Malware Detection using Machine Learning Based
Analysis of Virtual Memory Access Patterns

Zhixing Xu Sayak Ray*
Princeton University

Abstract—Malicious software, referred to as malware, con-
tinues to grow in sophistication. Past proposals for malware
detection have primarily focused on software-based detectors
which are vulnerable to being compromised. Thus, recent work
has proposed hardware-assisted malware detection. In this paper,
we introduce a new framework for hardware-assisted malware
detection based on monitoring and classifying memory access
patterns using machine learning. This provides for increased
automation and coverage through reducing user input on specific
malware signatures.

The key insight underlying our work is that malware must
change control flow and/or data structures, which leaves fin-
gerprints on program memory accesses. Building on this, we
propose an online framework for detecting malware that uses
machine learning to classify malicious behavior based on virtual
memory access patterns. Novel aspects of the framework include
techniques for collecting and summarizing per-function/system-
call memory access patterns, and a two-level classification archi-
tecture. Our experimental evaluation focuses on two important
classes of malware (i) kernel rootkits and (ii) memory corruption
attacks on user programs. The framework has a detection rate of
99.0% with less than 5% false positives and outperforms previous
proposals for hardware-assisted malware detection.

1. INTRODUCTION

Malicious software, referred to as malware, is an ever-
growing security threat and the detection of malware remains
an important area of research. The first step in detection
is analysis. This involves either static or dynamic analysis
of known malware and is usually performed offline with
expert human input. Results of analysis are distilled into a
“signature”. One technique for malware detection is the use of
static signatures to examine programs after they are loaded and
before execution [8], [16]. Unfortunately, this can be defeated
by malware which uses obfuscation. In response to this, dy-
namic behavior-based detection has been proposed (e.g. [10],
[11]). These methods monitor the behavior of the system using
operating system or hypervisor-based instrumentation in order
to detect malicious behavior. Static and dynamic signatures can
be derived using either deterministic or statistical techniques.
Statistical techniques based on machine learning are used
to find patterns corresponding to malicious behavior (e.g.
[20], [13]). In contrast, deterministic signatures are typically
constructed through human expert analysis [7], [9].

Traditional malware detection techniques — both static and
dynamic — are implemented in software. In this paper, we
argue against pure software implementations both because of

This work was supported in part by SONIC, one of the six SRC STARnet
centers, sponsored by MARCO and DARPA. Sayak Ray contributed to this
work while at Princeton University and the views expressed in this paper
belong to the authors and do not reflect those of Intel Corporation.

Pramod Subramanyan

Sharad Malik
*Intel Corporation

their overhead and the ensuing trusted computing base (TCB)
bloat. Software for malware detection is susceptible to the
same vulnerabilities that malware exploits during infection and
therefore can be, and often is, disabled by malware [24].

Hardware-assisted detection mechanisms are not vulnerable
to such disabling and have been proposed for specific classes
of malware [19], [15], [12], [6], [17]. Petroni et al. [19]
introduced Copilot, a PCI-based coprocessor that periodically
monitors snapshots of immutable kernel memory. Copilot
can detect certain kernel-level rootkits by checking if these
snapshots differ from their expected values. Subsequent efforts
like Vigilare [15] and KI-Mon [12] improve upon Copilot.
However these memory monitors are outside the processor,
and monitor physical memory addresses “filtered” by on-chip
caches. These physical addresses may change from run to run.

Hardware-based control flow integrity (CFI) approaches
stand in contrast to these outside-the-processor designs. CFI-
mon [23] is an in-processor monitor collecting hardware
performance counters available in contemporary processors to
detect control-flow deviations. Lucas et al. [5], [4] address
the code-reuse attack by enforcing backward-edge CFI with
hardware support. These methods rely on expert knowledge
of the executable binary and its memory layouts.

The requirement of expert knowledge can be costly. Demme
et al. [6] addressed this by using machine learning to spot the
differences between “normal” and “malicious” performance
counter measurements during execution. Ozsoy et al. [17]
improve upon this by analyzing sub-semantic features like
address references and the instruction mix of the program.
The detection techniques proposed in [6], [17], which we
refer to as “traditional” machine learning based detection,
aim to find a classifier that separates malicious and benign
programs. The trained classifier is a single model that attempts
to distinguish between the behavior of all benign and all
malicious programs. A major challenge is that most malware
is injected in otherwise benign programs. For one particular
program, its execution runs could be either benign or malicious
depending on whether the malware injected is triggered,
making it difficult to label the program during training. The
classifier is also extremely sensitive to the choice of benign
and malicious examples in the training set and may result in
unacceptable false positives and false negatives.

In this paper, we propose a different malware detection
scenario. Instead of seeking a single model that distinguishes
all malicious and benign applications, we learn one model
for each application which separates its malware infected
executions from legitimate executions. The model is trained on

both malicious and benign behavior of the application. When
the program is loaded, its associated behavior model is loaded
and its execution is monitored. If the process executes in a
manner that causes the associated model to flag its behavior
as suspicious, a software exception is raised. For example,
consider a web browser injected with browser redirecting
malware. The browser itself is a legitimate application. Rather
than classifying the browser as a malicious/benign as in the
“traditional” scenario, our detector distinguishes runs where
the infection is triggered from ones where it is not and raises
an exception when malicious behavior is detected.

The key insight underlying our work is that an infected
application run will modify the control-flow/data structures
compared to a benign run. This will be reflected in its memory
access pattern. This is obvious for the important class of
memory corruption vulnerabilities for code in memory-unsafe
programming languages such as C/C++.The same is true for
another important class of malware, kernel rootkits, which
modify control flow in the operating system. While these
two classes are used extensively in this paper, control-flow
and/or data structure modification are intrinsic characteris-
tics of malware. Thus, we propose hardware monitoring of
memory accesses for classifying individual application runs as
being malicious or benign. Since virtual addresses provide for
a more consistent signature than physical addresses, we pro-
pose obtaining the virtual address trace through in-processor
monitoring. A major challenge in monitoring memory accesses
is the sheer volume of the data. Our framework addresses this
by dividing accesses into epochs, summarizing the memory
access patterns of each epoch into features which are then
fed to a machine learning classifier. Experiments show this
framework is effective in detecting diverse classes of malware.

The contributions of this paper are as follows:

« We target application-run-specific malware detection.

« We introduce a framework for malware detection that
is based on online analysis of virtual memory access
patterns in contrast to physical memory access patterns.

« We introduce novel summarization and feature extraction
techniques for function/syscall memory access patterns.

« We demonstrate the feasibility of our approach with
experiments that consider both kernel-level and user-level
malware. We demonstrate its efficacy through extremely
low false-positive and false-negative rates.

While the proposed classification methodology is intended
to be realized in hardware through in-processor monitoring and
classification, the details of hardware design are beyond the
scope of this paper. The focus of this paper is demonstrating
the value of such a framework, and addressing the data volume
concerns in its design. This paper also focuses on offline
learning but with recent breakthroughs in the development
of machine learning cores, e.g. [21], we believe even online
learning of the detection model is realizable in hardware.

II. MALWARE AND MEMORY ACCESS PATTERNS

We now describe certain common types of kernel and user-
level malware and how they affect memory accesses.

Kernel Rootkits: Kernel rootkits modify kernel data structures
to redirect control flow in system calls to malevolent code. The
two most common ways are: system call table modification,
which changes a function pointer in the syscall table, and
virtual file system (VFS) function pointer hooking, which
replaces function pointers in the VFS file operation structure.
User-level Malware: User-level malware primarily exploits
memory vulnerabilities: buffer/heap overflow, return-oriented
programming, etc. As with kernel-level rootkits, user-level
malware introduces anomalous control flow; e.g. in return-
oriented programming (ROP), the attack executes a sequence
of “gadgets” which are carefully chosen from an existing code
base, usually from library functions and chained to implement
the malicious objective. In this example, the “signature” is the
anomalous control jumps to library functions.

III. MONITORING MEMORY ACCESSES: CHALLENGES AND SOLUTIONS

As contemporary processors execute billions of instruc-
tions/second, storing and analyzing all memory accesses is
not feasible for online monitoring due to the sheer volume
of data. The memory access trace needs to be summarized
while retaining essential characteristics that enable malware
detection. Another challenge is the lack of delimiters in the
raw memory access trace. In most malware infected program
runs, the malicious behavior only occurs at certain phases of
the execution, the other phases are normal program behav-
ior. Effective identification of these phases normally requires
human expert analysis. We address these as follows.
Epoch-based Monitoring: Program execution is divided into
epochs and epochs are separated by inserting epoch markers
in the memory access stream. We investigate three choices
of epoch markers: (i) system calls, (ii) function calls, and
(iii) the complete program run. We show experimentally
that system calls are effective epoch markers for kernel-level
malware. Function calls are effective epoch markers for user-
level malware. Using the entire program run as an epoch is
not feasible for continuous running programs such as web
browsers but can be effective for small programs. It still has
limitations and this is discussed further in §VI.

g 30| - L3

8 20} . 120

[

5 10t || | [- fod10

5 [udl, n P ; 1 ™ ; ;

5

g o0F ; 60

g50— - : 50

3 a0t B : 40
30 - L3
200 l B 20
10} l i 10

Lal |..||‘ TR L h |

I T i i i [TH
0x810e0 0x81160 0x811le0 0xa0110 0xa0130

Memory Address

0x81060

Fig. 1: Summary Histograms Example: benign (top) and malicious (bottom).

Summary Histogram: A memory access histogram summa-
rizes the access pattern in an epoch. The bins of the histogram
are virtual memory address regions of memory accesses. His-
tograms are labeled by the type of memory access, e.g. for the

system call epoch we consider four types of memory accesses:
(1) “far” calls (calls with absolute addresses), (ii) “near” calls
(calls using relative addresses) (iii) branch instructions, and
(iv) load/store instructions. In each epoch, four histograms
corresponding to these types of memory accesses are used
as the feature set for the machine learning model. Note
that the summary histogram loses some timing information
about the accesses. As shown in the evaluation, for most
malicious behavior, the deciding features are the location and
frequency of memory accesses rather than their sequence, so
this reduction in precision is not significant. Figure 1 shows
example of “far” call memory access histograms for read
system call with and without rootkit attack. The additional
accesses in the malicious run are “learned” by the classifier
as corresponding to malicious behavior.

IV. MACHINE LEARNING FOR IDENTIFYING MALWARE
A. Feature Selection

For the system call epoch for kernels, we do feature
selection using F-score, a commonly used measure of the
discriminative power of features. We select the top 10% F-
score features for the training phase. For the function call
epoch, F-score based feature selection is not needed as the
memory accesses in each call are limited to few memory
regions resulting in a histogram with very few non-zero bins.

B. Classifier Architecture

Three commonly used classifiers: logistic regression, SVM
and random forest are used by our work. We consider two
design points for the classifiers.

Direct Classification of Memory Access Histograms: This
performs binary classification directly on the summary his-
tograms computed in each epoch. Empirically, this was ef-
fective in detecting kernel-level malware. During the training
phase, each system call affected by a rootkit is labelled as
malicious, while other system calls are labelled benign.! Since
rootkits corrupt syscall execution, the classifier then learns to
distinguish between benign and malicious syscalls.
Weighted Classification of Memory Access Histograms:
For user-level malware the epoch boundaries correspond to
function calls, which unlike system calls are not limited in
number and are different across programs. Therefore, detecting
malware by analyzing the histogram of a single function is
hard. Our solution is to classify the different functions in a
program separately and consider a weighted sum of classifi-
cation results. Each execution is labeled as either malicious or
benign and in the first phase classifiers are trained to recognize
these labels. These labels are then assigned to every function
in the execution, which may result in a function that was not
infected being labeled as malicious. It is precisely this non-
correlation that is addressed in the second training phase.

The second training phase uses a different training dataset.
Assume we have n models for the n function calls and each

'In this scenario we need some human input to identify the system calls
affected by each rootkit used in training. This is relatively easy compared to
the manual analysis required for the techniques in [19], [15], [12].

model m; to m, provides its classification result. An accuracy
rate is assigned to each model. We discard weak models with
accuracy below 60% as they have poor correlation between
the run being malicious and the function being malicious.
Assume that £ models, M| to M, are left, and they have
accuracy rate ry to r;. We assign a weight: w; = ZZ‘;%SS) to
each model. Assume the classification result from each M;
is ¢; (0 for benign, 1 for malicious, if f; is called multiple
times, ¢; is the average value of all the classification results).
The classifier result is defined as the weighted sum of each
model C = Y ¢;w;. If C is above a threshold T, decided in the
second phase, it is classified as malicious and otherwise it is
classified as benign. This classification emphasizes functions
whose infection correlates strongly with infected executions. It
is important to note that this is done by the algorithm without
any expert human analysis.

V. PurtiNG IT ALL TOGETHER

———

syscall read
mem read
Epoch | [nem write

() Training

Offline
Histogram

Storage

:
—— —

Syscall open =

mem read

Summary

b
syscall read for Epochs

Trained Malware
Model Verify 1 | Load Model to || E HV\:- deceted | Authenticated
Bmary HW Classifier xecution Handler
Program Signature Monitor
(b) Operation

Fig. 2: Overview of the Complete Framework

Figure 2 shows the complete framework. The upper half
shows training and the lower half monitoring/detection.
Data Collection and Training: During training, the program
is executed and the summary histograms computed and stored
for offline analysis. Once the data is collected, each histogram
is labeled either “benign” or “malicious” and a classifier is
trained to learn these labels. This classifier model is distributed
along with the executable for the application/operating system.
Monitoring and Malware Detection: Our application-specific
malware detection aims to ensure the integrity of commonly
used applications (e.g. web browser, email) and the system
kernel. There are only a few frequently used applications and
kernel system calls, so the model storage space is not large.
The classification model for each application is retrieved from
the executable and used to program the hardware classifier
at load time. Runtime authentication (e.g. using [1]) of the
malware model and binary is necessary to to protect it from
malware. When the classifier detects potential malware, it
raises an exception that is processed by an authenticated soft-
ware handler which executes in a hardware-enforced sandbox
and performs detailed analysis of the executing program.

Address Space Layout Randomization (ASLR) introduces
noise in the virtual memory traces because it shifts the code
and data segments by adding a randomized offset to their initial
addresses. Since this offset is known to the operating system,
ASLR can be “de-randomized”.

Granularity of Memory Block Size: An important design
parameter is the size of each bin in the summary histograms.
There is a trade-off here: smaller bins provide more detailed
memory access information than larger bins, but require larger
net storage. However, from a machine learning perspective,
histograms with smaller bins may not always make a better
feature vector. Larger bins may be more preferable because the
classifier may avoid ‘“confusion” due to unimportant small-
scale variations. The experimental evaluation considers bin
sizes of 1KB, 4KB and 16KB.

VI. EvaLuaTION

The space of malware is large, targeting different platforms
and vulnerabilities, and it is not possible to obtain and exper-
iment with a very large set from this space. Thus, we selected
important representatives of both kernel and user mode mal-
ware to evaluate the efficacy of our monitoring framework.
These are: (i) Linux kernel rootkits and (ii) memory corruption
attacks on user code. We used the Scikit-learn [18] machine
learning library. Experiments were conducted on a host ma-
chine with an Intel Xeon E5645 CPU with 128 GB RAM.

A. Case Study: Detecting Rootkits

Rootkits Analyzed: We experimented with the Linux kernel
rootkits shown in Table 1.2 The table summarizes the kernel
data structure modified by each rootkit and the system calls
this modification influences. Malicious actions performed by
these rootkits include file and process hiding, backdoor access
to a root shell, interfering with I/O to/from files/network ports.

[Rookir | MoDIFIED STRUCTURE | INFECTED SYSCALL |
avg-coder VES pointer read, write, readdir, ...
kbeast System Call Table read, write, getdents, ...
override System Call Table write, open, getdents, ...
knark System Call Table readdir, getdents, ...
adore-ng VES pointer read, open, readdir, ...
simple-rootkit | System Call Table read
suterusu System Call Table read,write
ivyl VES pointer read, readdir
Diamorphine System Call Table getdents
AFKkit System Call Table getdents

TABLE I: Summary of Rootkit Samples.

Methodology: Although we envision memory accesses will
be collected using specialized hardware, this initial evaluation
gathers memory accesses using an instrumented version of
QEMU 2.2.0 [2]. QEMU was used to execute a target machine
which ran Debian “Squeeze” with Linux kernel v2.6.32.

In a rootkit infected system, the behavior of a system utility
is changed to meet the purpose of the rootkit, e.g., ps may hide
malicious processes. Both benign and malicious traces were
collected by running the following system utilities: 1s, ps,
Ismod, netstat. The utilities were executed with different
current directories, background processes, arguments, etc. for
a total of 50 runs for each rootkit. Both benign and malicious
memory traces are summarized using the system call epoch. A
detection model is was trained for each kind affected systcall.

2knarkis and override had to be modified to run on our target system.

The training set contained the rootkits: avg coder,
adore-ng, kbeast and AFkit (bold in Table I). We then test
the ability of the learned model to distinguish between infected
and benign systems on the remaining rootkits. The machine
learning algorithm is trained on the 4 rootkits, but is asked to
detect 6 rootkits it has never seen before. These experiments
demonstrate our framework can detect new malware.
Detection Results: Figure 3 shows the rootkit detection results
using our detection framework as a Receiver-Operating Char-
acteristic (ROC) graph. The x-axis shows the false positive rate
and the y-axis shows true positive rate. Points on the graph
show the achieved detection rate at a certain false positive rate.

System Call: read System Call: getdents

1.0f; 1.0},
' i
r !
8 0.8t 8 0.8 ;
] N 1 1
ok o
£o6f 2o
b~ b = i
& | 3
A 0.4f 04
() D
= b =
] b =]
= =
0.2} 0.2

0'8.0 02 04 06 08 1.0
False Positive Rate
Logistic Regression ‘

0'8.0 0.2 04 06 08 1.0
False Positive Rate
[— svwm -

Random Forest

Fig. 3: Rootkit Detection using System Call Epoch

The graphs show the classification results for sys read
and sys getdents using different machine learning clas-
sifiers with a 4k histogram bin size. Detection performance
is not sensitive to histogram bin size: 1k and 16k bin sizes
yield similar results. For both system calls, the best performing
classifier (random forest) reaches 100% true positive rate, i.e.,
detects all attacks, at < 1% false positive rate.

B. Case Study: User Level Memory Corruption Malware

In this section, we focus on user-level applications. We
provide a direct comparison with Malware-Aware Processors
(MAP)[17] that also targets user level programs. As men-
tioned in §I, MAP’s detection scenario is different from ours.
However, their feature sets can still be used in our detection
scenario, and provide a good comparison to our feature set of
virtual memory access patterns.

Benchmark Suite: We use the RIPE [22] benchmark suite
for our experiments. RIPE is a synthetic benchmark which
contains a total of 850 different memory corruption attacks in
various forms including “modern” attacks such as return-to-
libc attacks, return-oriented-programming, etc. This suite was
executed on a Linux system running Ubuntu 6.06 distribution
with kernel version 2.6.15. We also created a “benign” version
of RIPE where each of the attack targets is patched.

Methodology: Among the 850 RIPE attacks, 751 were suc-
cessful on our target system. For our two-level classification
mode, we used 351 attacks and corresponding benign versions

for training the first level classifier and 200 attacks and
corresponding benign versions for the second level training.
The remaining 200 pairs were used in testing. MAP only
needs one training phase. Thus, 400 attacks and corresponding
benign versions were used for training and the remaining 351
pairs are used for testing. We developed a “pintool” for Pin
version 2.14 [14] to collect memory access patterns. As in the
case of the rootkit experiments, we expect data gathering and
detection will eventually be performed in hardware. During
the testing phase the machine learning algorithm attempts to
detect attacks that have not been seen before based on other
(somewhat similar) attacks it has seen.

Detection using MAP’s Feature Sets: Table II shows the
feature sets used by MAP. There are three kinds of features
based on: (i) architectural events, (ii) memory addresses, and
(iii) the instruction mix. MAP collects data for every 10K
instructions (its epoch) to form feature vectors and each feature
vector is labeled as malicious/benign based on the program
being executed. The detection model is then trained to label
these 10K-instruction epochs as malicious/benign.

| Feature | DESCRIPTION]

Frequency of memory read/writes, taken & imme-
ARCH . .

diate branches and unaligned memory accesses
MEMI Frequency of memory address distance histogram
MEM2 Memory address distance histogram mix
INS1 Frequency of instruction categories’
INS2 Frequency of opcodes with largest difference
INS3 Existence of categories
INS4 Existence of opcodes

TABLE II: MAP’s Feature Sets

Using the MAP Features in Qur Detection Scenario: MAP
provides us with potential features for malware detection.
However, their framework is not applicable to our detection
scenario as it is designed to label different programs while ours
detects whether one particular application is infected by mal-
ware. In most malware infected program runs, the malicious
behavior only occurs at certain phases of the execution, the
other phases are normal program behavior. This makes it hard
to label the 10K-instruction epochs correctly without manual
intervention. If we label all the epochs in a malware infected
run as malicious, most epochs that reflect normal program
behavior would be wrongly labeled, resulting in huge training
error. Therefore, instead of using the 10K-instruction epoch,
we use the entire program run as the epoch. Although it is hard
to correctly label the 10K-instruction epochs, any malicious
behavior is reflected in the feature vectors of entire malicious
runs, so labels can be correctly applied. These feature vectors
are collected over the entire run and the classifier is trained
to label the entire run. Data collection for the MAP features
was also done using our “pintool”.

Detection Result and Comparison: Figure 4 shows the
malware detection results using our framework and MAP’s
features with both logistic regression and random forest clas-
sifiers. The ROC curve using each individual feature set is

3The instruction categories are based on Intel XED2 [3] instruction classes

marked by the corresponding name in Table II. The curve
marked “COMB?” is the result of using all of MAP’s features
combined together. The curve marked “FUNC” shows the
detection results of our method with function call as epoch.

Logistic Regression
1.0 ———

Random Forest

1.0

0.8 0.8
) o
K K
E 0.6 'g 0.6
& &
Y 0.4 g 0.4
=]]
= B~

o
o

0.2

08502 04 06 08 10
False Positive Rate

- INS4 — FUNC
+ COMB

08502 07 06 08 10
False Positive Rate

— ARCH MEM2
-=-+ MEM1 INS1

— INS2
INS3

Fig. 4: Detection Performance using Different Feature Sets

Let the standard for good detection be > 95% true positive
rate with false positives < 5%. Two feature sets/detection
methods meet these criteria. Ours using two-level classification
of memory accesses in the function call epoch not only meets
the standard but also has the highest accuracy under any false
positive rate. Among the MAP feature sets, only INS2 with
the logistic regression classifier is slightly above the standard.

Table III shows the comparison between our method
(“FUNC”) and “COMB”, “INS2” and “MEMI1” which are
the most successful among the MAP features. We see that
for each false positive rate (FP), our method has best true
positive rate (TP). Also, as the allowed false positive rate
decreases, our method maintains a good detection rate while
others drop quickly. These results show the strength of our
method, especially in the very low false positive rate regime.

TP Rate Locistic REGRESSION

FUNC | COMB | INS2 MEMI
FP 1% | 87.1% 13% 41.4% | 32.7%
Rate | 5% | 98.0% 83.3% 95.6% | 86.5%

Ranpom ForesT

TPRate ' —poNC T COMB [INS2 | MEMI
FP 1% | 88.4% 31.8% 70.8% | 53.6%
Rate | 5% | 99.0% | 94.6% 94.5% | 85.4%

TABLE III: Performance with Function Epoch and MAP Features

Function Call vs Entire-Program Epoch: Since using the
entire program run as an epoch gives reasonable results with
MAP’s feature sets, it is worth comparing this with the
function call epoch. The main problem with using the entire-
program-run epoch is that several applications run for an in-
determinate amount of time (e.g. web browser). Summarizing
over the entire program run would require the program to finish
which, if not making the training phase impossible, would

likely add error as the malicious part could be a small part
of the run. In contrast, by summarizing over a function call,
the training data is easier to collect and more accurate. For
applications that do not execute continuously, summarizing
over the entire run is feasible. RIPE has this characteristic.
To evaluate the value of using function call as epoch for it,
we built the memory access histograms for the entire program
run, and trained them using different classifiers.

16k bin size 4k bin size 1k bin size
1.0 1.0| 1.0
£ 2 £
é 0.8] :‘; 0.8 é 0.8]
@ @ @
Z 0.6 Z06 Z 0.6
& 0.4] ~ 0.4! a 0.4
o 3 o
] E]
& 0.2] , ; 0.2 & 0.2]
0. 0.0t 0.k
0.0 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 02 04 06 08 1.0
False Positive Rate False Positive Rate False Positive Rate
1.0 - 1.0 = 10| -
ol Sos Zos8
o B 3 o
2 0.6} 206 £ 0.6
z o g z
0.4 :g ~ 0.4’ & 0.4
? 0.2] :: % 0 2:. ? 0.2]
E : = E

0.5 0.0 0.0
0.0 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
False Positive Rate False Positive Rate False Positive Rate

~ svM|

‘ — Random Forest - - Logistic Regression

Fig. 5: Detection Performance with Different Memory Block Sizes
(Upper Row: Entire-Program Epoch; Lower Row: Function Call Epoch)

Figure 5 shows the performance of using the function call
as epoch and using the entire-program epoch under different
memory histogram bin sizes. The results are presented using
ROC graphs. From the graphs, we see that when using small
histogram bin sizes, the two epochs perform similarly. But
when the bin size is larger, the results of the function epoch
stay mostly the same while the detection rate using the entire-
program epoch deteriorates. Thus, the function call epoch
is resilient to changes in histogram bin size, while with
the entire-program epoch, the histogram bin size needs to
be chosen carefully. This may need human input and may
possibly differ between applications, thus limiting automation.

VII. CoNCLUSIONS

In this paper, we introduced a framework for malware
detection based on online analysis of virtual memory access
patterns using machine learning. This framework was applied
to the application-specific malware detection scenario which
targets detecting malware infected runs of known applications.
We addressed the challenge of online memory data collec-
tion using a system/function-call epoch based memory access
summary. We experimentally covered both kernel and user-
level threats and demonstrated very high detection accuracy
against kernel level rootkits (100% detection rate with less than
1% false positives) and user level memory corruption attacks
(99.0% detection rate with less than 5% false positives). A key
value of the proposed methodology is using machine learning
to determine malware signatures for classification in contrast
to the traditional reliance on human insight — a major step in
automating this critical analysis problem.

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

APVRILLE, A., GorDON, D., HALLYN, S., Pourzanpi, M., aND Roy, V. Digsig:
Runtime authentication of binaries at kernel level. In /8th USENIX
Conference on System Administration (2004).

BeLLarD, F. Qemu, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track (2005), pp. 41-46.
CHARNEY, M. Xed2 wuser guide. http://software.intel.com/
sites/landingpage/pintool/docs/56759/Xed/html/main.html., 2011.

Davi, L., HaNrREICH, M., PauL, D., SapEGHI, A.-R., KOEBERL, P., SULLIVAN,
D., Arias, O., anp JiIN, Y. Hafix: hardware-assisted flow integrity
extension. In Proceedings of the 52nd Annual Design Automation
Conference (2015), ACM, p. 74.

Davr, L., KoeBERL, P., AND SADEGHI, A.-R. Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation. In Proceedings of the 51st Annual Design
Automation Conference (2014), ACM, pp. 1-6.

DeMME, J., Maycock, M., Scamirz, J., TaNG, A., WAKSMAN, A., SETHU-
MADHAVAN, S., AND StoLFo, S. On the Feasibility of Online Malware
Detection with Performance Counters. In 40th International Symposium
on Computer Architecture (2013).

Erus, D. R., Aken, J. G., Artwoop, K. S., aNp TeNnaGLIA, S. D. A
behavioral approach to worm detection. In Proceedings of the 2004
ACM Workshop on Rapid Malcode (2004), WORM °04.

Ipika, N., AND MATHUR, A. P. A survey of malware detection techniques.
Purdue University 48 (2007).

ILGun, K., KEMMERER, R. A., AND PorraAs, P. A. State transition analysis: A
rule-based intrusion detection approach. IEEE Transactions on Software
Engineering 21, 3 (Mar. 1995).

Jacos, G., DeBaR, H., anp FiLior, E. Behavioral detection of malware:
from a survey towards an established taxonomy. Journal in computer
Virology 4, 3 (2008), 251-266.

Kousirsch, C., ComparerT, P. M., KrueGeL, C., Kirpa, E., ZHou, X.-v.,
AND WaNG, X. Effective and efficient malware detection at the end host.
In 18th USENIX Security Symposium (2009), pp. 351-366.

Leg, H., Moon, H., Jang, D., Kim, K., LEE, J., PaEx, Y., anp Kang, B. B.
Ki-mon: A hardware-assisted event-triggered monitoring platform for
mutable kernel object. In Proceedings of the 22nd USENIX Conference
on Security (2013).

Leg, W., anp Storro, S. J. Data mining approaches for intrusion
detection. In 7th USENIX Security Symposium (1998), SSYM’98.
Luk, C.-K., Conn, R., MutH, R., Pari., H., KLauser, A., Lowney, G.,
WALLACE, S., Reppr, V. J., anp Hazerwoop, K. Pin: building customized
program analysis tools with dynamic instrumentation. In ACM Confer-
ence on Programming Language Design and Implementation (2005).
Moon, H., Leg, H., LEg, J., Kmv, K., Paek, Y., anp Kang, B. B. Vigilare:
Toward Snoop-based Kernel Integrity Monitor. In ACM Conference on
Computer and Communications Security (2012).

Moser, A., KrueGeL, C., anp Kirpa, E. Limits of static analysis for
malware detection. In 23rd annual Computer Security Applications
Conference (2007).

Ozsoy, M., DoNovick, C., GORELIK, 1., ABU-GHAZALEH, N., AND PONOMAREYV,
D. Malware-aware processors: A framework for efficient online malware
detection. In IEEE 21st International Symposium on High Performance
Computer Architecture (2015).

PeDREGOSA, F., VaroqQuaux, G., GRAMFORT, A., MicHEL, V., THIRION, B.,
GRISEL, O., BLONDEL, M., PRETTENHOFER, P., WEIss, R., DUBOURG, V., ET AL.
Scikit-learn: Machine learning in python. The Journal of Machine
Learning Research 12 (2011), 2825-2830.

PeTRONI, JR., N. L., FRASER, T., MOLINA, J., AND ARBAUGH, W. A. Copilot - a
Coprocessor-based Kernel Runtime Integrity Monitor. In /3th USENIX
Security Symposium (2004).

'Wang, K., AND StoLro, S. J. Anomalous payload-based network intrusion
detection. In Recent Advances in Intrusion Detection (2004), Springer.
WanG, Z., Leg, K., aNp VERMA, N. Overcoming computational errors in
sensing platforms through embedded machine-learning kernels. IEEE
Transactions on VLSI Systems 23, 8 (2015).

WILANDER, J., NIKIFORAKIS, N., YOUNAN, Y., KAMKAR, M., AND JOOSEN, W.
Ripe: runtime intrusion prevention evaluator. In 27th Annual Computer
Security Applications Conference (2011), ACM.

Xia, Y., Liu, Y., CHeN, H., aND ZaNG, B. CFIMon: Detecting violation
of control flow integrity using performance counters. In IEEE/IFIP
International Conference on Dependable Systems and Networks (2012).
Xug, F. Attacking Antivirus. In Black Hat Europe Briefings (2008).

