ψi(IC)⇒ (exi,3(O) = φi(exi,1(ID), exi,2(ID)))
)

is valid in the theory of the underlying domain D.

Note that a solution to the m-PICEC problem does not
necessarily specify a total mapping between inputs and outputs
values of C, but only a mapping under the condition

∨
i ψi(IC),

and hence the first C in PICEC. This flexibility is very helpful
in a reverse-engineering process to incrementally understand
the high-level functionality of the circuit.

The generic m-PICEC problem raises two issues. First,
its synthesis search space (that is, the state space of the
synthesis parameters in Parts (a)–(d) above) is huge. More
importantly, it does not provide a way of integrating user-
provided knowledge to reduce the synthesis search space. In
particular, the user might have some knowledge about which
variables form unordered words. The user may also wish to
put constraints on the different extraction functions used for
different choices of i (saying that some of them have to be the
same extraction function). This is typically the case in practice,
for example, when trying to understand an ALU-like circuit.

The user’s knowledge of the circuit is captured in a
template. A template T for a circuit C(I,O) is an 8-tuple

〈OT , {S1, . . . , Sn, IC}, p, {φ1, . . . , φm},
arg1 , arg2 , perm1 , perm2 〉

where OT ⊆ O is a subset of output variables, I = (IC ∪⋃n
i=1(Si)) is a partition of the input variables, p ≥ 1 is a

natural number, the φi’s are binary functions over words as
before, and arg1 , arg2 : m 7→ n and perm1 , perm2 : m 7→ p
are mappings. Here by m we denote the set {1, . . . ,m}.

Intuitively, OT represents the subset of outputs of T
explained in the template, the partition of I captures knowledge
on how input words and control inputs are grouped. The
problem is to correctly order the wires within those words

by synthesizing p input permutations σ1, . . . , σp. The φi’s are
functions that the circuit is expected to implement under some
conditions on the inputs in IC . The template specifies that the
input to φi are the two sets of Sarg1 (i) and Sarg2 (i) and that
these sets of wires must be ordered according to permutations
σperm1 (i) and σperm2 (i), respectively.

We are now ready to define the m-PICEC problem.

Definition 3 (m-PICEC problem): Given a quantifier-free
formula C(I,O) (over free variables I and O), and given a
template T as defined above, the m-PICEC problem seeks to
find
(a) p+ 1 permutations θ, σ1, . . . , σp and
(b) m satisfiable formulas ψi(IC) with free variables in IC ,
such that the sentence

∀I,O : C(I,O)⇒
∧
i

(ψi(IC)⇒ Eqi) (1)

is valid in the theory of the underlying domain D, where Eqi
stands for

(θ(OT) = φi(σperm1 (i)(Sarg1 (i)), σperm2 (i)(Sarg2 (i))))

Since encoding the “satisfiable” condition in Part (b) is
tricky, we assume that the formula ψi(IC) denotes an as-
signment to the variables in IC . Then, it immediately follows
that the m-PICEC problem reduces to checking validity of the
following exists-forall synthesis constraint:

∃ψ1, . . . , ψm, σ1, . . . , σp, θ : ∀I,O : Φ (2)

where Φ is the matrix (quantifier-free part) of Formula (1).

Example 2: In practice, we specify the templates using an
extension of the Yices language [17], as illustrated in Figure 1.
In this example, we wish to determine whether a circuit C
behaves as an adder under some condition and as a comparator
under another condition. The corresponding formal template is
given by

OT := outputs

{S1 := inputsA, S2 := inputsB, IC := control}
p := 2

{φ1 := bv-add, φ2 := bv-slt-int}

with arg1 , arg2 , perm1 , and perm2 defined by arg1 (i) =
1, arg2 (i) = 2, perm1 (i) = 1, perm2 (i) = 2 for i = 1, 2.
The function bv-slt-int is a signed less-than operator that
returns 1 or 0. Let ≺ denote the less-than relation on signed
integers encoded in two’s complement representation. The syn-
thesis constraint is satisfiable if there exist two permutations
p and q, and bitvector constants v1 and v2, such that, for
all possible values of inputsA and inputsB, (1) whenever
control = v1, then C outputs p(inputsA) + q(inputsB)
and (2) whenever control = v2, then C outputs 1 if
p(inputsA) ≺ q(inputsB) and 0 otherwise.

Since we are dealing either with combinational circuits or
unfolding of sequential circuits, the relation C(I,O) can be
represented as a Boolean formula. Then Formula 2 belongs
to the logic of fixed-sized bit vectors with two levels of
quantification ∃ and ∀. In the following section, we describe
our solver, whose implementation is based on the Yices [18]
SMT-solver. Our solver applies some general preprocessing

(and
(=>

(value v1 control)
(=

outputs
(bv-add

(permute p inputsA)
(permute q inputsB)

)))

(=>
(value v2 control)

(= outputs
(ite

(bv-slt
(permute p inputsA)
(permute q inputsB)

)
(mk-bv 32 1)
(mk-bv 32 0)

)))))

Fig. 1. Example of a user-defined template

techniques also used in [15]. In particular equality resolution
is very effective in our setting due to the restricted form of
our templates.

III. SOLVING THE ∃∀ PROBLEM

The synthesis problem reduces to solving Boolean formulas
over the theory of bit-vectors with two levels of quantification,
commonly called the ∃∀ QF BV fragment. Formulas in this
fragment have the general form

(∃~x) (E(~x) ∧ (∀~y)A(~x, ~y))

Such formulas can be reduced to quantified Boolean formulas
and delegated to a general QBF solver (e.g., [19]). Instead, we
opt for reasoning at the higher level of bit-vectors and relying
on a counterexample-refinement loop, similar to the approach
used in 2QBF solvers (e.g., [20], [21]).

This loop is sketched in Figure 2. Given an ∃∀ formula,
as above, the procedure is a game between two (quantifier-
free) bit-vector solvers. The first solver generates candidate
solutions for the existential variables ~x 7→ ~a by solving
E. If there are no solutions to E, then the ∃∀ formula is
unsatisfiable. Otherwise, the second solver checks whether the
candidate solution ~a is correct, by trying to refute A modulo
the assignment ~x 7→ ~a. If the latter formula can not be
refuted, then ~a is a solution to the ∃∀ problem. Otherwise,
the second solver produces a refutation counterexample ~b. This
counterexample ~b eliminates ~a from the set of candidates for
the existential variables. But ~b can eliminate more candidates
than ~a: all good candidates must satisfy A[~y/~b]. This new
assertion (on the variables ~x) is then added to the first solver’s
context and the loop proceeds. It is easy to see that this
procedure terminates as the variables ~x have a finite domain. It
is worth noting that the more general procedure for deciding
quantified bit-vectors and uninterpreted functions in the Z3
SMT solver [15] reduces to our procedure when used on the
∃∀ QF BV fragment.

A. Formula Simplification

The ∃∀ procedure is complete but may be very slow to
terminate. High-level preprocessing and simplifications of the
∃∀ formula are essential to make it practical.

loop
〈satx, ~x 7→ ~a〉 ← SMT-SOLVE(E)
if not satx then

return unsat
〈saty, ~y 7→ ~b〉 ← SMT-SOLVE(¬A[~x/~a])
if not saty then

return 〈sat, ~x 7→ ~a〉
E ← E ∧A[~y/~b]

Fig. 2. Main loop for solving (∃~x) (E(~x) ∧ (∀~y) A(~x, ~y)).

For reducing the scope of quantifier we distribute quan-
tifiers over compatible Boolean operators (this is known as
miniscoping):

(∃~x)A ∨B ⇔ (∃~x)A ∨ (∃~x)B
(∀~x)A ∧B ⇔ (∀~x)A ∧ (∀~x)B

The first simplification decomposes an ∃∀ problem into
smaller subproblems, while the second simplification reduces
candidate checking to several smaller checks.

It is common for our ∃∀ problems to contain subformulas
of the following form:

(∃~x)(E(~x) ∧ (∀~y)(
∧
i∈S

(yi = xji)⇒ B(~y)))

where S is a subset of indexes in 1..|~y| and ji ∈ 1..|~x|,
for every i ∈ S. A naı̈ve application of our procedure does
not work well on such problems. To illustrate a worst case
scenario, let us assume that B is unsatisfiable. In such a case,
each iteration of our procedure will pick a fresh candidate
assignment ~x 7→ ~a, then refute the universal subformula
with a counterexample ~y 7→ ~b. Since we must have that
bi = aji , for every i ∈ S, and B evaluates to false under ~b,
the counterexample instantiation yields the weakest possible
explanation

∨
i∈S(xji 6= aji), which (essentially) eliminates

only the current candidate for ~x.1

To preserve the connections that equalities introduce over
quantifiers, we perform equality resolution. We detect equal-
ities of the form (yi = ti) in the antecedents of universal
subformulas, then solve out the variables yi. In our previous
examples, this simplifies the problem to the equivalent formula

(∃~x)(E(~x) ∧ (∀~y)B′)

where B′ is the result of solving out the variables yi from B.
On this simplified formula, the procedure now has a chance to
eliminate more than one candidate at each iteration.

In addition to these formula simplifications, we reduce the
solver’s search space by relying on distinguished signatures, a
technique originally proposed for solving PIEC.

IV. DISTINGUISHING SIGNATURES

Functional equivalence checking of circuits is a central
problem in logic synthesis and verification. Roughly speak-
ing, it consists of determining whether two given circuits
C1(I1, O1), C2(I2, O2) implement the same function. Without
loss of generality, we can assume that n = |I1| = |I2| and
m = |O1| = |O2|.

1It may eliminate more than one candidate if S is a strict subset of 1..|~y|.

In our setting, C1 and C2 are combinational circuits rep-
resented as multi-output Boolean functions f = (f1, . . . , fm)
and g = (g1, . . . , gm), respectively. The combinational equiv-
alence checking problem consists in deciding whether the sen-
tence ∀1 ≤ i ≤ m : ∀x1, . . . , xn : fθ(i)(xσ(1), . . . , xσ(n)) =
gi(x1, . . . , xn) is valid, where σ and θ are input and output
correspondence between C1 and C2; σ is the input permtation
and θ is the output permutation.

In the PIEC problem, the mappings σ and θ are not known
and we must synthesize them. We can then formulate the
problem as checking validity of the formula

∃θ, σ :∀1 ≤ i ≤ m,x1, . . . , xn : (3)

fθ(i)(xσ(1), . . . , xσ(n)) = gi(x1, . . . , xn)

This problem has been widely studied [22], [23], [8]. To reduce
the size of the search space for θ, a common approach is to
assign an abstract signature to every output of C1 and C2, with
two key properties. First, functions with different signatures
cannot be equivalent. Second, the signature of a function fi
(or gi) is invariant under any permutation of the input variables
x1, . . . , xn. If gi and f j have different signatures, we can
reduce the search to output permutations that satisfy θ(i) 6= j.
This method extends to the input signals: one can also assign
signatures to every input xi to eliminate a priori some invalid
input permutations σ.

More concretely, let Bn be the set of all single-output
Boolean functions with n input variables, and let D be an or-
dered set. An input signature is a function sin : {x1, . . . , xn}×
(Bn)m → D, such that the equality

sin(xi, f
1(x1, . . . , xn), . . . , f

m(x1, . . . , xn)) =

sin(xσ(i), f
θ(1)(xσ(1), . . . , xσ(n)), . . . , f

θ(m)(xσ(1), . . . , xσ(n)))

holds for every input permutation σ and output permutation θ.
Similarly, an output signature sout is a function sout : Bn →
D such that sout(f(x, . . . , xn)) = sout(f(xσ(1), . . . , xσ(n)))
holds for any input permutation σ.

Consider Formula (3) above and assume that, for
some inputs xi and xj , we have sin(xi, f

1, . . . , fn) 6=
sin(xj , g

1, . . . , gn). Then, since equal signatures are a neces-
sary condition for i to be mapped to j by the input permutation
σ, it follows that σ(i) 6= j. The case of output permutations
and an output signature sout is analogous. We can collect
all disequality constraints derived from input signatures in
a formula Cin(σ) and all disequalities derived from output
signatures in Cout(θ). Then, Formula 3 is equivalent to

∃θ,σ : Cin(σ) ∧ Cout(θ)∧ (4)
∀1 ≤ i ≤ m,x1, . . . , xn :

fθ(i)(xσ(1), . . . , xσ(n)) = gi(x1, . . . , xn)

We apply a similar idea to our synthesis constraint (For-
mula (2)) from Section II.

A variety of signatures have been presented in the lit-
erature, many of them derived from a Reduced Ordered
Binary Decision Binary Diagrams (ROBDDs) representation
of Boolean functions. For a detailed presentation of a variety
of signatures, their applications, and limitations, the reader is
referred to [24], [25]. In this paper we focus on two signatures
that do not rely on ROBDDs and are thus more scalable.

A. The in dep and out dep Signatures

Given a Boolean formula f(x1, . . . , xn) and a variable xi,
we say that f essentially depends on xi, denoted by f �
xi, if there exists an Boolean tuple (α1, . . . , αn) such that
f(α1, . . . , αi, . . . , αn) 6= f(α1, . . . , ᾱi, . . . , αn). Consider a
circuit defined by m functions f1, . . . , fm; we define the input
dependence set of x and the output dependence set of fi as
follows:

in dep set(x, f1, . . . , fn) = {f j : f j � x}
out dep set(fi) = {x : fi � x}

Then, we define the two following signatures:

(a) in dep(x, f1, . . . , fn) = |in dep set(x, f1, . . . , fn)|
(b) out dep(f) = |out dep set(f)|

We must adapt these signatures to take templates into
account. We want to produce a formula C(θ)∧C(σ1)∧ . . .∧
C(σn) that, as in the case of Formula 4, can be added to our
synthesis constraint while preserving validity.

Recall that we defined a template as a tuple

〈OT = {o1, . . . , ol}, {S1, . . . , Sn, C}, p, {φ1, . . . , φm},
arg1 , arg2 , perm1 , perm2 〉.

The inputs and outputs of functions φ1, . . . , φm are all
bit vectors. We can then interpret each φi as a multi-output
Boolean function, and we denote by φki the k-th bit of
φi’s output. We define our template-version of in dep and
out dep, which we denote by in depT and out depT , for
every input xi and output ok as follows

(c) in depT (xi, T) =

|
⋃m
j=1 in dep set(xi, φj(Sarg1 (j), Sarg2 (j)))|

(d) out depT (ok) =

|
⋃m
j=1 out dep set(φkj ((Sarg1 (j), Sarg2 (j))))|

To see how to take advantage of this definition of signa-
tures, consider a combinational circuit C and its representation
as single-output Boolean functions f1C , . . . , f

m
C with input

variables x1, . . . , xn. Consider a template T for C. The key
observation is that fixing the value of variables in C cannot
cause in dep(x, f1C , . . . , f

n
C) or out dep(f iC) to increase. Let j

be any index in {1, . . . ,m}, and let x and y be input variables
in Sarg1 (j). Then we have that

(in dep(x, f1C , . . . , f
n
C) > in depT (y, T))⇒

σperm1 (j)(x) 6= σperm1 (j)(y)

An analogous implication holds for x, y ∈ Sarg2 (j). Similarly,
for the output permutation θ, if f iC corresponds to a variable
in oi ∈ OT then, for any k ∈ {1, . . . , l}, we have

(out dep(f iC) > out depT (ok))⇒ θ(oi) 6= ok

The definition of essential dependence at the beginning
of this section directly gives us a procedure to precompute
input and output signatures of C and T by means of a
quadratic number of calls to an SMT solver. Other signatures
based on model counting are known to be very effective but
they require circuits to be represented using ROBDDs. Our
signature computation scales better than these BDD-based

approaches but we did not put emphasis on efficient signature
computation in our investigations. Other symbolic approaches
might be more effective.

In summary, we have an effective approach to produce a
conjunction of constraints Cout(θ) ∧Cin(σ1) ∧ . . . ∧Cin(σn)
that eliminates irrelevant permutations, and such that the
formula

∃ψ1, . . . , ψm, σ1, . . . , σn, θ :

∀I,O : Cout(θ) ∧ Cin(σ1) ∧ . . . ∧ Cin(σn) ∧ Φ

is equivalent to our synthesis constraint from section II.

In our implementation, we encode a permutation σ us-
ing a quadratic number of Boolean variables σi,j such that
σ(i) = j ⇔ σi,j . With this encoding, the formulas Cout(θ)
and Cin(σ) are simply conjunctions of literals.

Let us remark that, since the values of the signatures can
be computed independently in the template and the circuit,
we do not report on computation time needed for signature
computation in our examples. Nevertheless, using a naive
implementation based on calling an SMT solver, we can
compute the signatures for all our examples in the order of
minutes.

V. EXPERIMENTAL EVALUATION

We have evaluated our techniques on a set of reverse
engineering benchmarks. These are flattened Verilog netlists
that contain components such as ALUs, multipliers, shifters
and counters. The benchmars were derived from various
sources including the ISCAS’85 benchmarks, an ALU from an
academic processor implementation, and synthetic examples.
The flattened netlists were generated by synthesizing high-
level (behavioral) Verilog using the Synopsys Design Compiler
(DC). All the circuits, both in high-level Verilog and flattened
netlists form are available at [16].

Our benchmarks exemplify the situation where a reverse
engineer tries to understand the high-level functionality of
a flattened design with limited information about the op-
eration that it may perform and no detailed knowledge of
its input/output buses. In less restrictive cases, the reverse
engineer is given the grouping of the inputs into unordered
words, and in some cases no information at all is known.
The output of Synopsys DC is an optimized flattened Verilog
netlist and our goal is to identify and extract the high-level
modules contained within this flat netlist using template-based
matching. Our toolchain reads these flattened Verilog netlists
and the templates against which they are to be matched. It
then encodes the matching problem as satisfiability queries to
be solved by a backend solver. Currently, we can generate
queries for the SMT solvers Yices and Z3, and QBF instances
in the Q-Dimacs format.

Our template library contains modules such as adders, sub-
tracters, shifters, multipliers, and counters of varying bitwidths.
Each netlist was matched against a subset of these templates.
We ensured that each netlist was matched against an approxi-
mately equal number of satisfying (matching) and unsatisfying
(not matching) instances. The total number of instances is 40,
of which an equal number are satisfiable and unsatisfiable.
We believe these instances are a challenging yet realistic

set of benchmarks relevant to the reverse engineering/logic
deobfuscation problem. We have made the QBF, Yices and
SMT2 instances generated by these matching problems avail-
able at [16]. The solver binaries used in our experiments are
also available at this location.

We evaluated the performance of the following solvers:
Yices [18] and Z3 [26], the QBF solvers RAReQS [27],
DepQBF [28] and sKizzo [29], and a variant of the algorithm
in Figure 2 (and also Algorithm 1 in [21]) that is somewhat
similar to the algorithm presented in [13] that operates on a
Boolean circuit representation. We refer as Cir-CEGAR to this
variant in the rest of this paper. Since the encoding of our
instances is written using the Yices language, we converted our
instances to (1) the QDIMACS format used by the QBF solvers
using the Yices standard bitblasting procedure, (2) SMTLIB-
2 format using a simple syntactic transformation (basically a
renaming of bitvector operations), and (3) QDIMACS format
with a distinguished special literal equivalent to the validity
of the whole formula, as required by Cir-CEGAR. Transfor-
mations (1) and (3) were performed after the simplification
steps presented in Section III. To assess the effectiveness of
Cir-CEGAR, we also produced benchmarks from the original
formula, without applying the preprocessing steps. Empirical
results are presented at the end of this section.

We modified Yices to incorporate the ∃∀ solver algo-
rithm from Section III. We refer to this modified version as
Yices EF in the results. Cir-CEGAR was implemented using
Minisat v2.2 as the underlying SAT solver. When testing
the QBF solvers, we first simplified the QBF-instances using
Bloqqer [30]. The solvers we used include Z3 v4.3.2, for Linux
x64 nightly build downloaded on 2014-05-14, RAReQS v1.1,
DepQBF v3.0 and sKizzo v0.8.2. We executed the solvers on
a cluster with Intel Xeon E31230 and E5645 processors with
a one-hour timeout.

The QBF solvers did not work well on our benchmarks.
RAReQS solved only three instances, while DepQBF and
sKizzo did not solve any. Therefore, we omit results from these
three solvers in the rest of this section.

A. Results

10-2 10-1 100 101 102 103 104

Time to solve (seconds)

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f i
ns

ta
nc

es
 s

ol
ve

d

YICES_EF+PB
Z3+
Cir-CEGAR+

YICES_EF-
Z3-
Cir-CEGAR-

Fig. 3. Comparison of solver performance: Yices, Z3, Cir-CEGAR

Figure 3 shows the number of instances solved by a solver
(y-axis) given a particular time limit (x-axis). The encoding of

permutations has a significant impact on solver performance.
Our default encoding is explained in the previous section. A
permutation σ is defined by a quadratic number of Boolean
variables σi,j and constraints such that σ(i) = j ⇔ σi,j . This
positive encoding is denoted by the suffix ‘+’ in the plot. We
also experimented with a negative encoding (denoted by the
suffix ’-’ in the graph). In the negative encoding, the polarity
of the Boolean variables is reversed, that is, we have σ(i) =
j ⇔ σ̄i,j for each i and j in σ’s domain.

The choice of encoding is significant as it interacts with the
decision heuristics employed by the SMT solvers. By default,
Yices uses negative branching with phase caching [31]. With
this heuristic, each time Yices makes a decision on the value
of a Boolean variable σi,j , it gives preference to the value
false. This leads to poor performance on benchmarks that
use the positive encoding, as setting σi,j to false triggers
no unit propagations. After noticing this issue, we changed
Yices’s branching heuristic to use “positive-branching” (i.e.,
prefer true over false). This is denoted by the suffix PB in the
graph. With this setting, Yices solves 37 instances within the
time limit. It performs worse with the negative encoding (and
the default branching heuristics), solving only 29 instances. In
its default configuration, Z3 has better results with the negative
encoding. It solves 33 instances with this encoding but only
27 instances with the positive encoding. Cir-CEGAR is not as
sensitive to the encoding as Yices and Z3.

Figure 4 shows the benefit of signatures. On the x-axis of
each graph we show the time to solve the instance without
signatures, while the y-axis is the time to solve the instance
with signatures. Most points on these graphs are below the
diagonal, showing that adding signatures is a gain in most
cases. Many instances cannot be solved within our 3600 s
timeout without signatures, but can be solved when signatures
are added. The few outliers are instances in which the solver
“gets lucky” even without signatures, which happens mostly
on satisfiable instances.

10-3 10-2 10-1 100 101 102 103 104

Time to solve without preprocessing (s)

10-3

10-2

10-1

100

101

102

103

104

Ti
m

e
to

 s
ol

ve
 w

ith
 p

re
pr

oc
es

si
ng

 (s
)

Fig. 5. Improvement in solver performance due to preprocessing. Results are
for Cir-CEGAR.

Figure 5 shows the impact of formula simplification pre-
sented in Section III on Cir-CEGAR. The x-axis shows the
number of seconds taken by the solver when preprocessing is
not performed on the QBF instances while the y-axis shows
the time taken by the solver when preprocessing is performed.

As before, instances which failed to finish are represented
with a value of 3600 seconds. We see that a number of such
instances are present on the vertical line with x = 3600s.
These are instances solved with preprocessing but not when
preprocessing was omitted. The behavior is quite interesting.
Either preprocessing has little effect on solver performance
(the points close to the diagonal) or it has a huge effect (the
points where x > 103 and y < 102).

VI. CONCLUSION AND FURTHER WORK

We have presented the Permutation Independent Condi-
tional Equivalence Checking problem (PICEC) as a method
for synthesizing high-level functional descriptions of combi-
national circuits. PICEC extends permutation independence
equivalence checking by considering control signals and condi-
tional matching. We solve the problem using a template-based
approach. A template can be seen as describing a (usually very
large) family of possible high-level descriptions. Our procedure
automatically instantiates the template to match the circuit
under investigation. Templates encode partial knowledge about
the circuit provided by the user.

PICEC can be reduced to solving formulas in the logic of
fixed-sized bit vectors with two levels of quantification ∃ and
∀— that is, ∃∀QF BV . We have implemented a solver for this
class of problems using the Yices SMT solver. We have shown
that distinguishing signatures are effective to prune the solver
search space and lead to significant performance improvement.

We have evaluated this approach on a set of realistic
reverse-engineering benchmarks, using different solvers and
permutation encodings. Our benchmarks are available to the
community in four formats: Yices language, SMT2, QDI-
MACS, and the QDIMACS format with a special top literal
used in in Cir-CEGAR.

An interesting line of further research is in exploring
more complex signatures, and efficient algorithms to compute
their values. We also plan to investigate whether our pruning
approach based on signatures can be included as part of
the interaction between the two solvers in the algorithm of
Section III.

REFERENCES

[1] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering circuits using
behavioral pattern mining,” in HOST. IEEE, 2012, pp. 83–88.

[2] Y. Shi, C. W. Ting, B.-H. Gwee, and Y. Ren, “A highly efficient method
for extracting FSMs from flattened gate-level netlist,” in ISCAS. IEEE,
2010, pp. 2610–2613.

[3] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in DATE, E. Macii, Ed. EDA Consortium San Jose, CA,
USA / ACM DL, 2013, pp. 1277–1280.

[4] W. Li, A. Gascón, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “Wordrev: Finding word-level structures
in a sea of bit-level gates,” in HOST. IEEE, 2013, pp. 67–74.

[5] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE Design &
Test of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[6] J. Mohnke, P. Molitor, and S. Malik, “Establishing latch correspondence
for sequential circuits using distinguishing signatures,” Integration,
vol. 27, no. 1, pp. 33–46, 1999.

[7] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean Matching Using Binary
Decision Diagrams with Applications to Logic Synthesis and Verifica-
tion,” in ICCD. IEEE Computer Society, 1992, pp. 452–458.

10-3 10-2 10-1 100 101 102 103 104

Time to solve without signatures (s)

10-3

10-2

10-1

100

101

102

103

104

Ti
m

e
to

 s
ol

ve
 w

ith
 s

ig
na

tu
re

s
(s

)
(a) YICES_EF

10-3 10-2 10-1 100 101 102 103 104

Time to solve without signatures (s)

10-3

10-2

10-1

100

101

102

103

104

Ti
m

e
to

 s
ol

ve
 w

ith
 s

ig
na

tu
re

s
(s

)

(b) Z3

10-3 10-2 10-1 100 101 102 103 104

Time to solve without signatures (s)

10-3

10-2

10-1

100

101

102

103

104

Ti
m

e
to

 s
ol

ve
 w

ith
 s

ig
na

tu
re

s
(s

)

(c) Cir-CEGAR

Fig. 4. Improvement in solver performance with signatures.

[8] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral Transforms for Large Boolean Functions with Applications
to Technology Mapping,” Formal Methods in System Design, vol. 10,
no. 2/3, pp. 137–148, 1997.

[9] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in FMCAD. IEEE, 2013, pp. 1–17.

[10] A. Solar-Lezama, “Program sketching,” STTT, vol. 15, no. 5-6, pp. 475–
495, 2013.

[11] M. W. Hall and D. A. Padua, Eds., Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. ACM,
2011.

[12] A. Gascón and A. Tiwari, “A synthesized Algorithm for Interactive
Consistency,” in NASA Formal Methods, ser. Lecture Notes in Computer
Science, J. M. Badger and K. Y. Rozier, Eds., vol. 8430. Springer,
2014, pp. 270–284.

[13] M. Fujita, S. Jo, S. Ono, and T. Matsumoto, “Partial synthesis through
sampling with and without specification,” in ICCAD, J. Henkel, Ed.
IEEE/ACM, 2013, pp. 787–794.

[14] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in ICSE (1), J. Kramer, J. Bishop,
P. T. Devanbu, and S. Uchitel, Eds. ACM, 2010, pp. 215–224.

[15] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura, “Efficiently
solving quantified bit-vector formulas,” Formal Methods in System
Design, vol. 42, no. 1, pp. 3–23, 2013.

[16] “Online repository of benchmarks and experimental results,”
https://bitbucket.org/spramod/fmcad14-experiments, 2014.

[17] B. Dutertre, “Yices 2 Manual,” Computer Science Laboratory, SRI
International, Tech. Rep., 2014, available at http://yices.csl.sri.com.

[18] ——, “Yices 2.2,” in Computer-Aided Verification (CAV’2014), ser.
Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds., vol.
8559. Springer, July 2014, pp. 737–744.

[19] A. Biere, “Resolve and expand,” in Theory and Applications of Satisfi-
ability Testing. Springer, 2005, pp. 59–70.

[20] D. P. Ranjan, D. Tang, and S. Malik, “A Comparative Study of 2QBF
Algorithms,” in SAT, 2004.

[21] M. Janota and J. P. M. Silva, “Abstraction-Based Algorithm for 2QBF,”
in SAT, ser. Lecture Notes in Computer Science, K. A. Sakallah and
L. Simon, Eds., vol. 6695. Springer, 2011, pp. 230–244.

[22] Proceedings 1991 IEEE International Conference on Computer Design:
VLSI in Computer & Processors, ICCD ’92, Cambridge, MA, USA,
October 11-14, 1992. IEEE Computer Society, 1992.

[23] J. Mohnke and S. Malik, “Permutation and phase independent boolean
comparison,” Integration, vol. 16, no. 2, pp. 109–129, 1993.

[24] J. Mohnke, P. Molitor, and S. Malik, “Application of BDDs in Boolean
matching techniques for formal logic combinational verification,” STTT,
vol. 3, no. 2, pp. 207–216, 2001.

[25] ——, “Limits of using signatures for Permutation Independent Boolean
Comparison,” Formal Methods in System Design, vol. 21, no. 2, pp.
167–191, 2002.

[26] L. M. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in
TACAS, ser. Lecture Notes in Computer Science, C. R. Ramakrishnan
and J. Rehof, Eds., vol. 4963. Springer, 2008, pp. 337–340.

[27] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with Counterexample Guided Refinement,” in SAT, ser. Lecture
Notes in Computer Science, A. Cimatti and R. Sebastiani, Eds., vol.
7317. Springer, 2012, pp. 114–128.

[28] F. Lonsing and A. Biere, “DepQBF: A Dependency-aware QBF Solver,”
JSAT, vol. 7, no. 2-3, pp. 71–76, 2010.

[29] M. Benedetti, “sKizzo: A Suite to Evaluate and Certify QBFs,” in
CADE, ser. Lecture Notes in Computer Science, R. Nieuwenhuis, Ed.,
vol. 3632. Springer, 2005, pp. 369–376.

[30] A. Biere, F. Lonsing, and M. Seidl, “Blocked Clause Elimination for
QBF,” in CADE, ser. Lecture Notes in Computer Science, N. Bjørner
and V. Sofronie-Stokkermans, Eds., vol. 6803. Springer, 2011, pp.
101–115.

[31] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in Theory and Applications of Satis-
fiability Testing–SAT 2007. Springer, 2007, pp. 294–299.

