Reverse Engineering Digital Circuits Using Functional Analysis

Pramod SubramanyanT, Nestan Tsiskaridze, Kanika Pasricha, Dillon Reisman, Adriana Susnea and Sharad Malik
Departments of Electrical Engineering and Computer Science, Princeton University.

Abstract—Integrated circuits (ICs) are now designed and
fabricated in a globalized multi-vendor environment making
them vulnerable to malicious design changes, the insertion of
hardware trojans/malware and intellectual property (IP) theft.
Algorithmic reverse engineering of digital circuits can mitigate
these concerns by enabling analysts to detect malicious hardware,
verify the integrity of ICs and detect IP violations.

In this paper, we present a set of algorithms for the reverse
engineering of digital circuits starting from an unstructured
netlist and resulting in a high-level netlist with components such
as register files, counters, adders and subtracters. Our techniques
require no manual intervention and experiments show that they
determine the functionality of more than 51% and up to 93% of
the gates in each of the practical test circuits that we examine.

I. INTRODUCTION

Contemporary integrated circuits (ICs) are designed and
fabricated in a globalized, multi-vendor environment due to
which ICs are vulnerable to malicious design changes and the
insertion of hardware trojans and malware. The possibility that
malicious chips might be used in sensitive locations such as
military, financial and government infrastructure is a serious
and pressing concern to both the users and designers of con-
temporary ICs [6, 10, 14]. For example, the DARPA IRIS pro-
gram seeks to develop techniques for reverse engineering dig-
ital, analog and mixed-signal ICs to determine their integrity
for use in sensitive installations [4]. Algorithmic approaches to
reverse engineering chips can aid in the detection of hardware
trojans, malicious design changes and in verifying the integrity
of untrusted design components for which trustworthy source
code may not be available. Reverse engineering is important
in detecting intellectual property violations, also considered a
“serious concern” for the semiconductor industry [12].

In this paper, we study a portfolio of fully algorithmic
approaches to reverse engineer digital circuits. We start our
analysis with an unstructured netlist with the objective of
inferring a high-level netlist with components such as register
files, adders and counters. The key challenge in analyzing an
unstructured netlist is that we have no information about the
boundaries of the modules that comprise the netlist. Therefore,
we tackle the reverse engineering problem through a variety of
algorithms that “carve out” portions of the netlist to generate
potential/candidate modules and employ techniques similar to
those used in design synthesis and verification to determine
the functionality of these modules.

A. Related Work

Fully algorithmic reverse engineering is not a well-studied
problem. Previous work primarily suggests strategies of attack
for a human analyst [7, 15]. For example, in their investigation
of the ISCAS 85 benchmarks, Hansen et al. analyze replicated

structurally isomorphic blocks [7]. The cut-based Boolean
matching and aggregation algorithms presented in §II-A and
¢II-B are generalizations of this idea.

A recent attempt at addressing the reverse engineering prob-
lem algorithmically is by Li et al. [9]. They present a method
for behavioral matching of an unknown sub-circuit against
a library of abstract components but assume that methods
are available to generate sub-circuits from the unstructured
netlist. Therefore, our set of solutions is complementary to
theirs because: (a) we target different kinds of components
for reverse engineering and (b) we analyze an unstructured
netlist as opposed to sub-circuit matching.

An alternative approach to malware detection relies on
comparing side channel signals such as power [1], current [16]
and timing [8] between the trusted and untrusted versions
of the design. The assumption is that a trusted version of
the design is available. This may not be true for untrusted
component IPs. Furthermore, these do not target IP violations.

B. Solution Overview

The objective of our work is deriving a useful high-level
description of the circuit from an unstructured netlist. In
particular, we focus on reverse engineering datapath ele-
ments in digital circuits because the majority of the gates in
microprocessor-like designs are part of the datapath. Datapath
elements are also suitable for algorithmic analysis due to their
regularity and high-degree of replication. Even when focusing
primarily on the datapath, reverse engineering is still a very
hard problem because we are starting with a sea of gates and
it is not obvious how to go about finding some meaningful
subset of the gates/latches for algorithmic analysis. Hence, our
approach integrates a number of different techniques which
tackle different aspects of the problem. Figure 1 shows the
techniques we introduce and their inter-relationships.

Our strategy is to attack the problem in two stages. The first
stage identifies potential module boundaries using topologi-
cal/functional analyses. The second stage functionally analyzes
potential modules to understand their behavior.

The contributions of this paper are as follows:

1) We present a novel application of cut-based Boolean
matching to find replicated bitslices! in the netlist. This
analysis helps us find circuit nodes that correspond to
functions such as 1-bit adders and 1-bit multiplexers.

2) We present algorithms that topologically analyze the
results of bitslice matching to aggregate multibit com-
ponents such as multiplexers, adders and subtracters.

'In this paper, a bitslice is a Boolean function with one output and a small
number of inputs that is replicated to construct multibit datapath operators.

T Corresponding author e-mail: psubrama@princeton.edu. This research was supported through a grant from DARPA as part of the IRIS project.

978-3-9815370-0-0/DATE13/(©2013 EDAA

Kot anaIYSiSI

bitslices
shift reg. analysis6

shift registers

multibit structureswand initial words
word propagation3
-7
RAMs

initial andwypropagated words

module generation4

candidate modules

library matching4

matching modules

Techniques for identifying Techniques for identifying

combinational components. sequential components.

Fig. 1. Portfolio of the reverse engineering techniques introduced in this
paper. The figure shows the dependences of the techniques and their outputs.
Outputs in bold are results of our inference tool. Outputs in italics are hints
which may used as a starting point for investigation by a human analyst.
Superscripts refer to items in our list of contributions.

3) Analyzing aggregated modules helps identify bits which
are operated upon simultaneously, allowing us to infer
words. These inferred words are then used in our word
propagation algorithm to generate additional words.

4) Our module generation algorithm analyzes words which
are structurally connected to generate candidate unknown
modules. These are potential operators with word argu-
ments and results and are matched against a component
library using permutation and phase independent Boolean
matching [11].

5,6) We present algorithms to identify counters and shift
registers using topological analyses combined with a
satisfiability (SAT) checking formulation.

7) We present novel algorithms that identify register files
and RAM arrays BDD-based functional analysis.

We evaluate our algorithms by experimenting with eight

unstructured netlists.”> These netlists were obtained by syn-

thesizing designs from opencores.org and other sources. The

largest of these (RISC FPU) has 14291 gates and 3097

latches/flip-flops. Results show that our inference algorithms

can completely determine the functionality of more than 51%

and up to 93% of gates in a fully automated manner.

II. BITSLICE IDENTIFICATION AND AGGREGATION

Our first algorithm is based on the observation that many
datapath elements consist of replicated bitslices connected in
a specific topology.

A. Bitslice Identification

The goal of bitslice identification is to identify all nodes
in the circuit that match elements in a bitslice library. For
instance, we might be interested in finding all nodes that match

2The netlists we experiment with are: RISC FPU, oc8051, mips16, ael8,
cpu8080, Open8, eVoter and router.

the adder carry function ab + bc + ca, this might help identify
multibit adders. We adopt a functional matching approach,
which matches based on the function implemented by a set
of gates instead of matching structural patterns. This uses
cut-enumeration and Boolean matching, which was initially
introduced for technology mapping [3, 2].

A feasible cut of a circuit node G is defined as a set of
nodes in the transitive fan-in cone of G such that a consistent
assignment of truth values to each node in the set completely
determines the value of GG [2]. A cut is said to be k-feasible
if it has no more than % inputs. The trivial cut {G} is always
k-feasible. The set of k-feasible cuts for a gate is recursively
computed by enumerating the union of all k-feasible cuts of
the gate’s inputs such that this union has &k or fewer inputs.

Our tool enumerates all 6-feasible cuts. We found that the
average number of 6-feasible cuts per gate is between 15 and
35. The number of cuts for k¥ > 6 is significantly higher.?
Although we are restricted to bitslices with six or fewer inputs,
this is not a major limitation as most common bitslices have
less than six inputs; e.g., a full adder bitslice has 3 inputs.

Once all cuts are identified, they are grouped into equiva-
lence classes using permutation-independent Boolean match-
ing. For example, nodes matching the function y = ab+c and
nodes matching y = bc + a are grouped into the same class.
Each equivalence class may match a known library function.

B. Aggregation to Multibit Components

Now that we have all the nodes that match a particular
function, the next step is to look for matching nodes connected
in interesting patterns. Aggregating replicated bitslices which
are connected in specific patterns is our first technique for
identifying combinational modules. The following subsections
expand on our aggregation algorithms.

1) Common Signals in Replicated Bitslice: This algo-
rithm considers all bitslices that match a particular func-
tion and groups them using common input signals. For in-
stance, consider the function that represents a 2:1 multiplexer:
f(a,b,s) = sa + —sb. Here we group all matching bitslices
which have a common select signal (s in this example).
Common signal aggregation finds 185 decoders and 210
multiplexers in our largest test article (RISC FPU).

2) Propagated Signal(s) in Replicated Bitslices: In this
case, the algorithm considers all bitslices matching a particular
function such that the output of one bitslice is the input
of another (e.g., carry chain in a ripple carry, parity tree).
Propagated signal aggregation finds 129 adders/subtracters and
102 parity trees in the RISC FPU test article.

C. Word Identification and Word Propagation

Aggregated bitslices tell us about circuit nodes that are oper-
ated upon simultaneously. These nodes are likely to form part
of same word. Our tool groups the bits that are inputs/outputs
of aggregated modules into “word” data structures.

Once a few words are identified, more words can be
generated by propagating known words across structurally

3These observations are in line with published work on cut enumeration [2].

identical gates. This analysis examines the inputs and outputs
of gates that form words for structural symmetry and then
propagates words from inputs to outputs and from one set of
input terminals to others. The RISC FPU test article had 758
initial words and 2461 propagated words.

D. Module Identification and Matching

The two main limitations of bitslice identification are: (i)
we are limited to bitslices with a maximum of 6 inputs due to
the k£ < 6 limitation on cut-enumeration and (ii) it is difficult
to identify combinational structures that do not have a clean
interconnection pattern. Our second approach overcomes these
limitations by constructing entire modules and then matching
them against a component library.

The intuition here is that since datapath circuits operate on
word inputs and produce word outputs, cutting out portions of
the circuit that exist between words may find interesting can-
didate modules. Our module identification algorithm operates
in three steps. First, a word connection graph is created that
formalizes the structural connectivity between words. Then,
candidate unknown modules are created using the gates in
between words. These modules are then compared with a
library of known modules using BDD-based permutation and
phase independent Boolean matching [11].

III. IDENTIFYING SEQUENTIAL COMPONENTS

A reverse engineering solution must identify commonly
occurring sequential components such as RAM arrays, reg-
ister files, counters and shift registers because these cover a
significant number of gates in circuits and also give insight into
functionality of the circuit. The challenge here is again in find-
ing meaningful module boundaries for these components given
the unstructured netlist. Our strategy is to devise topological
analyses to find circuit nodes that are potential counters,
RAM outputs or shift registers. We then formulate functional
analyses using SAT and BDDs that verify correctness of the
“guess” made by the topological analysis. The rest of this
section presents algorithms to identify RAM arrays/register
files, counters and shift registers.

A. Counter Identification

The specific problem here is to identify sets of latches in
the unstructured netlist that are counters. We first observe that
the topology of signal flow between the latches in a counter
is as shown in Figure 2.

Based on this observation, our analysis is performed in two
stages. First, potential counters are generated by finding sets
of latches whose interconnections match the counter topology.
The next step uses a SAT-based functional analysis to verify
whether the functions at the inputs of the latches in the counter
satisfy the following conditions: (i) each latch toggles either
when all the low-order latches are 1 (up counter) or all the
low-order latches are O (down counter) and (ii) the conditions
that control when the counter is enabled/reset are the same
for all the bits of the counter. Five counters were found in the
0c8051 test article.

Fig. 2. Latch-to-latch information flow in a counter: each latch in the counter
is driven by the latches corresponding to the lower-order bits.

B. Shift Register Identification

As with counters, our goal here is to identify the set of
latches and associated logic that form shift registers given an
unstructured netlist. The shift register identification algorithm
is similar to the counter identification algorithm in that it uses
a topological check and a SAT formulation. Only the topology
and verification conditions differ.

Shift registers may consist of multiple bits shifting in
tandem from one set of latches to another. The basic algorithm
finds each cascading chain of latches as separate shift registers.
To aggregate shift registers, first we group shift registers by
length. Next, we form equivalence classes within each group
where shift registers with the same set, reset and shift-enable
functions are classified together. Finally, each equivalence
class is output as a multibit shift register module. Seven shift
registers were found in the RISC FPU test article.

C. Identifying RAMs

This section targets small RAM arrays and register files.
Our objective here is to find the latches/flip-flops that form the
RAM, associated logic that reads data (called “read-logic”) and
logic that writes data into the latches (called “write-logic”).

The first step in detecting the “read-logic” is to identify
logic trees that whose leaves are latches. After this a BDD-
based analysis checks whether every combination of address
signals propagates the output of exactly one of the latches to
the root of the tree. Logic trees with identical address signals
are aggregated to form multibit RAM modules.

To identify the “write-logic”, the cut-based analysis is used
to find the write-enable signal for each latch in the RAM.
Next, the common support* of all the write-enable signals
is computed. A BDD-based analysis is then used to verify
properties that correspond to proving that (i) every latch can
be written to and (ii) no two latches which are not part of the
same word can be written to simultaneously. One dual-ported
register file was found in the RISC FPU using this algorithm.

1V. EXPERIMENTAL RESULTS
A. Methodology

We developed an inference tool using the C++ programming
language that implements the algorithms described in Sections
IT and III. The tool takes as input a synthesized verilog netlist,
analyzes it and outputs an abstracted netlist with the inferred

4We first compute the full-combinational fanin-cone for every write-enable
signal. The intersection of each these cones (called the common cone) is then
computed. For each write-enable signal, the set difference between the full-
combinational fanin-cone and the common cone yields the common support.

TABLE I
COVERAGE RESULTS

Design Information Bitslice identification and aggregation Sequential Coverage and
components execution time

Design ilp | ofp | gate latch | a/s dec | dm | eq | gf | mux | It ram | sr | cnt | cov time | notes
router 35 | 26 944 182 0 28 3 0 10 | 46 2 0 0 4 53 % | 4s on-chip router
eVoter 31 15 1291 109 0 23 1 10 | 7 4 26 0 0|0 51% 10s vot. mac. controller
Open8’ 19 | 26 1807 237 22 30 1 1 21 | 42 20 1 1 2 66 % | 33s Open8 pRISC
cpu8080t 12 | 29 2258 243 7 55 7 0 30 | 77 21 0 0|0 59 % | 60s 8080 CPU
ael8f 32 | 64 3466 1094 | 25 50 3 0 28 | 113 32 0 3 10 | 70 % | 25s PIC pcontroller
mips16 1 8 6986 4380 | 2 93 0 0 9 289 51 1 1 27 | 93 % | 31s 16-bit MIPS CPU
0c80511 86 | 78 8093 2748 | 8 539 | 15 6 60 | 407 201 | 4 3 5 70 % | 242s | 8051 pcontroller
RISC FPU | 35 | 66 14291 | 3097 | 129 | 171 | 3 31 | 97 | 189 194 | 1 7 |3 85 % | 529s | 32-bit RISC FPU
Total 39136 78% 934s | Tfrom opencores.org

Legend for table header: i/p: chip inputs; o/p: chip outputs; gate: number of gates; latch: number of latches a/s: adders/subtracters; dec: decoders; dm:
demultiplexers; eq: equality comparators; gf: gating functions (and2/or2 etc. of a word with a common signal); mux:multiplexors; It: parity tree, zero-detect
and one-detect; ram:RAMs/register files; sr: shift registers; cnt: counters; cov: coverage in percentage of gates covered; time: execution time.

components. The tool uses the CU Decision Diagram (CUDD)
Package version 2.4.2 for the BDD-based analyses [13]. Mini-
Sat version 2.2 was used for satisfiability checking [5].

Experiments were performed on an Intel®) Xeon® E31230
CPU clocked at 3.20GHz with 32 GB of RAM. We used eight
netlists for our experiments. Source code for five of these
was obtained from opencores.org and these are marked with a
dagger in Table I. All the designs were synthesized using an
IBM/ARM cell library for a 45nm SOI process.

B. Summary of Results

Table I shows the modules identified and overall coverage
obtained using our inference algorithms. Coverage is measured
as a percentage of gates in the design which are covered by
inferred modules. The table also shows information about the
netlists being analyzed, the number of inferred modules of
various types and the execution time of the tool.

For the three biggest netlists, coverage is above 75% and
reaches up to 93% for the 16-bit MIPS CPU. These netlists
all have a large number of replicated bitslices in the datapath
which are captured well by the bitslice identification and
aggregation algorithms. In contrast, the smaller netlists have a
significant fraction of gates devoted to irregular control logic,
which is hard to identify in a fully automated solution. When
considering coverage across all the designs, about 78% of the
39136 gates analyzed were identified by our algorithms and
the total execution time was 15 minutes and 34 seconds.

Sometimes a gate might be placed in multiple inferred
modules. In the 0c8051 design, the RAM read-logic consists
of a number of muxes which are identified by the bitslice
aggregation algorithms and the RAM analysis algorithm. To
resolve this, we define a dominance relation between inferred
modules. One inferred module dominates another if the latter
is fully contained inside the former. Dominated modules
are eliminated from the output of the tool. Even after the
elimination of dominated modules, some “conflicts” remain.
We expect that a human analyst will resolve these.

V. CONCLUSION

Integrated circuits are now designed and fabricated in a
globalized and multi-vendor environment making them vul-
nerable to malicious design changes and hardware trojans.

Algorithmic reverse engineering can mitigate these risks by
helping detect malware and verify the integrity of critical ICs.

The key challenge in reverse engineering digital circuits
is generating meaningful module boundaries given a very
large unstructured netlist of gates. In this paper, our main
contribution is a portfolio of algorithms for reverse engineering
that: (i) find module boundaries for a variety of combinational
and sequential components and (ii) functional analyses that
verify the behavior of these modules. Experiments showed that
the functionality of 51% to 93% of the gates in a netlist may
be automatically inferred using our algorithms.

REFERENCES

D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan
detection using ic fingerprinting. In Proc. of IEEE SP 2007.

S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam.
Reducing Structural Bias in Technology Mapping. In ICCAD 2005.

J. Cong and Y. Ding. FlowMap: An Optimal Technology Mapping Al-
gorithm for Delay Optimization in Lookup-Table Based FPGA Designs.
IEEE Trans. on Comp.-Aided Des. of Integrated Circuits and Sys., 1994.
DARPA. Integrity and Reliability of Integrated Circuits (IRIS).
http://www.darpa.mil/Our_Work/MTO/Programs/Integrity_and_
Reliability_of_Integrated_Circuits_(IRIS).aspx, 2012.

N. Eén and N. Sorensson. An Extensible SAT-solver. In SAT 2003.
Defence Science Board Task Force. High Performance Microchip
Supply. http://www.acq.osd.mil/dsb/reports/ADA435563.pdf, 2005.
M.C. Hansen, H. Yalcin, and J.P. Hayes. Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering. IEEE Design &
Test of Comp., 16(3):72 —-80, 1999.

Y. Jin and Y. Makris. Hardware Trojan Detection Using Path Delay
Fingerprint. In Proc. of HOST 2008.

W. Li, Z. Wasson, and S. A. Seshia. Reverse Engineering Circuits Using
Behavioral Pattern Mining. In Proc. of HOST 2012.

J. Lieberman. National Security Aspects of the Global Migration of the
U.S. Semiconductor Industry. White paper, Airland Subcommitte, US
Senate Armed Services Committee, 2003.

J. Mohnke and S. Malik. Permutation and Phase Independent Boolean
Comparison. Integration, the VLSI Journal, 16(2), December 1993.
SEMI. IP Challenges for the Semiconductor Equipment and Materials
Industry. http://www.semi.org/sites/semi.org/files/docs/2012_IP_White_
Paper.pdf, 2012.

F. Somenzi. CUDD: CU Decision Diagram Package. http://vlsi.colorado.
edu/~fabio/CUDDY/, 2011.

M. Tehranipoor and F. Koushanfar. A Survey of Hardware Trojan
Taxonomy and Detection. IEEE Design & Test of Comp., 2009.

R. Torrance and D. James. The State-of-the-Art in IC Reverse Engi-
neering. In Proc. of CHES 2009, 2009.

X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic. Hardware
Trojan Detection and Isolation Using Current Integration and Localized
Current Analysis. In Proc. of DFT 2008, 2008.

[1]
[2]
[3]

[4]

[5]

[6]
[7]

[8]
[9]

(10]

(11]
[12]

[13]
[14]
[15]

[16]

