
Towards Verifiably Secure Systems-on-Chip Platforms

Sujit Kumar Muduli and Pramod Subramanyan
Indian Institute of Technology, Kanpur.

Abstract—Verification and validation of system-level security
primitives is a pressing challenge in systems-on-chip (SoC) design
and verification. This is a difficult problem to tackle for three
reasons. First, no general frameworks exist that can enable adver-
sary modeling for SoC platforms. Second, succinct specification
of the desired security properties is not possible with current
property specification languages. Finally, verification of a security
specification is more challenging than functional verification. In
this paper, we introduce a formal framework that enables general
adversary modeling for SoC platforms and a security property
specification language for this framework. We present formal
semantics for the framework and illustrate its utility through a
case study of an authenticated firmware load protocol.

I. INTRODUCTION

Today’s systems-on-chip (SoC) designers do not have an
end-to-end verification methodology to ensure security of their
platforms. At heart of this problem is a lack of techniques for:
(i) formal modeling of the system and adversary behavior,
(ii) formal specification of platform security properties, and
(iii) systematic (not necessarily formal) verification of these
properties. As a result, it is difficult to reason about security
vulnerabilities in SoC platforms. We argue that this difficulty
has contribution to the explosion in hardware security vul-
nerabilities discovered over the past few years. For instance,
reported hardware vulnerabilities in the National Vulnerability
Database (NVD) have increased in count from 1350 in 2013
to 3961 in 2017; an increase of 290% in just four years [24].
Viewed as a fraction of total vulnerabilities, hardware vulner-
abilities have increased from being an insignificant fraction of
all vulnerabilities in 2003 to being 15% of reported vulnera-
bilities in the NVD in 2017. These statistics point towards the
pressing need for systematic SoC security verification.

It is important to note that recent years have seen significant
progress in the formalization of functional specifications of
hardware platforms. This includes formalization of instruc-
tion set architecture (ISA) functionality [6, 18, 19], memory
consistency models [11, 12, 14] and accelerator function-
ality [13, 23]. However, only a few efforts have tackled
formalization of the security guarantees provided by hardware
platforms. Formalization of security guarantees has two im-
portant aspects that go beyond formalization of functionality.
The first of these is the construction of an adversary model
that captures expected threats to the platform. This typically
has two components: (i) what are the ways in which an
adversary can affect (modify) system state, and (ii) what parts
of system state are visible (observable) to an adversary. Both

of these components require going beyond the features of a
functional model. For example, both fault injection attacks
and the RowHammer attack require modeling behavior not
present in a functional model of the system: viewed formally
these attacks introduce transitions in system state that are non-
existent in a functional model of the system. Similarly, many
side channels are adversary-observable and models of these
side channels (e.g., caches/branch predictors) are not included
in functional models. As a result, SoC modeling for security
analysis needs to incorporate more detail than a functional
correctness framework. Furthermore, the framework will need
carefully delineate actions performed by trusted components
from the actions of untrusted components.

Current efforts at formalization of security guarantees have
been restricted to the very specific hardware platform features
like secure enclaves [25] or authenticated firmware load-
ers [9, 16]. There are no general frameworks for reasoning
about platform security guarantees. Construction of a such a
framework for the specification and verification of hardware
platform security guarantees is challenging because a useful
framework will need to satisfy the following three criteria.

The specification framework must have first-class support
for adversary modeling. In particular, the adversary model
must be clearly separated from the system model as well as
the property specification. To see why this is useful, consider
a scenario where a hardware design house produces two
versions of an IC: a hardened version for use in safety-critical
applications and a “normal” version for commercial off-the-
shelf application. Suppose both versions of the IC implement
privilege separation. What differentiates the two versions is
not the security requirement of privilege separation, but that
adversary model for the hardened IC allows more tampering
actions by an adversary. Ideally, the model used for reasoning
about security of privilege separation for these two versions
of the IC will only exhibit minor changes.

Second, the framework must ensure that properties specified
are independent of any particular implementation. Property
specification must not result in spurious violations when the
implementation is changed in some way.

Finally, it must be possible to specify end-to-end or platform
security guarantees. It is relatively easier to capture low-level
security requirements; e.g., no dereferencing of pointers to
deallocated memory (use after free), no writes to a read-only
register etc. However, we need the ability to reason about
platform security features that span multiple modules and
abstraction layers. For example, we would like properties to
capture security of complete protocols like Secure Boot [1].

In this paper, we take a step towards tackling these chal-978-1-7281-2695-1/19/$31.00 c©2019 IEEE

lenges. We describe a framework for modeling and verifying
hardware platform security. We introduce a property specifi-
cation language that captures security requirements over this
modeling framework. The modeling framework is extends the
transition system view of the system with adversarial behavior
while the property specification builds on top of HyperLTL [5].
The combination of the two is novel and enables system-level
reasoning about security. We provide a formal semantics for
this modeling and specification framework. We demonstrate
the utility of our framework by a case study of security
specification of an authenticated firmware load protocol and
review verification results [16].

This paper makes the following contributions.
• We provide an overview of the challenges in SoC security

validation using a concrete example of an authenticated
firmware load protocol.

• We discuss the design of a framework for SoC secu-
rity validation. The framework brings together adversary
modeling, security property specification and property
verification. The combination of these features for general
SoC security analysis in a unified framework is novel.

• We introduce a formal modeling framework and prop-
erty specification language for capturing SoC security
properties. While other works have studied modeling
of specific protocols (e.g., authenticated load [16]) and
security features (e.g., enclave execution [25]), ours is
the first general framework for SoC security reasoning.
We also provide formal semantics for our framework.

The rest of this paper is organized as follows. Section II
presents the motivating example of the authenticated boot
protocol used in the rest of this paper. Section III provides an
overview of the validation framework. Section IV describes
the specification language. Section V presents the case study
and verification results. Section VI describes related work and
finally section VII provides some concluding remarks.

II. MOTIVATING EXAMPLE

Figure 1 shows a small SoC design. We use this design to
motivate the need for, and describe the features of a high-
level security property specification language. We will use an
authenticated firmware load protocol as a running example.

A. Features of the Example SoC

The SoC consists of a trusted microprocessor core (labelled
µP1). This trusted core includes a trusted ROM which func-
tions as a hardware root of trust. It also contains an untrusted
microprocessor core (µP2). The two devices used for input
and output (I/O) are an untrusted network interface (n/w), and
an untrusted flash storage interface (flash). Three trusted accel-
erators are included for symmetric key cryptography (AES),
cryptographic checksum computation (SHA256) and public
key cryptography (RSA). A trusted memory management unit
(MMU) is used to control access to various memory regions.
Permissions for each page can be set to read-only, execute-
only or read-write. The MMU controls access to the RAM

In
te

rc
on

ne
ct

µP1

R
O

M

µP2

n/w

flash

AES

SHA256

RSA

M
M

U

RAM

Fig. 1: Example SoC to illustrate the authenticated firmware
load protocol. Trusted components are in green, while un-
trusted components are in red; components of mixed prove-
nance are shown in orange.

which is partially trusted because depending on the MMU
configuration, some parts may be adversary accessible.

Flash
Storage

img + sign

RAM

RSA
Verify

]

ROM

image

RAM

S
H

A
256

RAM

public keyload
unpack

Fig. 2: Authenticated Firmware Load Protocol.

B. The Authenticated Firmware Load Protocol
In this section, we describe a security-critical firmware load

protocol. Figure 2 is a depiction of a protocol, and the steps
involved in it are as follows.

1) The protocol loads a binary image from the untrusted
flash I/O device to the RAM.

2) It then authenticates the loaded image using the RSA ac-
celerator. The public key used for signature verification
is stored in the trusted ROM attached to µP1.

3) If the authentication check passes, the image needs to
unpacked. Unpacking involves copying various parts of
the contiguous binary file into a set of possibly non-
contiguous RAM locations.

4) The unpacked components of the image have to re-
verified by computing cryptographic checksums to en-
sure they have not been modified after unpacking but
before execution.

5) If the final checksum verification succeeds, the image
is ready for execution. The protocol now jumps to the
image’s entry-point.

Protocol Security Requirements: A secure implementation
of the protocol must ensure integrity of the load process. De-
spite arbitrary adversarial actions from untrusted components,
only an image which satisfies the RSA signature verification
and cryptographic checksum verification must be executed.

sign valid? unpack checksum valid?

success

success?

state hijacking

Fig. 3: Traces showing valid boot and compromised boot.

C. A Partial List of Potential Vulnerabilities

To illustrate the difficulty in verification of the protocol’s
security requirements, we now review two potential classes of
vulnerabilities. A more detailed explanation of these vulnera-
bilities may be found in [16]

1) Protocol State Hijacking Attacks: Protocols like the one
shown in Figure 2 are typically implemented as state machines.
In this specific example, the first state loads the image from
the I/O device to memory while the second state verfies
the digital signature of the image header using public key
cryptography. The penultimate state computes cryptographic
checksums of blocks in the unpacked image and compares
these computed values to corresponding values stored in the
header. If an adversary could somehow modify the state of
the state machine to skip certain validity checks, then invalid
images may be loaded by the protocol. These attacks are
referred to as protocol state hijacking attacks and an example
is shown in Figure 3. Here the adversary causes the state where
checksums are verified to be skipped. There are many ways
in which such an attack may be mounted. For instance, the
untrusted code running on µP2 may exploit a buffer overflow
vulnerability in an interrupt handler executing on µP1 to
overwrite the return address and set the PC to an invalid value.

2) Time of Check to Time of Use (TOCTOU) Vulnerabilities:
A TOCTOU attack occurs when the data is changed between
the time of validation and the time of its use. In our scenario,
an attacker may wait until HMAC validity is checked and then
replace parts of the image with a malicious payload.

loader start

RSA

attacker

Loader copies
image header

to RAM

signature
validation

attacker updates header through
the trusted deputy (RSA)

Authentication
performed with

bad header

success?

Bad executable
marked

as verified

Fig. 4: TOCTOU attack mounted using a confused deputy.
Figure taken from [16].

An example is shown in Figure 4. Notice that the attacker
does not directly modify the image, but instead “tricks” the
trusted RSA accelerator into overwriting the image. Naı̈ve
verification techniques which only check access control prop-
erties (i.e. check that untrusted devices cannot overwrite to the
image) will not be able to detect this bug.

III. SOC SECURITY VALIDATION

As Section II-C demonstrates, verification of the example
protocol’s security requirements are non-trivial. We discuss
some challenges unique to security validation first and then
provide an informal overview of our ongoing research that is
building a framework to tackle some of these challenges.

A. Security Validation vs. Functional Validation

It is important to emphasize that security validation is in
fundamental ways different from functional validation. For
the case of functional validation, well-developed techniques
for formal specification and formal/semi-formal verification
exist. For instance, SystemVerilog Assertions (SVA) [28] is a
specification language for hardware functionality that is based
on the formalism of linear temporal logic (LTL) [17]. SVA
has seen wide adoption in industry and both formal and semi-
formal tools for the validation of SVA properties exist.

Unfortunately, it is not possible to express information flow
security properties using SVA (or LTL) [15]. As an example,
consider the authenticated loader protocol described in the
previous section. We can attempt to express security of this
protocol using the SVA property: eventually success →
(SignValid(img) ∧ ChecksumValid(img)). This property
states that if the authentication succeeds, then the initial value
of the image must have a valid signature and checksum.
Unfortunately, an implementation which satisfies this property
need not be secure. In particular, it could be vulnerable to
TOCTOU attacks despite satisfying the property: the property
only requires the initial image be valid, but intermediate steps
could replace it with a malicious payload.1 For a formal proof
see McLean [15] but the intuition is that that LTL/SVA cannot
reason precisely about how adversarial interference affects
execution of the protocol. In the next section, we will introduce
a specification language that is capable of this reasoning.

B. Proposed Verification Framework

There three main challenges in SoC security verification
are adversary modeling, security specification and verification.
Our framework addresses these challenges using the combi-
nation of techniques shown in Figure 5. Besides the above,
other important components include an instrumentation layer
that combines the system and adversary to produce a unified
model. This model is analyzed in the simulation/verification

1A reader might wonder why we are considering valid signatures and
checksums on the initial image rather than the image at the time when
loading has succeeded. The problem is that the image is loaded into memory,
its signature is checked and then unpacked. In order to reduce memory
pressure the initial image is deallocated after unpacking and before checksum
validation. Therefore, at the time when the protocol completes, the original
image does not exist in the system as its memory has been deallocated!

system

adv. model

instrument

simulation engines

symbolic

concrete

trace analysis

input
(insn + data)

sim info
(cov., exec. traces)

violations?speci

security specs

Fig. 5: Overview of the semi-formal solution

tool using the security specification provided by the user. A
brief overview of the framework follows.

1) Adversary Modeling: Security verification of any system
requires modeling adversarial behavior. This involves precisely
specifying what actions an adversary can take in order to
tamper with the security objectives of the system and what
parts of system state are adversary-observable.

Our adversary model consists of two components: a model
of adversarial tampering that captures how untrusted modules
can change shared state and an observation function that de-
termines what states are adversary-visible. Tampering captures
how the adversary may violate system integrity while the
observation function enables reasoning about whether secret
information is being leaked to the adversary. Specifically, mod-
ules in the SoC can be marked as adversarial: this means that
the modules perform unconstrained state updates to all state
that is accessible to them. This models adversarial tampering.

On the confidentiality side, the framework allows marking
adversary observable state and the framework produces proof
obligations that correspond to observational determinism –
adversary observations must be a deterministic function of
adversarial actions [29]. In the formal model, these actions
correspond to extending a standard transition system model by
the inclusion of a tamper relation and an observation function.
The tamper relation is composed with each step of the trusted
components’ transition relations. The observation function
determines which parts of state are adversary-observable.

2) Security Property Specification: Consider the example
protocol discussed in the previous section. What tests or
formal properties can we use to determine if the protocol
implementation is secure? It should be apparent that this is
a challenging and application-specific problem. While it is
not possible to anticipate all attacks, it is in fact possible to
rule out certain classes of attacks that involve all permutations
and combinations of specific actions taken by an attacker.
In past work we have shown that the security properties of
enclave platforms like Intel SGX can be captured by only three
security guarantees [25]. Similarly, security guarantees for the
authenticated load protocol can also be formally specified [16].

Despite these advances there does not yet exist a general

framework for formal security property specification and our
solution to this problem is described in this paper. Our solution
buildss on the recent work in hyperproperties, specifically
HyperLTL [5] which can be used for specifying security prop-
erties like non-interference and observational determinism [4].
An important innovation in our framework is first-class support
for the tamper and observe functions in the specification
language. This allows the adversary model to be parameterized
in the property. Therefore, our specification language orthog-
onalizes these separate concerns of security specification and
adversary modeling. We describe the specification language
and its semantics in detail in the next section.

3) Verification Techniques: Current work for verification of
security properties has mostly relied on self-composition [2,
26]. Unfortunately, self-composition does not scale to com-
plex systems. While a number of recent efforts have studied
techniques for scaling self-composition in the context of
model checking, it remains unlikely that any model check-
ing approach will scale up to the verification of large SoC
designs. Therefore, our framework is developing semi-formal
techniques that build on whitebox fuzzing [7] and concolic
execution [3], for the verification of SoC security properties.
While fuzzing and concolic execution to find violations of
safety properties is well-studied, we are interested in violations
of security guarantees and this will require the development of
novel extensions to the fuzzing and concolic execution algo-
rithms. These techniques have successfully scaled to (safety)
verification of very large programs, so we are optimistic about
their applicability to SoC security verification.

IV. SPECIFICATION LANGUAGE AND FORMAL SEMANTICS

This section presents a formal overview of the security
property specification language via its grammar and semantics.

A. System and Adversary Model

We use the standard transition system model of systems
with two extensions for capturing security properties. Our first
extension is the introduction of a tamper relation that captures
an adversary’s ability to make untrusted updates to system
state – this is required to model integrity. The second extension
captures what part of system state is adversary observable
through the definition of an observation function.

We define transition systems as the tuple M =
〈X, init , tx , tmpr , obs〉. In the above definition X is a vector
of state variables and a state of the system σ is an assignment
to the variables in X . init(σ) is a predicate that represents
valid initial states. tx (σ, σ′) is the transition relation that
models trusted state updates. Adversary tampering — which
captures adversarial state updates — is modelled via the
relation tmpr(σ, σ′). The observation function obs(σ) models
adversary observable parts of system state.

A trace of the system M is a sequence of states π =
〈σ0, σ1, . . . 〉 such that:
• init(σ0) is true,
• ∀i ≥ 0. tx (σi, σi+1) ∨ tmpr(σi, σi+1) is true.

The above definition says that system state starts in some
initial state and then evolves either through the transition
relation tx which models the trusted state updates to system
or through the tampering relation tmpr . The latter models
untrusted or adversarial updates to system state. The set of all
traces of a system M is denoted by TRM .

We will refer to the individual elements of the trace as
π1, π2, etc. In the above example where π = 〈σ0, σ1, . . . 〉,
π0 = σ0 and π1 = σ1. Given the trace π, we write π[i,∞] to
denote its suffix starting from index i; i.e., π[i,∞] is the trace
〈πi, πi+1, . . . 〉. Note that traces are of infinite length.

B. Property Specification Language

The grammar for the property specification language is
shown in Figure 6. It closely follows HyperLTL [5], and thus
allows quantification over traces.

ψ ::= ∀π. ψ | ∃π.ψ | ϕ
ϕ ::= Pπ1,...,πk

| tmprπ | ¬tmprπ |
| ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ
| ©ϕ | �ϕ | ♦ϕ | ϕU ϕ

Fig. 6: Property Specification Language Grammar

In the above, Pπ1,...,πk
refers to a predicate P over the

states π0
1 , . . . , π

0
k. tmprπ holds when the first transition in the

trace π corresponds to a step of the tmpr relation: 〈π0, π1〉 ∈
tmpr . ¬tmprπ holds when the first transition in the trace π
corresponds to either a stuttering step: π0 = π1 or a step of
the trusted transition relation tx . Note the asymmetry between
tmprπ and ¬tmprπ; we use ¬tmprπ refer to the adversary
performing a “NOP” in the first step of the trace π.

1) Semantics: As in HyperLTL [5], the validity judgement
of a property ψ by system M = 〈X, init , tx , tmpr ,obs〉 is
defined with respect to a trace assignment Π : V → TRM .
Here, V is a trace variable; recall that TRM is the set of traces
of the system M . The partial function Π is a mapping from
trace variables to traces. We use the notation Π[π 7→ ρ] to

Π |=M ∀π. ψ iff for all ρ ∈ TRM : Π[π 7→ ρ] |=T ψ

Π |=M ∃π. ψ iff there exists ρ ∈ TRM : Π[π 7→ ρ] |=T ψ

Π |=M ©ψ iff Π[1,∞] |= ψ

Π |=M �ψ iff for all 0 ≤ i : Π[i,∞] |= ψ

Π |=M ♦ψ iff there exists i ≥ 0 : Π[i,∞] |= ψ

Π |=M ψ U ϕ iff there exists i ≥ 0 : Π[i,∞] |=T ϕ

and for all 0 ≤ j < i : Π[j,∞] |=T ψ

Π |=M Pπ1,...,πk iff P(Π(π1)0, . . . ,Π(πk)0) is true

Π |=M ¬tmprπ iff Π(π)0 = Π(π)1 or 〈Π(π)0,Π(π)1〉 ∈ tx

Π |=M tmprπ iff 〈Π(π)0,Π(π)1〉 ∈ tmpr

Π |=M ¬ψ iff Π 6|=M ψ

Π |=M ψ ∧ ϕ iff Π |=M ψ and Π |=M ϕ

Π |=M ψ ∨ ϕ iff Π |=M ψ or Π |=M ϕ

Fig. 7: Semantics of the property specification language.

refer to a trace assignment that is identical to Π except that π
maps to ρ.2 We write Π |=M ψ if the system M satisfies the
property ψ under the trace assignment Π.

We use the notation Π[i,∞] as an abbreviation for the new
trace assignment obtained by taking the suffix starting from
index i of every trace in Π: Π′(π) = Π(π)[i,∞] for every trace
π ∈ Π. We write Π 6|=M ψ when Π |=M ψ is not satisfied.
We say that system M satisfies the property ψ, denoted by
M |= ψ if Π |=M ψ for the empty trace assignment Π = ∅.

V. CASE STUDY: AUTHENTICATED FIRMWARE LOAD

We now return to the authenticated firmware load protocol
for the SoC described in Section II. We first describes prop-
erties that capture security of the protocol and then present
verification results.

A. Security Properties

Protocol security is captured by the following properties.3

1) Tamper Evidence: This property captures the require-
ment that that every image that is successfully executed after
verification in the presence of adversary operations is also
successfully executed in the absence of adversary operations.
This means the adversary cannot turn a “bad” image into one
that is eventually executed. It is formally stated as follows.

∀π1π2. flashπ1
= flashπ2

=⇒(
�¬tmprπ2

∧�(successπ1 =⇒ successπ2)
)

(1)

2) Image Invariance: This property states that for every
pair of traces which start with identical images stored in
flash and eventually verify and execute this image, the images
loaded into memory must be identical for both traces.

∀π1π2. flashπ1 = flashπ2 =⇒
�
(
(successπ1

∧ successπ2
) =⇒ (dataπ1

= dataπ2
)
)

(2)

Equation 2 is violated by TOCTOU bugs. It ensures that
loaded images cannot be tampered with by an adversary.

B. Verification Results

We implemented a simplified model of the protocol de-
scribed in Figure 2 which processes only one block of data
using the open source UCLID5 modeling and verification
language [22, 27]. We verified that the protocol satisfies the
two security properties using model checking. In future work,
we plan to extend this verification to use symbolic simulation
and/or whitebox fuzzing. Verification results were obtained by
running UCLID5 on an Intel Core i7 5500U CPU operating
at 2.4 GHz with 16 GB of RAM. More details about the
experiments can be found in [16].

Verification results are shown in Table I. We see that the
properties are verified relatively quickly for various different

2Note we abuse notation and use π to refer to both trace variables and
traces. Which of these is being referred to should be clear from the context.

3More detailed explanations and proofs of security may be found in [16].

TABLE I: Verification Times.

Bit-width Prop. 1 Prop. 2 Result

8 4.3s 5.2s
12 4.9s 12.9s
16 4.6s 15.0s
24 6.4s 13.8s
32 7.8s 16.5s

bit-widths. That said, this proof required manual guidance via
the provision of inductive invariants to the verification engine.
While the verifier can check validity of the provided invariants,
coming up with the correct invariants is manual and time-
consuming process. Future work will attempt to derive these
invariants automatically.

VI. RELATED WORK

Seminal work in security property verification was done by
Goguen, Meseguer and Rushby [8, 20]. Goguen and Meseguer
introduced non-interference [8] while Rushby introduced the
notion of separability [20]. Each of these, as well as related
ideas like observational determinism [29] are instances of
hyperproperties [4]. A large body of work has studied type
systems that enforce information-flow security [21]. Recent
examples for hardware design are [10, 30]. The main dis-
advantage with these approaches is that the language comes
with a “baked-in” adversary model and security property class.
For instance, it is unclear how one would extend these works
to verify privilege separation against a Rowhammer attack –
such an attack requires a way of modeling adversary actions
that are distinct from the functional transition system. The
main contribution of this paper is a formal modeling and
specification framework addressing these gaps.

VII. CONCLUSION

This paper introduced a formal framework for adversary
modeling, security property specification and security verifica-
tion in modern SoC designs. We provided formal semantics for
this modeling and specification framework and demonstrated
using a case study of an authenticated firmware load proto-
col that it is possible to systematically verify SoC platform
security requirements using our framework.

ACKNOWLEDGEMENTS

This work was supported in part by the Semiconductor
Research Corporation under task 2854.0001.

REFERENCES
[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure and Reliable Bootstrap

Architecture. In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
SP ’97, pages 65–, Washington, DC, USA, 1997.

[2] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In Proceedings of the 17th IEEE Computer Security Foundations
Workshop, pages 100–114. IEEE, 2004.

[3] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation
of High-coverage Tests for Complex Systems Programs. In Proceedings of
Operating Systems Design and Implementation, 2008.

[4] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, September 2010.

[5] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model
checking hyperltl and hyperctl ˆ*. In Computer Aided Verification - 27th In-
ternational Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, pages 30–48, 2015.

[6] S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon,
and P. Sewell. Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 608–621. ACM, 2016.

[7] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox fuzzing
for security testing. Communications of the ACM, 55(3):40–44, 2012.

[8] Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In
1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28,
1982, pages 11–20, 1982.

[9] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor. Security of SoC
firmware load protocols. In Proceedings of the IEEE International Symposium on
Hardware-Oriented Security and Trust, pages 70–75, 2014.

[10] Xun Li, Vineeth Kashyap, Jason K. Oberg, Mohit Tiwari, Vasanth Ram Ra-
jarathinam, Ryan Kastner, Timothy Sherwood, Ben Hardekopf, and Frederic T.
Chong. Sapper: A Language for Hardware-Level Security Policy Enforcement.
In Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, Salt Lake City, UT, USA, March 1-5, 2014, pages 97–112, 2014.

[11] D. Lustig, M. Pellauer, and M. Martonosi. PipeCheck: Specifying and Verifying
Microarchitectural Enforcement of Memory Consistency Models. In Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages
635–646, 2014.

[12] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee. COATCheck: Verifying
Memory Ordering at the Hardware-OS Interface. In Proceedings of the 21st
International Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2016.

[13] S. Malik and P. Subramanyan. Invited: Specification and Modeling for Systems-on-
chip Security Verification. In Proceedings of the 53rd Annual Design Automation
Conference, pages 66:1–66:6. ACM, 2016.

[14] Y. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi. CCICheck: Using µhb
Graphs to Verify the Coherence-Consistency Interface. In Proceedings of the 48th
Annual IEEE/ACM International Symposium on Microarchitecture, 2015.

[15] J. McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In Proceedings of the 1994 IEEE Symposium on Security
and Privacy, pages 79–93. IEEE, 1994.

[16] Sujit Kumar Muduli, Pramod Subramanyan, and Sayak Ray. Verification of
Authenticated Firmware Loaders. In Proceedings of Formal Methods in Computer-
Aided Design. IEEE, 2019.

[17] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual
Symposium on the Foundations of Computer Science, pages 46–57. IEEE, 1977.

[18] A. Reid. Trustworthy specifications of ARMv8-A and v8-M system level architec-
ture. In Proceedings of Formal Methods in Computer-Aided Design. IEEE, 2016.

[19] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathirane,
O. Shepherd, P. Vrabel, and A. Zaidi. End-to-end verification of processors with
ISA-Formal. In Proceedings of the International Conference on Computer Aided
Verification, pages 42–58. Springer, 2016.

[20] John M. Rushby. Proof of separability: A verification technique for a class of a
security kernels. In International Symposium on Programming, 5th Colloquium,
Torino, Italy, April 6-8, 1982, Proceedings, pages 352–367, 1982.

[21] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[22] Sanjit A. Seshia and Pramod Subramanyan. UCLID5: Integrating modeling, verifica-
tion, synthesis and learning. In Proceedings of the 16th ACM-IEEE International
Conference on Formal Methods and Models for System Design (MEMOCODE),
October 2018.

[23] P. Subramanyan, Y. Vizel, S. Ray, and S. Malik. Template-based Synthesis of
Instruction-Level Abstractions for SoC Verification. In Proceedings of Formal
Methods in Computer-Aided Design. IEEE, 2015.

[24] Pramod Subramanyan. Deriving Abstractions to Address Hardware Platform
Security Challenges. PhD thesis, Princeton University, 2017.

[25] Pramod Subramanyan, Rohit Sinha, Ilia A. Lebedev, Srinivas Devadas, and San-
jit A. Seshia. A formal foundation for secure remote execution of enclaves. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 2435–2450, 2017.

[26] T. Terauchi and A. Aiken. Secure information flow as a safety problem. In
Proceedings of the International Static Analysis Symposium, pages 352–367.
Springer, 2005.

[27] UCLID5 Verification and Synthesis System. Available at http://github.com/uclid-
org/uclid/, 2019.

[28] Srikanth Vijayaraghavan and Meyyappan Ramanathan. A practical guide for
SystemVerilog assertions. Springer Science & Business Media, 2005.

[29] Steve Zdancewic and Andrew C Myers. Observational determinism for concurrent
program security. In Proceedings of the 16th IEEE Computer Security Foundations
Workshop, pages 29–43. IEEE, 2003.

[30] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A Hardware
Design Language for Timing-Sensitive Information-Flow Security. In Proceedings
of the Twentieth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey, March
14-18, 2015, pages 503–516, 2015.

