
PCLive: Pipelined Restoration of Application
Containers for Reduced Service Downtime

Shiv Bhushan Tripathi, Debadatta Mishra

Department of Computer Science and Engineering,
Indian Institute of Technology (IIT) Kanpur

CDOS Research Group, IIT Kanpur

S
o

C
C

’ 2
4

Live Migration

20-Nov-2024

o Usage: Load balancing, system maintenance etc.

Host Machine A

Network

Host Machine B

App

Virtualized Entity

1

App

Virtualized Entity

Live Migration

20-Nov-2024

o Usage: Load balancing, system maintenance etc.

o Service downtime is crucial for liveliness of applications.

Host Machine A

Network

Host Machine B

App

Virtualized Entity

1

App

Virtualized Entity

Live Migration

20-Nov-2024

o Usage: Load balancing, system maintenance etc.

o Service downtime is crucial for liveliness of applications.

o Iterative pre–copy is a robust technique to reduce service downtime.

Host Machine A

Network

Host Machine B

App

Virtualized Entity

1

App

Virtualized Entity

Live Migration

20-Nov-2024

o Usage: Load balancing, system maintenance etc.

o Service downtime is crucial for liveliness of applications.

o Iterative pre–copy is a robust technique to reduce service downtime.

Host Machine A

Network

Host Machine B

App

Virtualized Entity

1

App

Virtualized Entity

Paper Scope: To optimize downtime for iterative live migration of containers

Container Migration vs VM Migration: Diskless

20-Nov-2024 2

Container Migration vs VM Migration: Diskless

20-Nov-2024 2

VM Migration

(Iterative rebuild)

State: Content in RAM

Container Migration vs VM Migration: Diskless

20-Nov-2024 2

VM Migration

(Iterative rebuild)

Downtime ∝ dirty rate

State: Content in RAM

Container Migration vs VM Migration: Diskless

20-Nov-2024 2

VM Migration

(Iterative rebuild)
Container Migration

(One shot rebuild)

Downtime ∝ dirty rate

State: Content in RAM State: Content in RAM

Container Migration vs VM Migration: Diskless

20-Nov-2024 2

VM Migration

(Iterative rebuild)
Container Migration

(One shot rebuild)

Downtime ∝ dirty rate Downtime ∝ <dirty rate, container size>

State: Content in RAM State: Content in RAM

Container Migration vs VM Migration: Diskless

20-Nov-2024 2

VM Migration

(Iterative rebuild)
Container Migration

(One shot rebuild)

Downtime ∝ dirty rate Downtime ∝ <dirty rate, container size>

State: Content in RAM State: Content in RAM

Increased downtime for container migration
due to one shot restore

Container Migration vs VM Migration: Diskless

20-Nov-2024 2

VM Migration

(Iterative rebuild)
Container Migration

(One shot rebuild)

Downtime ∝ dirty rate Downtime ∝ <dirty rate, container size>

State: Content in RAM State: Content in RAM

Increased downtime for container migration
due to one shot restore

Can container rebuild be iterative like VM?

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

The state elements are less.

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

The state elements are less.

The relationship between state elements are simple.

Iterative State Rebuild: VM Migration

20-Nov-2024 3

o In a diskless migration, memory state is bulky.

o VM State: Virtual hardware resources, e.g. Physical memory, CPU

The state elements are less.

The relationship between state elements are simple.

Rebuilding memory state in isolation is easy.

Iterative State Rebuild: Container Migration

20-Nov-2024 4

o In a diskless migration, memory state is bulky.

o Container State: OS abstractions, e.g. Process, Virtual address space, File

Iterative State Rebuild: Container Migration

20-Nov-2024 4

o In a diskless migration, memory state is bulky.

o Container State: OS abstractions, e.g. Process, Virtual address space,

More state elements.

Iterative State Rebuild: Container Migration

20-Nov-2024 4

o In a diskless migration, memory state is bulky.

o Container State: OS abstractions, e.g. Process, Virtual address space,

More state elements.

The relationship between state elements are complex and dynamic.

Iterative State Rebuild: Container Migration

20-Nov-2024 4

o In a diskless migration, memory state is bulky.

o Container State: OS abstractions, e.g. Process, Virtual address space,

More state elements.

The relationship between state elements are complex and dynamic.

Rebuilding memory state in isolation is non trivial.

Iterative State Rebuild: Container Migration

20-Nov-2024 4

o In a diskless migration, memory state is bulky.

o Container State: OS abstractions, e.g. Process, Virtual address space,

Rebuilding memory state in iterative manner is challenging
for container migration.

Iterative State Rebuild: Container Migration

20-Nov-2024 4

o In a diskless migration, memory state is bulky.

o Container State: OS abstractions, e.g. Process, Virtual address space,

Rebuilding memory state in iterative manner is challenging
for container migration.

CRIU uses one shot restore.

Contributions

20-Nov-2024 5

o Empirically motivate the requirement to improve the restoration process for
container migration.

Contributions

20-Nov-2024 5

o Empirically motivate the requirement to improve the restoration process for
container migration.

o Identify and address the challenges to design and implement iterative rebuilding
using PCLive.

Contributions

20-Nov-2024 5

o Empirically motivate the requirement to improve the restoration process for
container migration.

o Identify and address the challenges to design and implement iterative rebuilding
using PCLive.

o Demonstrate the benefits of PCLive in terms of downtime reduction.

Contributions

20-Nov-2024 5

o Empirically motivate the requirement to improve the restoration process for
container migration.

o Identify and address the challenges to design and implement iterative rebuilding
using PCLive.

o Demonstrate the benefits of PCLive in terms of downtime reduction.

o Showcase the flexibility of PCLive to find a sweet-spot for resource overhead
and downtime tradeoff.

Contributions

20-Nov-2024 5

o Empirically motivate the requirement to improve the restoration process for
container migration.

o Identify and address the challenges to design and implement iterative rebuilding
using PCLive.

o Demonstrate the benefits of PCLive in terms of downtime reduction.

o Showcase the flexibility of PCLive to find a sweet-spot for resource overhead
and downtime tradeoff.

CRIU: One Shot Restore

20-Nov-2024 6

CRIU: One Shot Restore

20-Nov-2024 6

o During pre-copy, only memory states are sent and deduplication is used.

CRIU: One Shot Restore

20-Nov-2024 6

o During pre-copy, only memory states are sent and deduplication is used.

CRIU: One Shot Restore

20-Nov-2024 6

o Downtime = Final Dump and Transfer Time + Restoration Time

Downtime: Restoration Technique Matters!

20-Nov-2024 7

o Setup: Live migration with
container running Redis workload
with YCSB for different records
and read to write ratio.

Split Cost of Downtime

Downtime: Restoration Technique Matters!

20-Nov-2024 7

o Setup: Live migration with
container running Redis workload
with YCSB for different records
and read to write ratio.

o Restoration time: a key
contributor in downtime
(14.8% - 51%).

Split Cost of Downtime

Downtime: Restoration Technique Matters!

20-Nov-2024 7

o Setup: Live migration with
container running Redis workload
with YCSB for different records
and read to write ratio.

o Restoration time: a key
contributor in downtime
(14.8% - 51%).

o Restore time for write intensive
workload with 1M records is
2.2s

Split Cost of Downtime

Downtime: Restoration Technique Matters!

20-Nov-2024 7

o Setup: Live migration with
container running Redis workload
with YCSB for different records
and read to write ratio.

o Restoration time: a key
contributor in downtime
(14.8% - 51%).

o Restore time for write intensive
workload with 1M records is
2.2s

Split Cost of Downtime

Restoration has non trivial contribution towards downtime

Restoration: Significance of Memory State

20-Nov-2024 8

Restore processing cost for memory and others

o Memory state processing
dominates restoration time
(99.5%) across all settings.

Restoration: Significance of Memory State

20-Nov-2024 8

Restore processing cost for memory and others

o Memory state processing
dominates restoration time
(99.5%) across all settings.

Iterative rebuild of memory state can significantly improve one shot restore

Contributions

20-Nov-2024 9

o Empirically motivate the requirement to improve the restoration process for
container migration.

o Identify and address the challenges to design and implement iterative rebuilding
using PCLive.

o Demonstrate the benefits of PCLive in terms of downtime reduction.

o Showcase the flexibility of PCLive to find a sweet-spot for resource overhead
and downtime tradeoff.

Iterative Rebuild: Challenges

20-Nov-2024 10

o Capture and transfer dependent container states for memory rebuilding efficiently.

Iterative Rebuild: Challenges

20-Nov-2024 10

o Capture and transfer dependent container states for memory rebuilding efficiently.

o Maintaining relationship between different states.

Iterative Rebuild: Challenges

20-Nov-2024 10

o Capture and transfer dependent container states for memory rebuilding efficiently.

o Maintaining relationship between different states.

o The restoration activity should be non-intrusive and self-aware.

Iterative Rebuild: Challenges

20-Nov-2024 10

o Capture and transfer dependent container states for memory rebuilding efficiently.

o Maintaining relationship between different states.

o The restoration activity should be non-intrusive and self-aware.

o The resource overheads should be comparable with one shot restore.

PCLive: Design

20-Nov-2024 11

PCLive: Capture and Transfer

20-Nov-2024 11

Required Info

o Process Tree,
Namespace, File, etc.
along with memory
mapping and its
content.

o PCLive is configured to
dump any sub-system.

o The freeze time has to
be minimum.

PCLive: State

20-Nov-2024 11

o Global:
Namespace,
Process Tree,
Cgroup, File

o Per Process:
Memory, FDs

PCLive: Iterative Rebuild

20-Nov-2024 11

Save states and
communicate with

PCLive Restore

Rebuild
the

container

o The restore can be
started after any
iteration (Delayed
Restoration).

o Restore can be
triggered after
receiving global states
(PCLiveG).

PCLive: Implementation

20-Nov-2024 12

o Modified CRIU and
runC to achieve
pipelined restore.

Contributions

20-Nov-2024 13

o Empirically motivate the requirement to improve the restoration process for
container migration.

o Identify and address the challenges to design and implement iterative rebuilding
using PCLive.

o Demonstrate the benefits of PCLive in terms of downtime reduction.

o Showcase the flexibility of PCLive to find a sweet-spot for resource overhead
and downtime tradeoff.

PCLive: Downtime Reduction

20-Nov-2024 14

o Setup: Redis workload with YCSB for 2M records and different read to write ratio.

PCLive: Downtime Reduction

20-Nov-2024 14

o Setup: Redis workload with YCSB for 2M records and different read to write ratio.

o Service downtime: 2.7x reduction for read intensive, 18% reduction for write intensive.

PCLive: Downtime Reduction

20-Nov-2024 14

o Setup: Redis workload with YCSB for 2M records and different read to write ratio.

o Service downtime: 2.7x reduction for read intensive, 18% reduction for write intensive.

o Restore time: 38x reduction for read intensive, 5.4x reduction for write intensive.

Contributions

20-Nov-2024 15

o Empirically motivate the requirement to improve the restoration process for
container migration.

o Identify and address the challenges to design and implement iterative rebuilding
using PCLive.

o Demonstrate the benefits of PCLive in terms of downtime reduction.

o Showcase the flexibility of PCLive to find a sweet-spot for resource overhead
and downtime tradeoff.

PCLive: CPU & Memory Utilizations

20-Nov-2024 16

PCLive: CPU & Memory Utilizations

20-Nov-2024 16

o Setup: Write intensive (10% Read) Redis workload with YCSB for 2M records.

PCLive: CPU & Memory Utilizations

20-Nov-2024 16

o Setup: Write intensive (10% Read) Redis workload with YCSB for 2M records.

o CPU utilization: 4% more for write intensive, similar for read intensive.

o Memory utilization: 23% more for write intensive, similar for read intensive.

PCLive: Optimizing Memory Overhead

20-Nov-2024 17

PCLive: Optimizing Memory Overhead

20-Nov-2024 17

o Setup: Write intensive (10% Read) Redis workload with YCSB for 2M records.

PCLive: Optimizing Memory Overhead

20-Nov-2024 17

o Setup: Write intensive (10% Read) Redis workload with YCSB for 2M records.

o PCLiveG: Memory overhead is negligible (~100MB) for write intensive,
CPU overhead is 13.5% - 21.8%. Restore time is reduced by more than 200ms.

PCLive: Optimizing Memory Overhead

20-Nov-2024 17

o Setup: Write intensive (10% Read) Redis workload with YCSB for 2M records.

o PCLiveG: Memory overhead is negligible (~100MB) for write intensive,
CPU overhead is 13.5% - 21.8%. Restore time is reduced by more than 200ms.

o Delayed Restoration: Memory overhead is ~5% with similar CPU overheads.

PCLive: Application Throughput

20-Nov-2024 18

PCLive: Application Throughput

20-Nov-2024 18

o Setup: Read and Write intensive Redis workload with YCSB for 2M records.

PCLive: Application Throughput

20-Nov-2024 18

o Setup: Read and Write intensive Redis workload with YCSB for 2M records.

o PCLive improves the application throughput during stop-and-copy phase.

PCLive: Application Throughput

20-Nov-2024 18

o Setup: Read and Write intensive Redis workload with YCSB for 2M records.

o PCLive improves the application throughput during stop-and-copy phase.

o With PCLive, sometime throughput drop is slightly more during pre-dump iterations.

PCLive: Other Evaluations

20-Nov-2024

o With high–speed network, PCLiveG performs better, e.g., 5.4x downtime
improvement for 10Gbps.

19

PCLive: Other Evaluations

20-Nov-2024

o With high–speed network, PCLiveG performs better, e.g., 5.4x downtime
improvement for 10Gbps.

o With PCLive, the exclusive restore time increases with increase in write
intensity.

19

PCLive: Other Evaluations

20-Nov-2024

o With high–speed network, PCLiveG performs better, e.g., 5.4x downtime
improvement for 10Gbps.

o With PCLive, the exclusive restore time increases with increase in write
intensity.

o With PCLiveG, the exclusive restore time remains constant and similar to VM
live migration. It is also independent of write intensity.

19

PCLive: Other Evaluations

20-Nov-2024

o With high–speed network, PCLiveG performs better, e.g., 5.4x downtime
improvement for 10Gbps.

o With PCLive, the exclusive restore time increases with increase in write
intensity.

o With PCLiveG, the exclusive restore time remains constant and similar to VM
live migration. It is also independent of write intensity.

o PCLive is also evaluated with Benchbase (MySQL) and Graph500 workload.

o Please refer to the paper for more details.

19

Conclusion

20-Nov-2024

o PCLive addresses container migration issue with iterative pre-copy strategy by
pipelining the rebuild process at the destination machine.

20

Conclusion

20-Nov-2024

o PCLive addresses container migration issue with iterative pre-copy strategy by
pipelining the rebuild process at the destination machine.

o PCLive results in up to 38x reduction in restoration time and 2.7x reduction in
service downtime as compared with baseline CRIU.

20

Conclusion

20-Nov-2024

o PCLive addresses container migration issue with iterative pre-copy strategy by
pipelining the rebuild process at the destination machine.

o PCLive results in up to 38x reduction in restoration time and 2.7x reduction in
service downtime as compared with baseline CRIU.

o PCLive addresses CPU and memory overhead with techniques such as
PCLiveG and Delayed Restoration.

20

Conclusion

20-Nov-2024

o PCLive addresses container migration issue with iterative pre-copy strategy by
pipelining the rebuild process at the destination machine.

o PCLive results in up to 38x reduction in restoration time and 2.7x reduction in
service downtime as compared with baseline CRIU.

o PCLive addresses CPU and memory overhead with techniques such as
PCLiveG and Delayed Restoration.

o With PCLiveG, the application container migration become similar to VM
migration.

20

Thank You

20-Nov-2024

Documentation and Source code:
https://www.github.com/shivbt/PCLive

Contact:
shivbt@cse.iitk.ac.in

https://www.github.com/shivbt/PCLive
mailto:shivbt@cse.iitk.ac.in

	Slide 1
	Slide 2: Live Migration
	Slide 3: Live Migration
	Slide 4: Live Migration
	Slide 5: Live Migration
	Slide 6: Container Migration vs VM Migration: Diskless
	Slide 7: Container Migration vs VM Migration: Diskless
	Slide 8: Container Migration vs VM Migration: Diskless
	Slide 9: Container Migration vs VM Migration: Diskless
	Slide 10: Container Migration vs VM Migration: Diskless
	Slide 11: Container Migration vs VM Migration: Diskless
	Slide 12: Container Migration vs VM Migration: Diskless
	Slide 13: Iterative State Rebuild: VM Migration
	Slide 14: Iterative State Rebuild: VM Migration
	Slide 15: Iterative State Rebuild: VM Migration
	Slide 16: Iterative State Rebuild: VM Migration
	Slide 17: Iterative State Rebuild: VM Migration
	Slide 18: Iterative State Rebuild: VM Migration
	Slide 19: Iterative State Rebuild: VM Migration
	Slide 20: Iterative State Rebuild: VM Migration
	Slide 21: Iterative State Rebuild: Container Migration
	Slide 22: Iterative State Rebuild: Container Migration
	Slide 23: Iterative State Rebuild: Container Migration
	Slide 24: Iterative State Rebuild: Container Migration
	Slide 25: Iterative State Rebuild: Container Migration
	Slide 26: Iterative State Rebuild: Container Migration
	Slide 27: Contributions
	Slide 28: Contributions
	Slide 29: Contributions
	Slide 30: Contributions
	Slide 31: Contributions
	Slide 32: CRIU: One Shot Restore
	Slide 33: CRIU: One Shot Restore
	Slide 34: CRIU: One Shot Restore
	Slide 35: CRIU: One Shot Restore
	Slide 36: Downtime: Restoration Technique Matters!
	Slide 37: Downtime: Restoration Technique Matters!
	Slide 38: Downtime: Restoration Technique Matters!
	Slide 39: Downtime: Restoration Technique Matters!
	Slide 40: Restoration: Significance of Memory State
	Slide 41: Restoration: Significance of Memory State
	Slide 42: Contributions
	Slide 43: Iterative Rebuild: Challenges
	Slide 44: Iterative Rebuild: Challenges
	Slide 45: Iterative Rebuild: Challenges
	Slide 46: Iterative Rebuild: Challenges
	Slide 47: PCLive: Design
	Slide 48: PCLive: Capture and Transfer
	Slide 49: PCLive: State
	Slide 50: PCLive: Iterative Rebuild
	Slide 51: PCLive: Implementation
	Slide 52: Contributions
	Slide 53: PCLive: Downtime Reduction
	Slide 54: PCLive: Downtime Reduction
	Slide 55: PCLive: Downtime Reduction
	Slide 56: Contributions
	Slide 57: PCLive: CPU & Memory Utilizations
	Slide 58: PCLive: CPU & Memory Utilizations
	Slide 59: PCLive: CPU & Memory Utilizations
	Slide 60: PCLive: Optimizing Memory Overhead
	Slide 61: PCLive: Optimizing Memory Overhead
	Slide 62: PCLive: Optimizing Memory Overhead
	Slide 63: PCLive: Optimizing Memory Overhead
	Slide 64: PCLive: Application Throughput
	Slide 65: PCLive: Application Throughput
	Slide 66: PCLive: Application Throughput
	Slide 67: PCLive: Application Throughput
	Slide 68: PCLive: Other Evaluations
	Slide 69: PCLive: Other Evaluations
	Slide 70: PCLive: Other Evaluations
	Slide 71: PCLive: Other Evaluations
	Slide 72: Conclusion
	Slide 73: Conclusion
	Slide 74: Conclusion
	Slide 75: Conclusion
	Slide 76: Thank You

