Partial Degree Bounded Edge Packing Problem for
Graphs and k-Uniform Hypergraphs

Pawan Aurora Sumit Singh
Shashank K Mehta
Indian Institute of Technology, Kanpur - 208016, India

paurora@iitk.ac.in,ssumit@iitk.ac.in,skmehta@cse.iitk.ac.in

February 8, 2015

Abstract

Given a graph G = (V, E) and a non-negative integer ¢, for each u € V|
Partial Degree Bounded Edge Packing (PDBEP) problem is to find a subgraph
G' = (V, E’) with maximum |E’| such that for each edge (u,v) € E’, either
dege(u) < ¢, or degsr(v) < ¢,. The problem has been shown to be NP-
hard even for uniform degree constraint (i.e., all ¢, being equal). In this work
we study the general degree constraint case (arbitrary degree constraint for
each vertex) and present two combinatorial approximation algorithms with ap-
proximation factors 4 and 2. Then we give a log, n approximation algorithm
for edge-weighted version of the problem and an efficient exact algorithm for
edge-weighted trees with time complexity O(nlogn). We also consider a gen-
eralization of this problem to k-uniform hypergraphs and present a constant
factor approximation algorithm based on linear programming using Lagrangian
relaxation.

Keywords: Edge-Packing Problems, Approximation Algorithm, Iterative Round-
ing, Lagrangian Relaxation.

1 Introduction

A (k,t)-partial degree bounded edge packing problem ((k,t)-PDBEP) is described as
follows: Given a k-uniform hypergraph G = (V, E) and a degree-bound function c :
V — Z>0, compute a maximum cardinality set £/ C E such that every (hyper)edge
satisfies the degree condition in the (hyper)graph G’ = (V,E’). An edge e in G’ is
said to satisfy the degree condition if there are at least t vertices, say, u1,...,us in
e such that d’'(u;) < c(u;). Here d'(z) denotes the degree of vertex x in graph G'.

Without loss of generality we assume that ¢(z) < d(x) for all x € V. For convenience
we will use notation ¢, in place of ¢(v). We further assume that ¢t > 1 since t = 0 is
a trivial case.

In the weighted version of the problem edges are assigned non-negative weights
and we want to compute a set of edges E' with maximum cumulative weight subject
to the same condition as described above.

Zhang [?] studied the (2, 1)-PDBEP problem with constant function c¢. Note that
(2,1)-instance corresponds to normal graphs. This problem was motivated by an
application in binary string representation. It was shown there that the maximum
expressible independent subset (MEIS) problem on 2-regular set can be reduced to
(2,1)-PDBEP problem with constant degree-bound function ¢ = 2. The generalized
problem (k,¢)-PDBEP finds another interesting application in resource allocation.
Given n resources and m jobs, each job requires k resources. Associated with each
resource u there is an integer c,. Suppose a set of jobs J’ is to be scheduled for
concurrent processing. A resource u is said to be easily accessible in this schedule if
the number of jobs in J' requiring u is no more than ¢,. The set J' can be processed
concurrently if for each job in J’ there are at least ¢ easily accessible resources among
the k resources required by it. The objective is to compute the largest subset of jobs
that can be processed concurrently.

1.1 Related Work

The decision version of (2,1)-PDBEP problem when there is a constant degree bound
function ¢ = 1 is the parametric dual of the Dominating Set (DS) problem. It was
studied by Nieminen [?]. It was also studied under the framework of parameterized
complexity by Dehne, Fellows, Fernau, Prieto and Rosamond in [?].

Recently Peng Zhang [?] showed that the (2,1)-PDBEP problem with constant
degree bound function is NP-hard even for ¢ = 1. They gave approximation al-
gorithms for (2,1)-PDBEP problem for the degree bound functions ¢ = 1 and
¢ = 2 with approximation factors 2 and 32/11 respectively. They showed that
(2,1)-PDBEP problem on trees with constant degree bound function can be solved
exactly in O(n?) time.

1.2 Our Contribution

We propose three different approximation algorithms for the unweighted problem
with arbitrary degree bound function (i.e., for arbitrary non-negative function c).
Two of these algorithms are combinatorial in nature and give approximation ratios
of 4 and 2 for (2,1)-PDBEP. The third algorithm solves the general (k,¢)-PDBEP.
Here we start with the natural IP formulation (IP1) which turns out to have a large

integrality gap. To overcome this we propose a Lagrangian-like relaxation where
we give an approximate IP (IP2) such that any « approximation of this IP is a
a(k —t + 1) approximation of (k,t)-PDBEP problem. Lagrangian relaxation has
been used extensively in the design of approximation algorithms for a variety of
problems (see e.g., [?, 7, 7, ?, 7, ?] and a comprehensive survey in [?]). We then
present a t(k—t+1)(1 —1/k)+ 1/k approximation iterative rounding algorithm for
IP2. Putting these results together we get t(1 — 1/k)(k —t+1)? + (k —t + 1)(1/k)
approximation for (k,¢)-PDBEP problem. See [?] for details on iterative rounding.

Next we consider the (2,1)-PDBEP problem for edge-weighted graphs with arbi-
trary degree bound function. In this case we present a combinatorial approximation
algorithm with approximation factor of 2 4 logy n. Edge-weighted (2,1)-PDBEP
problem is not addressed in the literature, to the best of our knowledge.

Finally we present an exact algorithm for the (2,1)-PDBEP on edge-weighted
trees with arbitrary degree bound function. The time complexity of this algorithm
is O(nlogn). This is an improvement over the O(n?) algorithm in [?] which is
applicable to only the constant degree bound function case for unweighted trees.

In this work we have considered three types of generalization of PDBEP problem:
(1) we have considered general function ¢() in place of the constant function, (2)
we have also considered the problem in the context of edge weighted graphs, and
(3) the problem is extended to k-uniform hypergraphs, referred as (k,¢)-PDBEP. In
each case we have presented either an improved or a new solution.

2 Approximation Algorithms for (2,1)-PDBEP

The number of edges in an optimum solution of (k,¢)-PDBEP problem can be
bounded as follows.

Lemma 2.1. An optimum solution of (k,t)-PDBEP has at most (1/t)) .y ¢y
edges.

Proof. Let E' C E be a solution of (k,t)-PDBEP. Let U = {v € V|d,, < ¢,}. Then
from the degree condition we see that U is a vertex cover for the hypergraph (V, E’)
such that each hyperedge of this hypergraph is incident on at least ¢ vertices of U.
Hence t- |E'| <Y ey cu < 2 pey Co- O

2.1 Edge Addition based Algorithm

Algorithm ?? computes a maximal solution Y by iteratively adding edges, i.e., in
each iteration selects a new edge and adds it to Y if it does not result into degree
violation on both end-vertices. By construction Y is a valid solution of (2, 1)-PDBEP
problem.

Let dy(z) denote the degree of a vertex x in the graph (V,Y'). Partition the
vertex set into sets: A = {v|dy (v) < ¢}, B = {v|dy(v) = ¢}, and C = {v|dy (v) >
¢v}. Observe that every edge of the set £\ Y which is incident on a vertex in A,
has its other vertex in B. Hence for any aj,as € A the E'\ 'Y edges incident on a;
are all distinct from those incident on as.

Next, the algorithm constructs another edge set Z containing any ¢, — dy (v)
edges from F '\ Y, incident on v for each v € A. Observe that Z is also a solution of
(2,1)-PDBEP because every edge in it satisfies the degree constraints. Finally the
larger of Y and Z is output. Either way the output is a valid solution.

Consider the set Y U Z. In this set the degree of each vertex is not less than
its degree-bound. Hence the cardinality of the output of the algorithm is at least
>y Cv/4. From Lemma ?? the approximation ratio is bounded by 4.

Data: A connected graph G = (V, E) and a function ¢ : V — Zx¢ such that
¢y < d(v) for each vertex v.
Result: Approximation for the largest subset of E which satisfies the
degree-condition.
Y = 0;
for e € E do
if Y U{e} satisfies the degree-condition then
| Y :=YU{e};
end
end
Compute A := {v € V|dy (v) < ¢ };
Z =
for ve A do
Select arbitrary ¢, — dy (v) edges from E \ Y which are incident on v and
insert them into Z;
end
if |Y| > |Z| then
| return Y

else
| return Z;

end
Algorithm 1: Edge Addition Based Algorithm

Theorem 2.2. Algorithm 7?7 has approximation factor 4.

2.2 Edge Deletion based Algorithm

The second algorithm for (2,1)-PDBEP is based on elimination of edges from the
edge set. Starting with the input edge set E, iteratively we delete the edges in
violation, i.e., in each iteration one edge (u,v) is deleted if the current degree of u
is greater than ¢, and that of v is greater than c¢,. The surviving edge set Y is the
result of the algorithm. See Algorithm ?77.

Data: A connected graph G = (V, E) and a function ¢ : V' — Zx¢ such that
¢y is the degree bound for vertex v.
Result: Approximation for the largest subset of E which satisfies the
degree-condition.

Y .= F;
for e = (u,v) € Y do

if dy (u) > ¢, and dy (v) > ¢, then

| Y <Y\ {e};

end

end

return Y;
Algorithm 2: Edge Deletion Based Algorithm

Clearly Y satisfies the degree condition. Also observe that dy(v) > ¢, for all
v € V. Hence [Y| > > ¢,/2. From Lemma ??, |Y| > OPT/2 where OPT denotes
the value of the optimum solution.

Theorem 2.3. Algorithm 7?7 has approzimation ratio 2.

3 Approximation Algorithm for (k,¢)-PDBEP

In this section we explore a linear programming based approach to design an ap-
proximation algorithm for the (k,t)-PDBEP problem.
3.1 Integer Program

The natural IP formulation of the problem is as follows. Here x,, takes value 1 if u
satisfies degree condition. Otherwise it takes value zero.

IP1: maximize ¢ = Z Ye

ecE
1
subject to 1, < E(xul + Ty ... Fxy,), Ve={uy,...,u} € E
Z Ye < Xy +dy(l —) Yo eV
e€d(v)
x’l}e{oyl} ,VUEV
ye € {0,1} Vec E

In the above d(v) denotes the set of edges incident on vertex v. The solution
computed by the program is E' = {e|y. = 1}. The linear programming relaxation
of the above integer program will be referred to as LP1.

Lemma 3.1. The integrality gap of IP1 is Q(n) where n is the number of vertices
in the hypergraph.

Proof. Consider the following instance of the problem for normal graphs, i.e., k =
2,t = 1. Let G be a complete graph on n vertices {vg, v1,...,v,—1} and the degree
bound be ¢, = 1Vv € V. We now construct a feasible fractional solution of LP1
as follows. Let x, = 0.5 for all v and y. = 1 for e = (v;,v;) for all ¢, where j is in
the interval [(i — [n/4])(mod n), (i + [n/4])(mod n)]. The value of the objective
function for this solution is at least (n — 1)2/4. On the other hand, from Lemma
7?7, the optimum solution for the IP1 cannot be more than n. Hence the integrality
gap is Q(n). O

High integrality gap necessitates an alternative approach.

3.2 Approximate Integer Program

We propose an alternative integer program IP2 given below where € is any positive
real number. It is a form of Lagrangian relaxation of IP1. We will show that its
mazimal solutions are also solutions of IP1 and any a approximation of IP2 is a
alk —t+1)/(1 — e(k —t)) approximation of IP1. A solution of IP2 is mazimal if
perturbing the value of any y. or any z, either renders the solution infeasible or does
not improve its objective function value.

IP2: maximize ¢=(k—t+1) Zye —(1+¢) sz

ecE veV
subject to Z Ye < ¢y + 2y ,YoeV
e€d(v)
zp €{0,1,2,...} ,YoeV
ye € {0,1} ,Vee E

Note that any feasible solution of IP1 is also a feasible solution of IP2 if we
choose z, = max{0, Y .cs(,) Ye — Co} for all v. Besides, in any maximal solution
of IP2, z, = max{0,}_ . 5(v) Ye — ¢y}. Hence in a maximal solution z values need
not be specified. We will denote), z, by Z. Given any valid solution E’, ¢(E’)
will denote the objective function value where y. = 1 if and only if ¢ € E’ and
2y = max{0, > s, Ye — Co}t for all v.

Lemma 3.2. FEvery maximal solution of the integer program IP2 is also a feasible
solution of (k,t)-PDBEP.

Proof. Consider any maximal solution E’ of IP2. In a maximal solution z, =
max{0, > .cs() Ye — Cv} for all v. Assume that it is not a feasible solution of
(k,t)-PDBEP. Then there must exist an edge e = {uj,...,ux} € E’ such that
more than k — ¢ vertices incident on e are in violation. Suppose that number is
k—t+q. Let E” = E"\ {e}, i.e., set y. to zero. Then for each vertex u € e
and having z, > 1, we can reduce z, by 1 and still get a valid solution. Then
H(E")—¢(E") > (k—t+q)(14+€)— (k—t+1) > 0 because ¢ > 1. This contradicts
the fact that E’ is a maximal solution. O

In a maximal solution E’ of IP2, from the point of view of IP1, Z is the sum of
excess degrees of violating vertices. Hence Z < (k — t)|E’|.

Lemma 3.3. Any a approximate solution of IP2, which is also maximal, is a a(k —
t+1)/(1 —e(k—1t)) approzimation of (k,t)-PDBEP problem.

Proof. Let E{ be an optimum solution of (k,¢)-PDBEP and E) be an « - approxi-
mation maximal solution of IP2. Then Ej is also a solution of IP2 with y;. = 1 for
e € B and z1, = max{0, }_ c5(,) Y1e — cv}. Then ¢(E7) = (k—t+1)|Ej|—(1+€)Z
and ¢(F)) = (k—t+1)|E}| — (14 €)Zy. Let OPT denote the optimum value of IP2.
Then ¢(E}) < OPT and OPT/a < ¢(E;). So (k—t+ 1)[Ej| — (1 +€)Z; <
al(k —t+ 1)|EY — (1 + €)Z2). Let p1 = Z1/|E}| and B2 = Zs/|F}|. Then
B4/ < alk—t+1—(1+€)81)/(k—t+1— (1+)3) < alk—t+1)/(1 —e(k—1))
because (3; are between 0 and k — ¢.

O

3.3 Algorithm for IP2

We propose Algorithm 7?7 which approximates the IP2 problem with approximation
factor t(k — ¢+ 1)(1 — 1/k) + 1/k. LP2 is the linear program relaxation of IP2.
Here we assume an additional set of constraints, {z, = Olv € C'}, where we require
a solution in which every v € C must necessarily satisfy the degree condition. The
input to the problem is (H = (V, E), C). Algorithm starts with E/ = () and builds it
up one edge at a time by iterative rounding. In each iteration we remove at least one
edge from further consideration. Hence it requires at most |E| iterations (actually
it requires at most |V| + 1 iterations, see the remark after Lemma ??). To simplify
the analysis, Algorithm 77 is presented in the recursive format.

LP2: maximize ¢=(k—t+1) Zye —(1+¢) sz

e€cE veV
subject to Z Yo < €y + 24 ,Yoe V\C

e€d(v)

Z Ye < ¢y ,Yvel
ced(v)
Zy >0 ,YveV
Ye > 0 ,Vee E
Ye <1 ,Vee E

In the following analysis we will focus on two problems: (H,C) of some i-th
nested recursive call and (Hy, C7) of the next call of SolveIP2 function. For simplicity
we will refer to them as the problems associated with graphs H and H; respectively.

Lemma 3.4. In a corner solution of LP2 on a non-empty graph there is at least
one edge e with y. =0 or y. > 1/k.

Proof. Assume the contrary, i.e., in an extreme point solution of LP2 all y. are in
the open interval (0,1/k). Let us partition the vertices as follows. Let n; vertices
have ¢, > 0 and z, > 0, ny vertices have ¢, > 0 and z, = 0 and ng3 vertices have
¢y, = 0 and z, > 0. Note that the case of ¢, = 0 and z, = 0 cannot arise because
ye > 0 for all e. In each case let n; vertices have the condition) cco(v) Ye < cy+ 2y
Or D cesw)Ye < v (depending on v € V'\ C or v € C) tight (an equality), so
n! = n; —n, vertices have the condition a strict inequality. Let the number of edges
in H be m.

The total number of variables is n1 +ng +nz +m. In n} +nl, cases Zeeé(v) Yo =
Cy + 2, Or Zeeé(v) Ye = ¢y (depending on v € V' \ C or v € C) where ¢, > 1

and each y. < 1/k so there must be at least k + 1 edges incident on such vertices.
Since the graph has no isolated vertices, every vertex has at least one incident edge.
Hence m > nf 4+ nb + (n1 + n2 + n3)/k. So the number of variables is at least
ny +nb+ (1+1/k)(n1 + na + ng).

Now we find the number of tight conditions. No gy, touches zero or one. The
number of z, which are equal to zero is mo, and the number of instances when
Zeeé(v) Yo = Cy+2p OF 2665(1)) Ye = ¢y (depending onv € V\C orv € C) is n}|+nbh+
n%. Hence the total number of conditions which are tight is ng +n} +nf, +nf. Since
the solution is an extreme point, the number of tight conditions must not be less
than the number of variables. So ng+nf +nh+nf > nf+nh+(14+1/k)(n1+n2+ng3).
This implies that n; = ng = n3z = 0, which is absurd since the input graph is not
empty. [

Remark: The program LP2 has |E| + |V| variables and 2|E| + 2|V| constraints.
Hence in the first iteration the optimum (corner) solution must have at least |E| —
|V| tight edge-constraints (i.e., yo = 0 or y. = 1.) All these can be processed
simultaneously so in the second iteration at most |V | edges will remain in the residual
graph. Thus the total number of iterations cannot exceed |V|+ 1.

Lemma 3.5. If y. > 0 in any mazimal solution of LP2 where e = {ui,...,u},
then (cy;, > 0,2y, = 0) for at least t vertices in e.

Proof. Let S = {u € e|z, > 0}. Assume that |S| > k—t+1. Let 6 = min{y,, miny,cg
{zu}}. Subtract 0 from y. and each z, for v € S. The resulting solution is still a
feasible solution of LP2 and its objective function value is greater than the optimum
by at least € - 6(k — t + 1). This is absurd. Hence z, cannot be positive for more
than k — ¢ vertices in any edge e having y. > 0 in the solution.

Next assume that ¢, = 0 for some u € e\ S. Then y. must be zero, contradicting
the fact that y. > 0.

Therefore at least ¢ vertices in e must have (c,; > 0, z,; = 0). O

Lemma 3.6. Algorithm ?? returns a feasible solution of (k,t)-PDBEP.

Proof. Let H denote the input graph in the i-th iteration of the algorithm, for some
1, and I denote the computed solution for it. Using induction we will show that I is
a solution of (k,t)-PDBEP on H. Actually we will establish a stronger claim: I is a
solution of (k,t)-PDBEP on H and every vertex in input set C satisfies the degree
condition. In the following, parameters associated with the ¢ + 1-st iteration will be
expressed with subscript-1, for example, Hy, I1, f,1 etc.

In the base case (last iteration) the graph has no edges hence the solution I = ()
trivially satisfies the claim.

In the induction step the input graph is H and the computed solution is [in
i-th iteration, for some i. From induction hypothesis, the i + 1-step solution I is
a feasible (k,t)-PDBEP solution on graph H; and every vertex in C satisfies the
degree constraint with respect to I;.

First consider the case when y. = 0. In this case f, = fy1 for all u € V,
H = H,U{e}, C =C1, I =1;. Hence I is a solution of PDBEP on H and every
vertex in C' satisfies the degree condition.

Now we consider the case when y. > 1/k. We have to show that each edge in
I is valid w.r.t. I, i.e., at least ¢ vertices incident on each edge satisfy the degree
condition in I. We consider three cases.

1. Consider some u ¢ e. Then 6(u) = 01(u) and f,, = fu1. So u satisfies the
degree condition in I if and only if it satisfies the same in I;. So every ¢’ € I such
that ¢’ Ne =), is valid in I.

2. Let uq, ..., us be the vertices which are selected, in the algorithm, from e to be
inserted in C' to form Cy. Then f,, > 0 and z,, = 0 and f,;1 = fu, —1for 1 <7 <t.
From induction hypothesis each u; satisfies degree condition in I;. Coming back to
I, the degree and f-value of these vertices increase by 1. So they continue to satisfy
the degree condition in I. Hence e is valid in 1.

3. Now we have to consider ¢/ € I which are different from e but ¢ N e # (.
Clearly €' € I, so it is valid in I; from induction hypothesis. Assume that there
is a vertex u € €’ N e which satisfies the degree condition in I; but does not satisfy
the condition in I. This is possible only if f, = fu1. But this happens only if
fu = fur = 0. But ¢ € I; and it is incident on u so u was not satisfying degree
condition in Iy, a contradiction. So €’ continues to remain valid in I.

We conclude that I is a solution of (k,¢)-PDBEP for H. Lastly we have to show
that every vertex in C' satisfies the degree condition with respect to 1.

From the induction hypothesis each v € C' satisfies the condition in I; because
C C (). First consider the case that v ¢ e. In this case f, = f,1 and the degree
of v in [is same as in I;. So v continues to satisfy the degree condition in I. Next
consider the case that v € e. Since 2z, = 0 and Ze,eé(v) Yoo < fou, fo > 0. So
fv1 = fo — 1. Now f-value and the degree of v both increase when we go from I to
1. As v was satisfying the degree condition in [y, it still satisfies it in I. O

Now we analyze the performance of the algorithm.

Lemma 3.7. Algorithm ??7 gives a (t(k —t + 1)(1 — 1/k) + 1/k)/(1 — e(k — 1))
approzimation for IP2.

Proof. Let us define ¢ = (¢(k — ¢t + 1)(1 — 1/k) + 1/k)/(1 — e(k — t)). Let E’
denote the optimum solution of LP2 on H and I denote the solution computed
by the algorithm for IP2. We can also treat I as a solution of LP2 by assigning

10

Data: A connected hypergraph G = (V, E) and a function ¢ : V — Z>
Result: A solution of IP2.
forveV do
| fo = e
end
C :=0;
E' := Solvel P2(G,C, f); /* see the function SolveIP2 */

return F’;
Algorithm 3: Iterative Rounding based Algorithm in Recursive Format

2z, = max{0, Ze,ea(u) Yer— fu}. Similarly define F{ and I for Hy. Our goal is to show
that co(I) > ¢(E’). This claim is trivially true for the base case. From induction
hypothesis c¢(I1) > ¢(E]). We consider two cases: (i) y. = 0, (ii) ye > 1/k. In the
first case ¢(I) = ¢(I1) and ¢(E') = ¢(E]) so cp(I) > ¢(E') trivially holds. Next we
consider the second case.

Let us begin with the solution E’ of LP2 for H and construct a solution of LP2
for Hy. Let a = y.. For each u € e such that f, > 0, the f-value is decreased by 1 as
we go to the next iteration. So we need to decrease the value of 3, 5(u) Ye! suitably:.
First we remove 3. from the solution. That balances . Now if the remainder of g,
add up to at least 1 — «, then decrease the values of these y. in any way so that
total decrement is 1 — . If their sum is less than 1 — «, then set those ¥,/ to zero.
Repeat this step on each u € e with positive f-value. In case where f,, = 0 for some
u € e, subtract z, by a. The resulting solution is a valid solution of LP2 for Hj,
call it EY.

Let ny be the number of e vertices with f-value zero in H. From the fact that
EY is the optimum solution of LP2 for H; and the details of the construction of EY
we have ¢(E7) > ¢(EY) > ¢(E) +nmi(1+e)a—(k—t+1)(a+ (k—n1)(1 —«)). On
the other hand ¢(I) > ¢(I1) + (k—t+1) —ni(1 +¢).

From induction hypothesis c¢(I1) > ¢(E}). So cd(I) > ¢(E')+ni(l+e)a—(k—
t+1)(a+(k—n1)(1—a))+c((k—t+1)—n1(1+4€)). Since the coefficient of « is positive,
set it to its least value, namely, 1/k. So c¢(I) > ¢(E') + (1/k)n1(1+¢€) — (1/k)(k —
t+1)(1+(k—n1)(k—1))+c((k—t+1)—n1(14¢€)). In this expression the coefficient
of ny is negative so we replace it by k — ¢, its largest possible value. So c¢(I) >
HEN+c(l—e(k—t)+(k—t)(1+e€)/k—(k—t+1)(1/k)(1+¢(k—1)). This may be
rewritten as co() > ¢(E')+c(l1—e(k—t))—(1—e(k—t))/k—(k—t+1)t+(k—t+1)t/k.
Socp(I) > ¢(E")+c(l—e(k—t))—1/k—(k—t+1)t+ (k—t+1)t/k. Plugging the
value of ¢ we get co(I) > ¢(E'). O

Combining lemmas ??7 and 7?7 we have the following result.

11

Function: SolvelP2(H = (Vy, En),C, f)

if Fy :=0 then

| return (;

end

Vir := Vi \ {v]v is isolated in H};

(y,z) = LPSolver(H, C);

/* solve LP2 with degree-bounds f(z) for all z € Vg */

if de € Ey with y. = 0 then

Hy = (Vu, En \{e});

C,:=C;

E' := Solvel P2(H1,CY, f);

else

From Lemma ?7? there exists an edge e := {uy,...,ur} with y. > 1/k;

From Lemma ?? w.l.o.g. we assume (f,, > 0,2,, =0) fori=1,...,¢;

for j=1totdo

‘ ij = fuj -1

end

Cy:=CU{ug,...,ut};

for j=t+4+1 tok do

| fu; = max{fy, — 1,0}

end

Hy := (Vu, Ex \ {e});

E' := SolveI P2(Hy,Ch, f) U {e};

/* Including e in F’ means y. is rounded up to 1. In case
fu; =0, z,, is implicitly raised to ensure that
Ee,eé(ui) Yer < fu, + 24, continues to hold. We do not
explicitly increase z,, value in the code since it is not
output as a part of the solution. */

end
return £,

12

Theorem 3.8. Algorithm ?? approzimates (k,t)-PDBEP with approzimation factor
t(1—1/k)(k—t+1)2+(k—t+1)(1/k)
(1—e(k—t))? :

4 Approximation Algorithm for Edge-Weighted (2, 1)-
PDBEP

In this section we will present an approximation algorithm for edge weighted (2, 1)-
PDBEP with arbitrary degree bound function.

Let H(v) denote the heaviest ¢, edges incident on vertex v, called heavy set
of vertex v. Then from a generalization of Lemma ??7 the optimum solution of
(2,1)-PDBEP in weighted-edge case is bounded by >, cy > ccpr(y) w(e) where w(e)
denotes the weight of edge e. We will describe a method to construct up to 1+log, |V
solutions, which cover Uycy H(v). Then the heaviest solution gives a 2 + logy |V
approximation of the problem.

4.1 The Algorithm

Input: A graph (V, E') with non-negative edge-weight function w(). Let |V | = n.

Step 0: Add infinitesimally small weights to ensure that all weights are distinct,
without affecting heavy sets.

Step 1: By = E\ {e = (u,v) € Ele ¢ H(u) and e ¢ H(v)}.

Step 2: T'={e = (u,v) € Ele € H(u) and e € H(v)}.

Step 3: Eo = E; \ T. Clearly each edge of F5 is in the heavy set of only one of
its end-vertices. Suppose e = (u,v) € Ey with e ¢ H(u) and e € H(v). Then we
will think of e as directed from u to v. Observe that the graph has no directed cycle
since all edge weights are distinct.

Step 4: Label the vertices with integers 0 to n — 1 such that if edge (u,v)
is directed from w to v, then Label(u) < Label(v). Define subsets of Es-edges,
Ao, ..., Agp_1, where k = log, n, as follows. A, consists of edges (u,v) directed from
u to v, such that the most significant » — 1 bits of binary expansion of the labels of
u and v are same and r-th bit differs. Note that this bit will be 0 for u.

Step 5: Output that set among the log,n + 1 sets, T, Ay, ..., Ax—1, which has
maximum cumulative edge weight.

Theorem 4.1. The algorithm gives a feasible solution with approximation factor
2 + logy n.

Proof. Set T constitutes a feasible solution since both ends of each edge in it satisfy
the degree constraint. The directed Fy edges define an acyclic graph, hence the
labeling can be performed by topological sorting. Clearly Ey» = U,A,. In A, all

13

arrows are pointed from w with r-th most significant bit zero to v with r-th most
significant bit one. Hence it is a bipartite graph where all arrows have heads in
one set and the tails in the other. All vertices on the head side satisfy the degree
conditions because all their incident edges are in their heavy sets. Therefore A, are
feasible solutions. We have T'U (U, A,) = E;. Observe that U,H(v) = Ej. Only
T-edges have both ends in heavy sets. Using the fact that OPT < " w(H (v)), we
deduce that OPT < 2w(T) + >, w(A;). So the weight of the set output in step 5
is at least OPT/(2 4 logy n). O

5 Exact Algorithm for Edge-Weighted Trees

In this section we give a polynomial time exact algorithm for the edge-weighted
(2,1)-PDBEP problem for the special case when the input graph is a tree. We will
denote the degree of a vertex v in the input graph by d(v) and its degree in a solution
under consideration by d'(v).

Let T be a rooted tree with root R. For any vertex v we denote the subtree rooted
at v by T'(v). Consider all feasible solutions of (2,1)-PDBEP for tree T'(v) in which
the degree of v is at most ¢, — 1, call them H-solutions (white). Let h(v) denote the
weight (sum of the weights of the edges) of the maximum-weight solution among the
H-solutions. Similarly let g(v) be the maximum-weight G-solution (grey) in which
the degree of v is restricted to be equal to ¢,. Lastly b(v) will denote the maximum-
weight B-solution (black) which are solutions of 7T'(v) under the restriction that
degree of v be at least ¢, and every neighbor of v in the solution satisfies its degree
condition. It may be observed that one class of solutions of T'(v) are included in G-
solutions as well as in B-solutions. These are the solutions in which d’(v) = ¢, and
every child u of v in the solution has d'(u) < ¢,. If in any of these categories there
are no feasible solutions, then the corresponding maximum-weight value is assumed
to be zero. Hence the optimum solution of (2,1)-PDBEP for T is the maximum of
h(R),g(R), and b(R). Note that all the three values are zero for leaf nodes because
the corresponding tree has no edges. In this algorithm we will show how to compute
these three values, h(z), g(z) and b(x) for each vertex x, from bottom up. Finally
we output max{h(R), g(R),b(R)}.

Suppose we know the three values of every vertex in T'(v), except v. Our objective
is to compute these values for v. Let Ch(v) denote the set of child-nodes of v. We
partition Ch(v) into H(v) = {u € Ch(v)|h(u) > max{g(u),b(u)}}, G(v) = {u €
Ch(v)|g(u) > max{h(u),b(u)}}, B(v) = Ch(V)\ (G(v) U H(v)). Note that in case
b(u) = g(u) > h(u), then u is placed in B(v).

Our goal is to construct one optimum member of each of H-, G-, and B-solutions
of T'(v). The construction of the maximum-weight solution tree, in each case, in-

14

volves deciding which edges from v to its children must be a part of the solution
tree. Further we have to decide which solution of each child will be included in the
solution of T'(v). It is easy to observe that if we decide not to include (v,u) in the
solution, then we must pick the optimum solution of 7T'(u), i.e., which corresponds
to the largest of h(u), g(u), and b(u). Note that the weight of the optimum solution
of vertex u belonging to H(v), G(v), and B(v) is h(u), g(u), and b(u) respectively.
This is so because not adding the edge (v, u) to the solution leaves the degree of u
unchanged, i.e., if u was not violating the degree condition, then it continues to do
so. Similarly, if we decide to include the edge (v,u) and v € H(v) U B(v), then also
we can use the optimum solution of T'(u).

Suppose A is the optimum solution of T'(u) and let B be the best solution of
T'(u) that can be used if we decide to include the edge (v,u). Then the contribution
of u to the solution of T'(v) being constructed is A if the edge (v, u) is not included,
and it is B + w(v,u) if the edge is included. We define gain(u) = B + w(v,u) — A,
which is the gain achieved if the edge (v, u) is included.

In order to construct a maximum weight G-solution of T'(v), connecting v to any
u € H(v)U B(v) we get a contribution of w(v,u) + max{h(u),b(u)} because in this
case we can use the optimum solution of 7'(u). If we do not connect v to such a
vertex, then the contribution will be only max{h(u),b(u)}. Hence the gain(u) will
be w(v,u). Now if u € G(v) and if we connect it with v, then we can only use
H-solution or B-solution of u because using a G-solution will result in d’(u) = ¢, +1
and some child node of u may not be satisfying the degree condition. If all children
of u are satisfying degree condition in the optimum (G-solution, then this solution is
also included in B-solutions. Therefore in case v € G(v), not connecting v with u
gives a contribution of g(u). But connecting with v gives w(v, u) + max{h(u),b(u)}.
Hence the gain(u) is w(v,u) + max{h(u),b(u)} — g(u). Now that we know the gain
for each u € Ch(v), we sort the vertices of Ch(v) in non-increasing order of their
gain(). To construct a maximum weight G-solution of v, we select top ¢, vertices
of the sorted list, call it set S’(v), and connect v with them.

Next consider the construction of a maximum weight B-solution of T'(v). We
can connect v to any number of H(v) vertices and use their optimum H-solutions.
Connecting v to each such vertex u will give a gain of w(v,u). Next ifu € B(v)UG(v),
then also we can only use its H-solution. In this case gain(u) will be w(v,u)+h(u)—
max{g(u),b(u)}. Once again we sort the vertices of Ch(v) in non-increasing order of
the gains associated with them. Let first k1 vertices have positive gain and the rest
have non-positive gain. The subset S”(v) of Ch(v) to which v should be connected
is computed as follows. If ¢, < ki, then S”(v) includes all the top ki vertices.
Otherwise it includes top ¢, vertices.

In the construction of a maximum weight H-solution of T'(v), observe that an
edge between v and any u € H(v)U B(v) can be included and the optimum solution

15

of T'(u) can be used. In this case gain(u) = w(v,u). But for u € G(v) if the edge
(v,u) is included in the solution, then the optimum solution of T'(u) (which is a
G-solution) cannot be included in the solution being formed. Hence the net gain
on including (v,w) in this case is w(v,u) + max{h(u),b(u)} — g(u). Once again we
sort the elements of Ch(v) in non-increasing order of their gain. Suppose first ki
vertices have positive gain and the rest have non-positive gain. First min{k;, ¢, —1}
vertices, denoted by set S”(v) are connected with v.

Lemma 5.1. For any internal vertex v of T,

() h0) = T H0) + Tuepin) + e 900) + T sainta)
where gain(u) = w(v, u)+max{h(u),b(u)}—g(u) foru € G(v) and gain(u) = w(v, u)
for u € B(v) U H(v).
If d(v) = ¢, and v # R, then set b(v) = g(v) = 0 otherwise

(7’7’) b(?)) = ZUGB(U) () + ZuGH (v) h’(u) + ZuEG(v) g(u) + Z’ILES”(U) gazn(u),
where gain(u) = w(v,u)+h(u) —max{g(u),b(u)} foru € G(v)UB(v) and gain(u) =
w(v,u) foruw e H(v).

(i) 9(0) = Suene b() + Tuerioy B8 + Doy 90) + Cacs v 90in(w),
where gain(u) = w(v, u)+max{h(u), b(u)%} —g(u) foru € G(v) and gain(u) = w(v,)
foruw € B(v)U H(v).

The algorithm initializes h(v),b(v), and g(v) to zero for the leaf vertices and
computes these values for the internal vertices bottom up. Finally it outputs the
maximum of the three values of the root R. In order to compute S’(), S”() and S”()
sets for each vertex, we need to sort the child nodes with respect to the gain values.
Thus at each vertex we incur O(|Ch|log|Ch|) cost, where Ch denotes the set of
children of that vertex. Besides, ordering the vertices so that child occurs before the
parent (topological sort) takes O(n) time. Hence the time complexity is O(nlogn).

6 Conclusion

In this work we gave constant factor approximation algorithms for the (2,1)-PDBEP
problem. These algorithms are both simple and efficient taking time linear in the
size of the input. However their analysis does not seem to extend easily to the
general (k,t)-instance of the problem. Next we gave a constant factor (taking k,t
as constants) approximation algorithm for the (k,¢)-PDBEP employing LP based
approach which uses the techniques of Lagrangian relaxation and iterative rounding.
This is an expensive algorithm that needs to solve a linear program several times.
However, it shows the power of linear programming based approach in combina-
torial optimization. Subsequently we presented a log,n approximation algorithm

16

for the (2,1)-PDBEP where edges are weighted. Finally an exact algorithm for
edge-weighted trees is presented with time complexity O(nlogn).

Weighted (k,t)-PDBEP is an open problem. The objective function of LP1 can
be easily modified to handle the weighted case, but due to the large integrality gap
it remains useless. However, there are cutting-plane methods like Chvatal-Gomory
cuts [?] that have been known to improve the integrality gaps for some problems. It
would be worthwhile to see if these methods can help reduce the integrality gap of
our LP.

As far as we know there is no known inapproximability result for the PDBEP
problem. So that presents another avenue for further research.

Acknowledgement: We thank the reviewers for a detailed feedback and suggestions
which improved the overall presentation of the paper. We are especially thankful to
the first reviewer for pointing out an error in the proof of lemma ?7.

References

[1] André Berger, Vincenzo Bonifaci, Fabrizio Grandoni, and Guido Schéfer. Bud-
geted matching and budgeted matroid intersection via the gasoline puzzle. In
IPCO, pages 273287, 2008.

[2] Frank Dehne, Michael Fellows, Henning Fernau, Elena Prieto, and Frances
Rosamond. nonblocker: Parameterized algorithmics for minimum dominat-
ing set. In Jifi Wiedermann, Gerard Tel, Jaroslav Pokorny, Maria Bielikova,
and Julius Stuller, editors, SOFSEM 2006: Theory and Practice of Computer
Science, volume 3831 of Lecture Notes in Computer Science, pages 237—-245.
Springer Berlin Heidelberg, 2006.

[3] Naveen Garg. A 3-approximation for the minimum tree spanning k vertices. In
FOCS, pages 302—-309, 1996.

[4] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner
network problem. Combinatorica, 21(1):39-60, 2001.

[5] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility

location and k-median problems using the primal-dual schema and lagrangian
relaxation. J. ACM, 48(2):274-296, 2001.

[6] Jochen Kénemann, Ojas Parekh, and Danny Segev. A unified approach to
approximating partial covering problems. Algorithmica, 59(4):489-509, 2011.

17

[7]

[11]

[12]

Jochen Konemann and R. Ravi. A matter of degree: Improved approximation
algorithms for degree-bounded minimum spanning trees. SIAM J. Comput.,
31(6):1783-1793, 2002.

J. Mestre. Primal-Dual Algorithms for Combinatorial Optimization Problems.
PhD thesis, University of Maryland, 2007.

J. Nieminen. Two bounds for the domination number of a graph. Journal of
the Institute of Mathematics and its Applications, 14:183—-187, 1974.

R. Ravi and Michel X. Goemans. The constrained minimum spanning tree
problem (extended abstract). In SWAT, pages 66-75, 1996.

Mohit Singh and Kunal Talwar. Improving integrality gaps via chvatal-gomory
rounding. In APPROX-RANDOM, pages 366-379, 2010.

Peng Zhang. Partial degree bounded edge packing problem. In Proceedings
of the 6th international Frontiers in Algorithmics, and Proceedings of the Sth
international conference on Algorithmic Aspects in Information and Manage-
ment, FAW-AAIM’12, pages 359-367. Springer-Verlag, 2012.

18

