Verifying Information Flow Properties of Firmware using Symbolic Execution

Pramod Subramanyan Sharad Malik
Dept. of Electrical Engineering, Princeton University.

Abstract—Verifying security requirements of the firmware in
contemporary system-on-chip (SoC) designs is a critical chal-
lenge. There are two main difficulties in addressing this problem.
Security properties like confidentiality and integrity cannot be
specified with commonly-used property specification schemes like
assertion-based verification/linear temporal logic (LTL). Second,
firmware interacts closely with other hardware and firmware
which may be untrusted/malicious and their behavior has to be
correctly modelled for the verification to be sound and complete.

In this paper, we propose an approach to verify firmware
security properties using symbolic execution. We introduce a
property specification language for information flow properties
of firmware which intuitively captures the requirements of
confidentiality and integrity. We also propose an algorithm based
on symbolic execution to verify these properties. Evaluation on a
commercial SoC design uncovered a complex security bug missed
by simulation-based testing.

I. INTRODUCTION

Recent years have seen a proliferation of firmware for
implementing key hardware platform functions. This is be-
cause firmware enables rapid development and the ability to
deploy bugfixes after the system is released. Unfortunately,
it also opens up another attack vector for security breaches.
Indeed, several high-profile security bugs have been found
in the firmware of devices as diverse as cars [19], wireless
routers [11, 13] and personal computers [5, 17]. Therefore,
a critical problem facing the semiconductor industry today is
ensuring that firmware meets its security requirements.

A. Challenges in Firmware Security Verification

Firmware verification is different from software verifica-
tion because firmware interacts closely with hardware and
other firmware. These interacting components have to be
modeled correctly for the verification to be sound. Security
verification is especially hard because detecting vulnerabilities
requires reasoning about worst-case scenarios and all possible
states/inputs of the system, not just commonly-used states and
legal inputs. Constructing such detailed models in a sound
manner using, for example, iterative abstraction refinement is
extremely time consuming and is at odds with the time-to-
market pressures imposed by the competitive environment.

Traditional property specification schemes such as assertion-
based verification and linear temporal logic (LTL) cannot
express security requirements like confidentiality and avail-
ability which require reasoning about information flow. Con-
fidentiality and integrity can be intuitively specified using
information flow properties and one method for verifying
information flow properties is through dynamic taint analysis

This work was supported in part by C-FAR, one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA. It was performed during the
first author’s internship at the Security Center of Excellence, Intel Corp.

Hareesh Khattri Abhranil Maiti Jason Fung
Security Center of Excellence, Intel Corporation.

[2,9, 10, 18, 22, 24]. Dynamic taint analysis (DTA) associates
a “taint bit” with each object in the program or word in
memory. Taint propagation rules then set the taint bit of
the output of a computation if its input(s) are also tainted.
Confidentiality violations can be detected by tainting the secret
and raising an error when the taint propagates to an untrusted
object/memory location. Integrity violations are detected by
tainting untrusted objects and raising an error when the taint
propagates to a trusted location.

While DTA enables intuitive property specification, it has
deficiencies in the verification aspect. DTA can determine
if the property has been violated given an instruction se-
quence/trace. However, since it is a dynamic analysis, it cannot
be used to search over the space of all possible instruction
sequences to exhaustively prove the absence of property
violations. Secondly, creating appropriate taint propagation
rules is challenging due to the problems of under- and over-
tainting [2, 18]. Over-tainting can result in a deluge of false-
positives [18] while under-tainting can miss bugs.

Static taint analysis can verify information flow properties
in software. However, current static taint analysis techniques
are based on programming languages with secure type sys-
tems [20, 21]. These techniques cannot be applied on existing
firmware because significant parts are written in assembly
language necessitating analysis at the level of binary code.
Furthermore, it is not possible to capture security requirements
posed by hardware/firmware interactions with these methods.

B. Our Contributions

This paper introduces a technique for verifying firmware
security properties using symbolic execution. Our first con-
tribution is a property specification language for informa-
tion flow properties of firmware. Firmware information flow
properties are specified as a tuple consisting of the follow-
ing components: source, destination, source predicate and
destination predicate. The property specifies that information
cannot “flow” from source to destination when the respective
predicates are valid. Confidentiality can be verified with a
property where the source is a secret and the destination is any
untrusted location. Similarly, integrity can be verified with a
property where the source is any untrusted location while the
destination is a sensitive firmware register. To the best of our
knowledge, ours is the first property specification scheme for
confidentiality/integrity properties in firmware.

Our second contribution is an algorithm based on symbolic
execution to verify information flow properties. The algorithm
exhaustively explores all paths in the program and creates

Note specification languages do exist for hardware-only properties [1]

symbolic expressions corresponding to the computation along
each path. It then uses a constraint solver to check whether
there exist some two different values at the source which can
result in different values for the destination. We also show how
selective symbolic execution can be used to model the side-
effects of memory-mapped I/O accesses. The novel aspects
are: (i) extension of symbolic execution to prove information
flow properties; and (ii) the modeling of side-effects to MMIO
accesses. Note existing symbolic simulators [3, 6, 7, 12] can
verify safety properties but not information flow.

Our algorithm explores all control-flow paths and all values
for each variable. As a result it is more precise than DTA:
under-tainting is mitigated and over-tainting is eliminated. Our
algorithm analyzes binary code and does not require firmware
to be written in a specific programming language. Hence, it is
well-suited for analyzing real-world firmware.

We evaluate the proposed approach on firmware from an
upcoming commercial SoC design. The firmware had pre-
viously undergone both simulation-based testing and manual
code review and yet the symbolic execution engine identified a
tricky firmware security bug that was missed by the previous
validation efforts. Scalability of the algorithm is promising;
non-trivial real-world firmware, of size up to a thousand
instructions, can be analyzed.

II. SYSTEM AND THREAT MODEL OVERVIEW

This section provides a brief overview of the system model
and threat model considered in this work.

A. System-On-Chip Model

Fig. 1: System Model Overview

ext 1/O, storage, etc. shared mem MMIO
T (i/c, hw regs)
’ On-chip interconnect ‘ 1

IP 1 IP 2

Inst ROM

Data RAM

T ||
=E|
=
(98]
o
T =] = 7

W
nC

mem mem

(a) System-on-Chip Overview (b) FW view of SoC

A pictorial overview of the high-level architecture of the
SoC design is shown in Figure l1a. The SoC consists of a set
of interacting IPs, a shared I/O space, an on-chip interconnect
and possibly a shared memory. Generally, each IP consists of a
microcontroller, specialized hardware components and private
memories. The firmware executes on the microcontroller and
interacts with the specialized hardware in its own IP as well
as other IPs through memory-mapped I/0 (MMIO).

Some of the simpler IPs may not have a microcontroller or
private memories, but they too interact with firmware in the
other IPs through MMIO and over the on-chip interconnect.

The above is a general description of SoC architecture and
applies to many SoCs, see for instance, [23].

1) Firmware View of System: The firmware’s view of the
system is shown in Figure 1b. It consists of a set of architec-
tural registers, a special register known as the program counter,
an instruction ROM which contains the firmware code and a
separate data RAM. This considers single-threaded firmware,
however other hardware and firmware interactions are modeled
and execute concurrently with the firmware thread.

B. Threat Model

The verification problem is tackled in a modular manner.
Each IP is verified separately and so the threat model is defined
from the perspective of the individual IPs.

1) Identifying the Trust Boundary: For each IP we identify
the other IPs which are its trust boundary. The trust boundary
is the subset of other IPs this IP fully trusts. For example, an IP
involved in security critical functionality such as secure boot,
will likely not trust the camera and GPS IPs. Therefore, these
IPs will be outside its trust boundary and any inputs it receives
from these IPs are untrusted. Keeping the trust boundary small
helps keep the attack surface small.

2) Security Objectives: The two classes of security objec-
tives we consider are confidentiality and integrity of firmware
assets. We wish to keep firmware secrets, e.g., encryption
keys, confidential from untrusted IPs. Similarly, we wish to
preserve the integrity of firmware assets. For example, we
wish to ensure the integrity of firmware control-flow by ruling
out stack smashing/buffer overflow attacks in the presence
of arbitrary inputs from untrusted IPs. We also wish to
ensure that untrusted IPs cannot modify the value of sensitive
control/configuration registers, such as memory protection
configuration registers. In this work, we do not consider other
security requirements like availability and side channel attacks.

3) Modelling the Attacker: We assume that memory, /O
and hardware registers controlled by untrusted IPs contain
arbitrary values. In other words, outputs of an untrusted IP are
unconstrained so reads from these locations return arbitrary
values. Similarly, untrusted IPs may send invalid commands
in an attempt to exploit, for example, buffer overflow bugs.

III. FORMAL MODEL

We now describe the firmware state and execution model.

A. Execution State

Firmware state is modeled using the following components.

R is a set of bit-vector variables which represent the
architectural registers of the microcontroller. This includes
all registers including the accumulator, flag register, segment
registers and stack pointer.

M is the data memory which is a map from bit-vectors
of size Ay to bit-vectors of size My. 2% is the size of the
address space and My is the size of the smallest addressable
memory location (usually 8 bits). M a] returns the value at
memory address a. U denotes the write/update operation: in
M == MU a— v], M’ is the same memory as M except
M'[a] = v, i.e., memory address a now contains value v.

7 models the instruction ROM. PC is the address of the
current instruction. Z[PC] is the currently executing opcode.

A set of bit-vector variables X'={memop, memaddr,
datain, dataout} contain information about the current mem-
ory operation. memop = NOP means that the current instruc-
tion does not read/write from memory or MMIO, memop =
RD denotes a read and WR is a write. memaddr is the address
of the current memory operation, datain is the data read
from memory (or I/O) and dataout is the data being written
to memory or I/O. These variables help model MMIO and
accesses to untrusted memory.

Firmware state is the tuple F = (R, PC, M, X). The initial
state is S = (Sg,Spc,Sm,Sx). Sk is the initial value of
registers R; Sy and Sy, are respectively the initial states of
M and X. All of these are expressions in quantifier-free first
order logic using bit-vector and array datatypes [14] (referred
to as QF ABV in SMT-LIB).Z Sp¢ is a bit-vector constant with
the initial value of the PC.

B. Execution Model

As shown in Figure 2a, the symbolic simulator exhaustively
follows all paths that are reachable from the initial state Sx
and verifies that properties hold on all of these [6, 15].

(a) Fully symbolic execution (b) Selective symbolic execution.

Fig. 2: Execution model. In (b) the shaded boxes show single-path
(concrete) execution through the simulation model due to MMIO.

1) Expressions for State Update: For each state element
f in F we define an expression E¢(F) which specifies how
this is to be updated by the execution of the opcode Z[PC].
These expressions are all in QF_ ABV. For instance, if opcode
1 increments the stack pointer, opcode 2 decrements it and all
other opcodes leave it unchanged, then Esp = ite(Z[PC| =
1, SP+1, ite(Z[PC] =2, SP —1, SP)). ite is the if-
then-else operator. The set of expressions ER extends E to
the set R as follows: Eg(F) = {E,(F) for each r € R}.
Ex is defined analogously over the set X'.3

2) Selective Symbolic Execution: Memory-mapped I/O
(MMIO) poses unique challenges for symbolic execution,
because a read/write from/to MMIO might have “side-effects”,
e.g., initiating a hardware state machine. Ideally, we would
model all these symbolically. In practice, constructing such a
model is not feasible because it is very time-consuming [12].

2In other words, F ¢ is an expression involving unary and binary bit-vector
operators such as and, or, not, add, sub, concat, extract, and so on
as well as the ite (if-then-else), and memory read and update operators.

3The definitions of E_"R and Epc can be extended to model asynchronous
events such as interrupts. In this work, we do not consider interrupts because
the microcontroller used in the evaluation does not support them.

Therefore, we use selective symbolic execution to model
the MMIO side-effects. Simulation models of the SoC are
usually available during SoC design and these model MMIO
accesses. We use these to execute the “side-effects” of MMIO
reads/writes. This means we have to convert the symbolic
expressions into sets of concrete values, execute the simulator
for each concrete value, and then resume symbolic execution
with the simulation results. This process is shown in Figure 2b.
This process of conversion from symbolic to concrete states
and back is tractable for firmware because typically accesses
are only made to a small number of hardware registers.

IV. PROPERTY SPECIFICATION AND VERIFICATION

Algorithm 1 Symbolic Execution

Inputs: Sr, src, srcpred, dst, dstpred
1: stack.push(Sf,Sf,true true))
2: while ﬁempty stack)
3: > Ck and C% represent the current firmware state.
4: (c%,c%, P1 , P?) < stack.pop()
5:
6: T < P* A P? A dstpred(Ck) A dstpred(C%)
7: if sat[T A Ck.dst # C%.dst] then > check properties
8: display violation
9: end if

10:

11: if finished(Ck,C%) then > check for completion
12: continue

13: end if

14:

15: > N and NZ is state after this instruction is executed.

16: NX — EX(Cf)
17: N2 — Ex(C%)

19: > check for MMIO and handle it
20: if isMMIO(NY) then

21: (N%, V%) « execMMIO(Ck,C%)

22: end if

23:

24: > rewrite datain if memaddr matches the source
25: if overlaps(NY, src) then

26: Nk .datain = ite(

overlaps (N .memaddr, src) A srepred(Ck),
newVar(), Ny .datain)

27: V% .datain = ite(
overlaps (W% .memaddr, src) A srcepred(C%),
newVar(),N% .datain)

28: end if
29:
30: > compute next value of R, M

311 (Ng,NR) < (Er(Ck), Er(C}))

2 (W Nag) (Ba(ch), Enm(ch))

33:

34: > find all reachable values of PC and explore them.
35: for all PC = Epc(Ck) do

36: (N%.PC,N%.PC) = (PC,PC)

37: P < P' A Epc(Cy) =PC

38: P? + P2 A Epc(C%) =PC

39: stack.push((N%,N%, P*, P?))

40: end for
41: end while

In this section, we describe the specification language for

information flow properties and show how these are verified.

A. Specifying Information Flow Properties

The property specification language for firmware security
properties is based on two insights. First, almost all interesting
firmware security assets, such as secret keys, sensitive con-
figuration registers and untrusted input registers are accessed
through MMIO and memory. Therefore, it would make sense
to use firmware address ranges and architectural registers as
first class entities in the property specification language.

Secondly, security requirements such as confidentiality and
integrity are essentially statements about information flow.
These express the requirement that either a firmware secret
must not “flow” to an untrusted value (confidentiality), or an
untrusted value must not “flow” to a sensitive asset (integrity).

The specification language allows the definition of informa-
tion flow properties consisting of the following elements.

1) A src which is a range of firmware memory addresses.

2) A predicate srcpred associated with the source which

specifies when the data at src is valid. For example, we
may allow a register to be programmed from an input
port during the boot process, but not afterwards with the
predicate —boot.

3) A dst which is a member of the firmware state .

4) A predicate dstpred for dst which specifies when data

at dst is valid similar to (2) above.

The property holds if data read from src when srcpred=1
never influences a value written to dst when dstpred=1. Note
srcpred and dstpred are only evaluated at the time of the read
and write respectively.

B. Verifying Information Flow Properties

Algorithm 1 shows how information flow properties can be
verified using symbolic execution. It performs a depth-first
search (DFS) of all reachable instructions and checks whether
the information flow property specified by (src, dst, srcpred,
dstpred) holds for all of them. The stack keeps track of paths
to be visited and the path constraints P! and P? determine
the conditions under which this particular path is taken.

There are two main enhancements over previous symbolic
execution engines [3, 6, 7, 12]. The first is that the engine
maintains two copies of the state in C} and C3. This is
so that we can functionally test whether assigning different
values to src results in different values at dst. This check is
performed in line 7. The substitution of the source with “fresh”
unconstrained variables is performed in lines 25-28. The other
difference is the handling of MMIO instructions in lines 20-22.

Typical use of the algorithm is as follows. Spc is set to
an appropriate initial value and a target value for the PC
is specified as a trigger to stop symbolic execution. The
algorithm then symbolically explores all paths between Spc
and the target. It terminates when stack is empty.

To understand Algorithm 1, let us consider its execution on
the code shown in Figure 3.* The property here states that the

4We show the algorithm in C-like pseudocode to make understanding easier
but the analysis is done on binary code.

#define N 2
uint8_t tbl[] = { 1, 1 };
uint8_t data = 3;

uint8_t IO_REG =

// address of tbl = 0x100
// &data=0x102
1; // &IO_REG=0x200.

void foo(int rl) {
if (rl < 0 || rl >= N) return;
IO_REG = tbl[rl];

Fig. 3: Integrity property example: src=rl, dst=dataout, sr-
cpred=t rue and dstpred=memaddr = 0x200 A memop = WR.

untrusted value r1 must not influence the value of IO REG.

Suppose, due to a typo N=3 instead of the correct value 2.
The symbolic state computed by the algorithm when it reaches
the assignment to IO REG would be:

Pl==(@l<oval >3) PT=-(zT<0vzZ>3)
dataout! = M1[0x100 + z'] | dataout® = M?[0x100 + 7]
MY = M? = [0x100 — 1,0x101 — 1,0x102 — 3, ...]
memaddr! = memaddr? = 0x200

memopl = memop® = WR

In the above, 2! and z2 are the new variables created to
represent the untrusted value r1. When the solver evaluates
whether dataout' # dataout? is possible along with P!, P?
and the predicates, it will find z! = 1,22 = 2 and report
this error. Once we fix the bug and N=2, then (P!, P?) =
(' > 0Nzt < 2,22 > 0A 2% < 2). Now it is not possible
make dataout' # dataout® while satisfying P! and P2, so
the algorithm will not report in an error.

This is an example where DTA fails. Under typical taint
propagation policies, if the address for a memory read is
tainted but the data pointed to by the address is not tainted, the
result of the read is not tainted. Under such a policy, the bug is
not detected by DTA as the taint does not propagate from r1 to
I0_REG. Changing the policy to taint the result of a memory
read when the address is tainted results in overtainting. DTA
reports a problem even when the bug is fixed and N=2.

Now suppose src is data, while dst and dstpred are the
same as before. This property states that the secret value
data must not influence untrusted register I0_REG. Clearly,
a violation exists if N=3 and it will be detected by Algorithm 1.

To detect this issue, DTA needs an instruction sequence
where r1=2 in order to expose the violation. In other words,
DTA cannot detect a violation without a trace that “activates”
the problem. These examples demonstrate the advantages of
our technique: exhaustive analysis of all program paths and
states and improved precision over DTA.

V. EVALUATION

We evaluated our approach by examining part of the
firmware of an upcoming commercial phone/tablet SoC. This
section provides background on the SoC and the IP examined,
presents the methodology and results of the evaluation.

A. Methodology

1) SoC and IP overview: The overall structure of the SoC
is similar to the model presented in Figure la. It consists

of a number of IPs for various functions such as display,
camera, touch sensing, etc. This evaluation examined a single
component IP, called the PTIP. The PTIP is involved in
security sensitive “flows” like secure boot. It contains a pro-
prietary 32-bit microcontroller which executes the firmware.
The firmware interacts with the other IPs in the SoC through
various hardware registers accessed using MMIO.

2) Security Objectives: The PTIP firmware interacts with
system software, devices drivers and other untrusted IPs. Since
these entities, especially the system software and drivers, may
be compromised by malware, these are all untrusted.

We explored two main security objectives as part of the
evaluation. First, the PTIP memory holds a sensitive crypto-
graphic key called the IPKEY. We wanted to ensure that these
untrusted entities could not access the IPKEY. Second, we
wanted to ensure control-flow integrity of the PTIP firmware.

The total size of the PTIP firmware is approximately a
few tens of thousands of static instructions. Due to limited
time, this evaluation focused on a set of message handler
functions which send and receive commands/messages from
the (untrusted) system software, drivers and other IPs. We
believe these are most likely to be vulnerable because they
have the “closest” interactions with the untrusted entities.

3) Methodology: We created an instruction-level abstrac-
tion (ILA) of the PTIP microcontroller using the template-
based synthesis methodology from [25]. We then used the ILA
to generate a symbolic execution engine using the C++ API of
version 4.3.2 of the Z3 SMT solver. This symbolic execution
engine was integrated with a pre-existing simulator for this
microcontroller to model the MMIO reads and writes.

We used the pre-existing simulator to execute the reset
phases of the firmware, and started symbolic execution using
the post-reset state as the initial state. Each message handling
function (along with all the functions in its call graph) was
analyzed separately. The symbolic execution was run with a
time limit of 30 minutes on an Intel Xeon server.

B. Properties Verified

We created three representative information flow properties
to capture the security requirements mentioned above. °

1) Confidentiality of IPKEY: This was framed as two
information flow properties. For the first property, the source
was the address of IPKEY. The destination was PC and both
source and destination predicates were true. The security
requirement here states that the firmware control flow must not
depend on the value of IPKEY because different paths through
the firmware may have different externally visible behavior
and this could leak information about the key.

For the second property, the source was again the address
of IPKEY in memory but the destination was dataout. This
property states that the /PKEY must not be written to an
untrusted MMIO location.

SBesides information flow properties, the symbolic execution engine we
developed can also verify safety properties like the symbolic simulators in [3,
7, 12]. This is helpful for functional verification and certain security properties.
We do not report these results due to a lack of space.

2) Integrity of Message Handler Table: PTIP memory
contains a message handler table called MHT. The MHT contains
a list of pointers to functions that handle the messages received
from other IPs. The security concern here is that malware
could potentially attempt to rewrite the message handler table
to execute malicious code.

C. Experimental Results

1) Scalability: Table 1 summarizes the results from our
analysis. A total of five message handlers were evaluated.
The size of these routines ranges from roughly 100 to 800
instructions. Note these are static instructions. Due to loops,
some instructions will be executed more than once.

The static instruction counts were obtained after we ab-
stracted certain functions that were irrelevant to the security
properties being examined. The abstraction replaces these
functions with code that “trashes” the registers used by the
routine and returns immediately. Interestingly, we used sym-
bolic execution to prove that the other registers were correctly
preserved by the routine, i.e., to prove the abstraction correct.

The column labelled “analyzed instructions” shows the
number of dynamic instructions analyzed by the symbolic
execution engine when exhaustively exploring all paths. The
“time” column shows the execution time in seconds. The
execution is killed after approximately half-an-hour. We can
see from the results that more than half a million instructions
can be analyzed in about 30 minutes, which demonstrates that
the execution engine is scalable to real-world firmware sizes.

For two of the handlers, the symbolic execution engine
did not finish exploring all paths. This is due to exponential
blowup in the number of paths in the program aka path
explosion. This is a problem that affects all symbolic execution
based techniques, including those that do not verify informa-
tion properties [3, 6, 7, 12]. Solving this problem requires
identifying the loop(s) where path explosion occurs, and
replacing these loops with sound abstractions. This process is
conceptually straightforward, but time-consuming in practice.

2) Bug(s) Identified: The PTIP firmware had previously
undergone simulation-based testing and manual code review.
However, we were still able to identify a tricky security bug
in Handler] that could lead to IPKEY exposure.

The bug was caused by the firmware reading data from a ta-
ble before validating the table index, which was controlled by
an untrusted entity. Therefore, the untrusted entity could send
an malicious invalid command that would end up reading the
IPKEY and leaking information about its value to the attacker.
The bug was difficult to detect because the specific command
which triggered the overflow is not easy to discover through
testing or manual review. The symbolic analysis performed
by our tool which involves reasoning over all possible input
values was essential in crafting this malicious command.

VI. RELATED WORK

The DART [16] and KLEE [6] projects are the precursors of
subsequent work in symbolic execution. They combined mod-
ern constraint solvers and dynamic analysis to generate tests

IPKEY: Property 1

IPKEY: Property 2 MHT Property

Function | static insts analyzed insts time (s) analyzed insts time (s) analyzed insts time (s)
Handlerl 663 5690 5.80s 5690 6.24s 5690 5.80s
Handler2 788 534499* 1946.03s 546029* 1954.19s 534499%* 1946.03s
Handler3 790 476169* 1945.71s 421323* 1897.29s 476169* 1945.71s
Handler4 213 817 0.62s 817 0.64s 817 0.62s
Handler5 95 230 0.16s 230 0.16s 230 0.16s

TABLE I: Summary of Symbolic Execution Results. The asterisk (*) indicates symbolic execution timed out.

for software programs. S2F builds on the KLEE infrastructure
and allows symbolic execution of system software. S%E also
introduced selective symbolic execution and applied it on
system calls and kernel operations. We use selective symbolic
execution to model MMIO reads/writes. Bazhaniuk et al. [3]
use the S?E infrastructure to verify security properties of
system management mode software in x86 systems. FIE [12]
also builds on the KLEE infrastructure but makes extensions
for scalable symbolic execution of firmware in TI MSP430
microcontrollers. Optimizations introduced in FIE: memory
smudging and state pruning are orthogonal to our work and
can be implemented in our framework to improve scalability.
Unlike our work, all these frameworks can verify only safety
properties, not confidentiality or integrity.

A large body of work also exists in area of dynamic
taint analysis, e.g., [2, 9, 10, 18, 22, 24]. These techniques
suffer from both false positives and false negatives due to the
problems of under- and over-tainting. Our technique is based
on symbolic analysis and does not result in false positives.
An overview of DTA and symbolic execution techniques is
presented in [22]. We show how symbolic execution can be
used to verify information flow; this is missing from [22]
which treats DTA and symbolic execution separately.

Software model checkers [4, 8] are more scalable than sym-
bolic execution because they avoid path explosion by implicit
path enumeration. However, current software model checkers
do not support information flow properties. Extending software
model checkers in order to verify information flow properties
is an important area for further work.

VII. CONCLUSION

An important problem facing the semiconductor industry
today is ensuring that the security requirements of firmware
components are met. In this paper, we introduced a property
specification language and verification algorithm for specify-
ing and verifying firmware security properties. The property
specification language makes it easy to specify security prop-
erties such as confidentiality and integrity. Our verification
algorithm is based on symbolic execution and exhaustively
explores all paths in a firmware routine and proves the absence
of property violations. It is also more precise than dynamic
taint analysis schemes. Our evaluation of the algorithm was
conducted on the firmware of an upcoming commercial SoC.
We were able to detect a tricky firmware security bug that had
been missed by simulation-based testing as well as manual
code review. Scalability is promising and experiments show
that non-trivial real world world firmware can be analyzed.

REFERENCES

JasperGold: Security Path Verification App. http://www.jasper-da.com/products/
jaspergold-apps/security _path_ verification_app, 2015.

G. S. Babil, O. Mehani, R. Boreli, and M.-A. Kaafar. On the effectiveness of
dynamic taint analysis for protecting against private information leaks on android-
based devices. In Security and Cryptography, 2013.

O. Bazhaniuk, J. Loucaides, L. Rosenbaum, M. R. Tuttle, and V. Zimmer. Symbolic
execution for bios security. In Proceedings of the 9th USENIX Conference on
Offensive Technologies, 2015.

D. Beyer, T. A Henzinger, R. Jhala, and R. Majumdar. The software model checker
Blast. Int’l Journal on Software Tools for Technology Transfer, 9(5-6), 2007.
Symantec Security Response Blog. Mac vulnerability could provide persistent and
stealthy access. http://www.symantec.com/connect/blogs/mac-vulnerability-could-
provide-persistent-and-stealthy-access, 2015.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs. In Operating Systems
Design and Implementation, 2008.

V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A Platform for In-vivo Multi-
path Analysis of Software Systems. In Architectural Support for Programming
Languages and Operating Systems, 2011.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Tools and Algorithms for the Construction and Analysis of Systems, 2004.

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham.
Vigilante: End-to-end Containment of Internet Worms. In Symposium on Operating
Systems Principles, 2005.

J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention Orthogonal
to Memory Model. In IEEE/ACM Int’l Symposium on Microarchitecture, 2004.
Z. Cutlip. Netgear Root Compromise via Command Injection. http://shadow-
file.blogspot.co.uk/2013/10/netgear-root-compromise- via-command.html, 2013.

D. Davidson, B. Moench, S. Jha, and T. Ristenpart. FIE on Firmware: Finding
Vulnerabilities in Embedded Systems Using Symbolic Execution. In Proceedings
of the 22Nd USENIX Conference on Security, 2013.

J. J. Drake. ASUS Router infosvr UDP Broadcast root Command Execution. https:
//github.com/jduck/asus-cmd/blob/master/README.md, 2014.

V. Ganesh and D. L. Dill. A Decision Procedure for Bit-vectors and Arrays. In
Computer Aided Verification, 2007.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random
Testing. In Programming Language Design and Implementation, 2005.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated
random testing. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI *05, 2005.

T. Hudson, X. Kovah, and C. Kallenberg. ThunderStrike 2: Sith Strike. In Black
Hat USA Briefings, 2015.

M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: Dynamic Taint
Analysis with Targeted Control-Flow Propagation. In Network and Distributed
System Security Symposium, 2011.

C. Miller and C. Valasek. Remote Exploitation of an Unaltered Passenger Vehicle.
In Black Hat USA Briefings, 2015.

Andrew C. Myers. JFlow: Practical Mostly-static Information Flow Control. In
Principles of Programming Languages, 1999.

A. Sabelfeld and A.C. Myers. Language-based information-flow security. /EEE
Selected Areas in Communications, 2003.

E.J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to Know about
Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been
Afraid to Ask). In IEEE Security and Privacy, 2010.

R. Sinha, P. Roop, and S. Basu. The AMBA SOC Platform. In Correct-by-
Construction Approaches for SoC Design. Springer New York, 2014.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A New Approach to Computer
Security via Binary Analysis. In Information Systems Security, 2008.

P. Subramanyan, Y. Vizel, S. Ray, and S. Malik. Template-based Synthesis
of Instruction-Level Abstractions for SoC Verification. In Formal Methods in
Computer-Aided Design, 2015.

(1
[2]

(3]

[4]

[5]
(6]
(7]

(8]
91

[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

A. Disclosure

This research was evaluated using one commercial SoC
design. It needs more testing before full deployment in com-
mercial environments.

