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Paper Scope: To optimize downtime for iterative live migration of containers
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VM Migration 

(Iterative rebuild)
Container Migration 

(One shot rebuild)

Downtime ∝ dirty rate Downtime ∝ <dirty rate, container size>

State: Content in RAM State: Content in RAM

Increased downtime for container migration 
due to one shot restore

Can container rebuild be iterative like VM?
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o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

The state elements are less.

The relationship between state elements are simple.

Rebuilding memory state in isolation is easy.
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o In a diskless migration, memory state is bulky.

o Container State: OS abstractions, e.g. Process, Virtual address space, 

Rebuilding memory state in iterative manner is challenging 
for container migration.

CRIU uses one shot restore.
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o Downtime = Final Dump and Transfer Time + Restoration Time
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o Setup: Live migration with 
container running Redis workload 
with YCSB for different records 
and read to write ratio.

o Restoration time: a key 
contributor in downtime
(14.8% - 51%).

o Restore time for write intensive 
workload with 1M records is
2.2s

Split Cost of Downtime

Restoration has non trivial contribution towards downtime
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Restore processing cost for memory and others

o Memory state processing 
dominates restoration time 
(99.5%) across all settings.

Iterative rebuild of memory state can significantly improve one shot restore
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o Capture and transfer dependent container states for memory rebuilding efficiently.

o Maintaining relationship between different states.

o The restoration activity should be non-intrusive and self-aware.

o The resource overheads should be comparable with one shot restore.
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PCLive: Capture and Transfer
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Required Info

o Process Tree, 
Namespace, File, etc. 
along with memory 
mapping and its 
content.

o PCLive is configured to 
dump any sub-system.

o The freeze time has to 
be minimum.
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o Global:
Namespace, 
Process Tree, 
Cgroup, File

o Per Process:
Memory, FDs
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Save states and 
communicate with 

PCLive Restore

Rebuild 
the 

container

o The restore can be 
started after any 
iteration (Delayed 
Restoration).

o Restore can be 
triggered after 
receiving global states 
(PCLiveG).
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o Modified CRIU and 
runC to achieve 
pipelined restore.
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o Setup: Redis workload with YCSB for 2M records and different read to write ratio.

o Service downtime: 2.7x reduction for read intensive, 18% reduction for write intensive.

o Restore time: 38x reduction for read intensive, 5.4x reduction for write intensive.
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o Setup: Write intensive (10% Read) Redis workload with YCSB for 2M records.

o CPU utilization: 4% more for write intensive, similar for read intensive.

o Memory utilization: 23% more for write intensive, similar for read intensive.
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o Setup: Write intensive (10% Read) Redis workload with YCSB for 2M records.

o PCLiveG: Memory overhead is negligible (~100MB) for write intensive,
CPU overhead is 13.5% - 21.8%. Restore time is reduced by more than 200ms.

o Delayed Restoration: Memory overhead is ~5% with similar CPU overheads.
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o Setup: Read and Write intensive Redis workload with YCSB for 2M records.

o PCLive improves the application throughput during stop-and-copy phase.

o With PCLive, sometime throughput drop is slightly more during pre-dump iterations.
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PCLive: Other Evaluations
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o With high–speed network, PCLiveG performs better, e.g., 5.4x downtime 
improvement for 10Gbps.

o With PCLive, the exclusive restore time increases with increase in write 
intensity.

o With PCLiveG, the exclusive restore time remains constant and similar to VM 
live migration. It is also independent of write intensity.

o PCLive is also evaluated with Benchbase (MySQL) and Graph500 workload.

o Please refer to the paper for more details.
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Conclusion
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o PCLive addresses container migration issue with iterative pre-copy strategy by 
pipelining the rebuild process at the destination machine.

o PCLive results in up to 38x reduction in restoration time and 2.7x reduction in 
service downtime as compared with baseline CRIU.

o PCLive addresses CPU and memory overhead with techniques such as 
PCLiveG and Delayed Restoration.

o With PCLiveG, the application container migration become similar to VM 
migration.
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Documentation and Source code:
https://www.github.com/shivbt/PCLive 

Contact:
shivbt@cse.iitk.ac.in  

https://www.github.com/shivbt/PCLive
mailto:shivbt@cse.iitk.ac.in
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