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Abstract—This paper proposes Functional Analysis attacks on
state of the art Logic Locking algorithms (FALL attacks). FALL
attacks use structural and functional analyses of locked circuits
to identify the locking key. In contrast to past work, FALL
attacks can often (90% of successful attempts in our experiments)
fully defeat locking by only analyzing the locked netlist, without
oracle access to an activated circuit. Experiments show that FALL
attacks succeed against 65 out of 80 (81%) of circuits locked using
Secure Function Logic Locking (SFLL), the only combinational
logic locking algorithm resilient to all known attacks.

I. INTRODUCTION

Globalization of the semiconductor supply chain has re-
sulted in IC design houses becoming increasingly reliant on
potentially untrustworthy offshore foundries. This reliance has
raised the spectre of integrated circuit (IC) piracy, unau-
thorized overproduction, and malicious design modifications
by adversarial entities that may be part of these contract
foundries [4, 7, 19]. These concerns have both financial [5]
and national security implications [14].

A potential solution to these problems is logic locking [1,
11]: a set of techniques that introduce additional logic and
new inputs to a digital circuit in order to create a “locked”
version of it. The locked circuit operates correctly if and only
if the new inputs – called “key inputs” and typically connected
to a tamper-proof memory – are set to the right values. The
circuit is activated by programming the correct key values
after manufacturing and prior to sale. The security assumption
underlying logic locking is that the untrusted foundry does not
know the correct key inputs and cannot compute it.

Initial proposals for logic locking did not satisfy this as-
sumption and were vulnerable to attack [8, 9, 17, 23, 26].
Rajendran et al. [9] used automatic test pattern generation
(ATPG) algorithms to reveal the key bits. Subramanyan et
al. [17] developed the SAT attack which defeated all com-
binational logic encryption algorithms known at the time. The
attack uses a Boolean satisfiability solver to iteratively find
inputs that distinguish between equivalence classes of keys.
For each such input, an activated IC (perhaps purchased from
the market) is queried for the correct output. This is fed
back to the SAT solver to compute the next distinguishing
input. The practicality of this attack depends on the number
of equivalence classes of keys present in the locked circuit.

Much subsequent work has focused on SAT-attack resilient
logic locking [20, 21, 24, 27, 28] that ensures the number of
equivalence classes of keys is exponential in the key length.
Broadly speaking, these proposals all share the structure shown
in Figure 1. They introduce a circuit which “flips” the output
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Fig. 1: Overview of SAT attack resilient locking algorithms.
Note: we show a single-output circuit for simplicity.

of the original circuit for a particular cube or set of cubes. We
refer to this component as the cube stripping unit. This flipped
output is then inverted by a key-dependent circuit that we
refer to as the progammable functionality restoration unit. This
latter circuit is guaranteed to have an exponential number of
equivalence classes of keys and ensures SAT attack resilience.
(Note these methods “hard code” the locking key in the cube
stripping unit which leads to a vulnerability that we exploit.)
Initial proposals along these lines were Anti-SAT [20, 21]
and SARLock [24]. However, Anti-SAT was vulnerable to the
signal probability skew (SPS) [24] attack while SARLock was
vulnerable to the Double DIP [13] attack and the Approximate
SAT [12] attack. Both schemes are vulnerable to removal and
bypass attacks [22, 25]. Subsequently, Yasin et al. proposed
TTLock [28] and Secure Function Logic Locking (SFLL) [27].
To the best of our knowledge, SFLL is the only combinational
logic locking scheme resilient to all of the above attacks.

A. Contributions

In this paper, we introduce a novel class of attacks:
Functional Analysis attacks on Logic Locking, abbreviated
FALL attacks. FALL attacks defeat locking methods which use
cube stripping and programmable functionality restoration.

Our approach is to identify sub-circuits corresponding to
the cube stripping module, and then extract the key using
functional analysis of these nodes. This is challenging for two
reasons. First, testing whether a sub-circuit is equivalent to
the cube stripping function for some key value is a Quantified
Boolean Formula (QBF) instance. Note QBF is PSPACE-
complete and so a naı̈ve approach based on encoding to QBF
does not scale. We tackle this by introducing a set of poly-time
structural analyses that identify the cube stripping unit.



The second challenge is extracting the key from the cube
stripping unit. For this, we prove novel Boolean functional
properties of the cube stripping function for TTLock and SFLL
and introduce SAT-based analyses that determine locking keys
using these properties. These structural and functional analyses
defeat SFLL, which to the best of our knowledge, is the only
combinational locking method resilient to all known attacks.

We present a thorough experimental analysis of FALL at-
tacks. The attacks succeed on 65 out of 80 benchmark circuits
(81%) in our evaluation. Among these 65, our attacks shortlist
exactly one key for 58 circuits (90% of successful attempts).
This shows FALL attacks are extremely practical to carry out
as they do not even require Oracle access to an unlocked IC.

II. PRELIMINARIES

This section describes the adversary model for the FALL
attack and the notation used in the rest of this paper.

A. Adversary Model

Our adversary is a malicious foundry with layout and mask
information. The gate level netlist can be reverse engineered
from this [18]. The adversary knows the locking algorithm,
associated parameters and can distinguish between key inputs
and circuit inputs. We follow [9, 17, 27] etc. and restrict our
attention to combinational circuits.1 The above assumptions
are standard and in both logic locking defenses and attacks [9–
13, 17, 20, 24, 27, 28]. We depart from past work in one impor-
tant way. We do not assume that the adversary has access to an
activated circuit which can be used to observe the output for a
specific input, ruling out Oracle-guided attacks [9, 12, 13, 17].
This makes FALL attacks more practical than past work while
also being more successful on SAT-resistant locking schemes.

B. Notation

B = {0, 1} is the Boolean domain. A combinational logic
circuit is modeled as a directed acyclic graph G = (V,E).
Nodes in the graph correspond to logic gates and input nodes.
Edge (v1, v2) ∈ E if v2 is a fanin (input) of the gate v1.

Given a node v ∈ V , define fanins(v) = {v′ | (v, v′) ∈ E}.
#fanins(v) is the cardinality of fanins(v). For v ∈ V such
that #fanins(v) = n, nodefn(v) is the n-ary Boolean function
associated with the node; nodefn(v) : V → (Bn → B).
For example, if v1 is a 2-input AND gate, nodefn(v1) =
λab. a ∧ b. For input nodes, nodefn(v) is an uninterpreted 0-
ary Boolean function (or equivalently a propositional variable).
The circuit function of node v, cktfn(v) is defined recursively
as: cktfn(v) = nodefn(v)

(
cktfn(v1), . . . , cktfn(vn)

)
where

vi ∈ fanins(v). The transitive fanin cone of a node v, TFC(v),
is the set of all nodes vj such that (v, vj) ∈ E or there
exists some vi ∈ V such that (vi, vj) ∈ E and vi ∈ TFC(v).
The support of a node, denoted by Supp(v), is the set of
all nodes vj such that vj ∈ TFC(v) and #fanins(vj) = 0.
In a locked netlist, define the predicate isKey(v) such that
isKey(v) = 1 iff node v is a key input. Given two bit

1Sequential circuits can viewed as combinational by treating flip-flop inputs
and outputs as combinational outputs and inputs respectively.

vectors X1 = 〈x11, . . . , x1m〉 and X2 = 〈x21, . . . , x2m〉, define
HD(X1, X2)

.
=
∑m

i=1(x
1
i ⊕x2i ) to be their Hamming distance

(⊕ is the eXclusive OR operator). Given a Boolean function
f : Bn → B, the function obtained by setting xi = 1 in
f , f(x1, . . . , 1, . . . , xn), denoted as fxi

is called a positive
cofactor of f . f(x1, . . . , 0, . . . , xn) denoted f¬xi

, is a negative
cofactor of f .

III. FUNCTIONAL ANALYSIS ATTACKS

This section describes FALL attacks. We first describe
structural analyses to identify nodes that may be the output of
the cube stripping unit. We then develop functional properties
of the cube stripping function used in SFLL and develop
algorithms based on these attacks. Due to a lack of space,
the descriptions below are terse. More detailed explanations
can be found in the associated technical report [16].

A. Identifying the Cube Stripping Unit

The first step in identifying the cube stripping unit is
comparator identification. This finds all nodes in the circuit
which are the result of comparing an input value with a key
input. These nodes are likely to be part of the functionality
restoration unit. This is done by identifying all gates vi whose
circuit function is equivalent to (z⊕ xi) ⇐⇒ ki for some z.
Here xi is a circuit input, ki must be a key input and z captures
whether ki is being compared with xi or ¬xi. The result of
comparator identification is the set Comp = {〈vi, xi, ki〉, . . . }
where each tuple 〈vi, xi, ki〉 is such that Supp(vi) = {xi, ki},
isKey(xi) = 0, isKey(ki) = 1, and either cktfn(vi) ⇐⇒
xi ⊕ ki or cktfn(vi) ⇐⇒ ¬(xi ⊕ ki).

The set of all input nodes xi that appear in Comp should
be the support of the cube stripping unit. Given the set
Comp = {〈vi, xi, ki, 〉, . . . }, define the projection Compx

as Compx = {xi | (vi, xi, ki) ∈ Comp}. The set Cand
is set of all gates whose support is identical to Compx:
Cand = {ui | Supp(ui) = Compx}. This set of gates
contains the output of the cube stripping unit.

B. Functional Properties of Cube Stripping

Cube stripping involves the choice of a protected cube,
represented by the tuple Kc = 〈k1, . . . , km〉 where m =
|Comp| and ki ∈ B. A stripping function strip : Bm →
(Bm → B) is parameterized by this protected cube. The
output of the functionality stripped circuit (the dashed box
in Figure 1) is inverted for the input X = 〈x1, . . . , xm〉
when strip(Kc)(X) = 1. For a given locked circuit and
associated key value, the value of Kc is “hard-coded” into the
implementation of strip. The attacker’s goal is to learn Kc.

In this paper we study functional properties of the following
cube stripping function: striph(Kc)(X)

.
= HD(Kc, X) = h.

striph flips the output for input patterns exactly Hamming
distance h from the protected cube 〈k1, . . . , km〉. This is the
cube stripping function for SFLL-HDh and the special case of
h = 0 corresponds to the cube stripping function for TTLock.
This function has three specific properties that can be exploited
to determine the value of Kc.



1) Unateness (TTLock/SFLL-HD0): We say that a Boolean
function f : Bm → B is positive unate in the variable xi if
f¬xi ≤ fxi . We say that f is negative unate in the variable xi
if fxi

≤ f¬xi
. f is said to be unate in xi if it is either positive

or negative unate in xi. (a ≤ b is defined as ¬a ∨ b.)
Lemma 1: The cube stripping function for TTLock/SFLL-
HD0 is unate in every variable xi. Further, it is positive unate
in xi if ki = 1 and negative unate in xi if ki = 0.

Let 〈k1, k2, k3〉 = 〈1, 0, 1〉. strip0(k1, k2, k3)(x1, x2, x3) =
x1 ∧ ¬x2 ∧ x3. This is positive unate in x1 as 0 ≤ ¬x2 ∧ x3,
and negative unate in x2 as 0 ≤ x1 ∧ x3.
Algorithm ANALYZEUNATENESS: Lemma 1 leads to the
following attack on SFLL-HD0. Check if the circuit function
of a node c ∈ Cand , cktfn(c), is unate in all of its inputs.
If so, a potential locking key Kc is obtained using Lemma 1.
Finally, verify that the cktfn(c) ⇐⇒ strip0(Kc)(X) is valid.

2) Non-Overlapping Errors Property (SFLL-HDh): In the
definition of striph, let Kc = 〈k1, . . . , k4〉 = 〈1, 1, 1, 1〉 and
h = 1. Consider the two input values X1 = 〈1, 1, 1, 0〉 and
X2 = 〈0, 1, 1, 1〉. strip1(Kc)(X

1) = 1 = strip1(Kc)(X
2). X1

and X2 are Hamming distance 2 from each other and distance
1 from Kc. This means that the values of xi on which the
two patterns agree – x2 and x3 – must be equal to k2 and k3
respectively. The “errors” (bit-positions where xi 6= ki) in X1

and X2 cannot overlap as they are Hamming distance 2h apart.
Generalizing this observation leads to the following result.
Lemma 2: Suppose X1 = 〈x11, . . . , x1m〉, X2 = 〈x21, . . . , x2m〉,
Kc = 〈k1, . . . , km〉 and striph(Kc)(X

1) = 1 = striph(Kc)(X
2).

If HD(X1, X2) = 2h, then for every j such that x1j = x2j , we
must have x1j = x2j = kj .
Algorithm DISTANCE2H: An attack algorithm based on
Lemma 2 is applicable when 4h ≤ m; m being the number of
key inputs. Given a node c ∈ Cand , we use a SAT solver to
find two satisfying assignments of cktfn(c) that are Hamming
distance 2h apart. This determines m − 2h key bits in Kc.
Next, we constrain the 2h input variables which were different
among these two assignments to be identical and find another
pair of satisfying assignments Hamming distance 2h apart.
This yields the remaining key bits in Kc. The final step is
checking whether cktfn(c) ⇐⇒ striph(Kc)(X) is valid.

3) Sliding Window Property (SFLL-HDh): Let us revisit the
example from the non-overlapping errors property. Let Kc =
〈k1, . . . , k4〉 = 〈1, 1, 1, 1〉 and h = 1. For the input value
X1 = 〈1, 1, 1, 0〉, we have strip1(Kc)(X

1) = 1. Notice that
there cannot exist another assignment X2 = 〈x21, . . . , x24〉 with
x24 = 0, HD(X1, X2) = 2 and strip1(Kc)(X

2) = 1. This is
because x24 6= k4, so the remaining bits in X2 must be equal to
Kc so that strip1(Kc)(X

2) = 1. But this forces the Hamming
distance between X1 and X2 to be 0 (and not 2 as desired).
This observation leads to the following result.
Lemma 3: Let X1 = 〈x11, . . . , x1m〉, X2 = 〈x21, . . . , x2m〉,
and Kc = 〈k1, . . . , km〉. striph(Kc)(X

1) ∧ striph(Kc)(X
2) ∧

HD(X1, X2) = 2h∧ x1j = x2j ∧ x1j = b is satisfiable iff b = kj .
Algorithm SLIDINGWINDOW: Lemmas 2 and 3 lead to an
attack on SFLL-HDh for h < bm/2c where m is the number
of key inputs. Given a node c ∈ Cand , we use a SAT solver

to find two assignments X1 and X2 to cktfn(c) which are
Hamming distance 2h apart. The indices j for which x1j = x2j
are also equal to kj by Lemma 2. The remaining bits in Kc
are determined by iterated application of Lemma 3.

IV. EVALUATION

This section describes our experimental evaluation of FALL
attacks. We describe the evaluation methodology, then present
the results of the functional analyses, after which we present
our evaluation of the key confirmation attack.

A. Methodology

ckt #in #out #keys # of gates
Original SFLL

min max
ex1010 10 10 10 2754 2783 2899
apex4 10 19 10 2886 2938 3058
c1908 33 25 33 414 1322 1376
c432 36 7 36 209 1119 1155
apex2 39 3 39 345 1367 1407
c1355 41 32 41 504 1729 1746
seq 41 35 41 1964 3177 3187
c499 41 32 41 400 1729 1750
k2 46 45 46 1474 2890 2903
c3540 50 22 50 1038 2591 2595
c880 60 26 60 327 2338 2368
dalu 75 16 64 1202 3284 3312
i9 88 63 64 591 2981 3015
i8 133 81 64 1725 3609 3637
c5315 178 123 64 1773 4076 4108
i4 192 6 64 246 2261 2289
i7 199 67 64 663 3038 3066
c7552 207 108 64 2074 4076 4105
c2670 233 140 64 717 2733 2775
des 256 245 64 3839 7229 7257

TABLE I: Benchmark circuits. #in, #out and #key refer to the
number of inputs, outputs and keys respectively.

We evaluated FALL attacks on MCNC and ISCAS’85
benchmarks circuits, details of which are shown in Table I. We
intentionally select smaller circuits to stress test the locking
algorithms – a locking algorithm that only claims security for
large circuits cannot be considered secure. We implemented
the TTLock and SFLL locking algorithms for varying values of
the Hamming distance parameter h and maximum key size of
128 bits. Locked netlists were optimized using ABC v1.01 [6]
to minimize any structural bias introduced by our locking
implementation. The circuit analyses were implemented in
Python and use the Lingeling SAT Solver [3]. Attack source
code is available at [15].

Our experiments were conducted on the CentOS Linux
distribution version 7.2 running on 28-core Intel R© Xeon R©
Platinum 8180 (“SkyLake”) Server CPUs. Algorithms were
run with a time limit of 1000 seconds.

B. Results

Figure 2 show the performance of FALL attacks. Four
graphs are shown: the left most of which is for SFLL-HD0

while the remaining are for SFLL-HDh with varying values
of the Hamming Distance h. For each graph, the x-axis
shows execution time while the y-axis shows the number of
benchmark circuits decrypted within that time.
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Fig. 2: Circuit analyses: execution time vs number of benchmarks solved in that time.

The DISTANCE2H attack defeats all SFLL-HDh locked
circuits for h = bm/8c and h = bm/4c. We repeated this
experiment for the seven largest circuits with a key size of
128 bits and the DISTANCE2H attack defeated all of these
locked circuits. ANALYZEUNATENESS is able to defeat 18
out of 20 SFLL-HD0/TTLock circuits. SLIDINGWINDOW is
able to defeat all locked circuits for h = bm/8c, but does not
perform as well for larger values of h. This is because the
SAT calls for larger values of h are computationally harder
as they involve more adder gates in the Hamming Distance
computation. In summary, 65 out of 80 circuits (81%) are
defeated by at least one FALL attack.

Among these 65 circuits for which the attack is successful,
a unique key is identified for 58 circuits (90%). This means
58 out of 80 circuits were fully defeated without oracle
access. Among the seven circuits for which multiple keys were
shortlisted, the attack shortlists two keys which are bitwise
complements of each other for four circuits, three keys are
shortlisted for two other circuits. One corner cases occurs for
c432: 36 keys are shortlisted, this is still a huge reduction from
the initial space of 236 possible keys.

C. Discussion

Our results reinforce the observation that all logic locking
schemes appear to be vulnerable to attack. We assert this
is because the logic locking community has not adopted
notions of provable security from cryptography. For instance,
consider an adaptation of indistinguishability under chosen
plaintext attacks (IND-CPA) [2] to logic locking. In this game,
the adversary picks two different circuits and the defender
encrypts of them with a random key. The adversary wins if
they can determine which of the two circuits was encrypted.
It is easy to see that the adversary always wins this game
for SFLL-HDh as the original circuit is largely unchanged by
locking. To the best of our knowledge, the adversary would
win the game described above for all logic locking schemes
proposed so far. Truly secure logic locking will need the
development of a methodology that can win this game.

V. CONCLUSION

This paper introduced Functional Analysis attacks on state
of the art Logic Locking algorithms (FALL attacks). FALL

attacks use structural and functional analyses of locked circuits
to identify the locking key. Experiments showed that FALL
attacks succeeded against 65 out of 80 (81%) of circuits
locked using Secure Function Logic Locking (SFLL), the only
combinational locking algorithm resilient to all known attacks.
In contrast to past work, FALL attacks often (90% of successful
attempts) fully defeat SFLL even without oracle access to an
unlocked circuit, implying that logic locking attacks may be
much easier to carry out than was previously believed.
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