
An Alternative Construction in Symbolic

Reachability Analysis of Second Order

Pushdown Systems

Anil Seth

CSE Department, I.I.T. Kanpur, Kanpur 208016, INDIA.
seth@cse.iitk.ac.in

Abstract. Recently, it has been shown that for any higher order push-
down system H and for any regular set C of configurations, the set
pre

∗

H(C), is regular. In this paper, we give an alternative proof of this
result for second order automata. Our construction of automata for rec-
ognizing pre

∗

H(C) is explicit. The termination of saturation procedure
used is obvious. It gives a better bound on size of the automata recog-
nizing pre

∗

H(C) if there is no alternation present in H and in the automata
recognizing C. Using our techniques for two players reachability games
on second order pushdown systems, we generalize some result of [2] con-
cerning synthesis of strategies. Analogous to [2], we show two kinds of
winning strategies for player 0 and give algorithms to compute them. The
first is executable by second order pushdown automata and the second
is linear time executable minimum cost strategy.

1 Introduction

Higher order pushdown automata (hpda) are a generalization of pushdown au-
tomata in that they can have nested stacks, such as stack of stacks. Higher order
Push and Pop operations are provided to push a copy of the topmost stack of
any order and to pop it. Order of a hpda depends on the depth of nested stacks
allowed by a hpda .

These models were introduced in [7] and were further studied in [9, 8]. Higher
order pushdown systems (hpds) are hpda without any input. A configuration of
a hpds is a pair of its control state and its stack contents. A hpds can be viewed
as a transition system on the infinite set of configurations. In the last few years,
algorithmic properties of finitely presented infinite graphs have been extensively
investigated by verification community, see [5, 11, 6]. Here we survey a few results
which are of direct relevance to our work.

In [4], it was shown that for any pushdown system (order-1 hpds), and any
regular set C of its configurations, pre∗(C), the set of configurations from which
an element of C is reachable, is also regular. [4] gave an iterative procedure, called
saturation procedure, to construct an automata recognizing pre∗(C), starting
from the automata recognizing C. The iteration step adds new edges to the
automata but no new states.

In [3], Bouajjani and Meyer, extended this result to higher order context free
processes, which are higher order pushdown systems with a single control state.
They have introduced a structured way to represent a regular set of configura-
tions of a hpds . For example a regular set of order-2 PDS configurations is given
by a automata with finitely many states but whose edge labels are ordinary finite
automata recognising order-1 stack configurations. Authors of [3] have general-
ized the saturation procedure to these automata to prove their results. Recently,
Hague and Ong [1] have extended results of [3] to higher order pushdown sys-
tems. This is a technically non-trivial result. Let A be a order-2 finite automata
recognizing a set of order-2 PDS configurations C. The saturation procedure of
[1] uses nested recursion involving automata appearing as edge labels of A and
the structure of A. As new states are added during this construction termination
of the recursion is not immediate and requires a proof. [1] gives details of all this.

In this paper, we give an alternative construction of an automata recogniz-
ing pre∗(C) for second order hpds . The state set of our automata to compute
pre∗(C) is fixed beforehand and remains the same throughout saturation pro-
cedure, so termination of saturation procedure is immediate. Further each state
has some intuitive meaning and saturation procedure is reduced essentially to
order-1 saturation procedure. Our result was arrived at independently of [1].

Unlike, [3, 1], we represent a regular set of order-2 hpda configurations by
ordinary automata. This is no restriction because as pointed out in [3] the two
notions of regularity for representing stack configurations are in fact the same. In
fact, given a (deterministic/nondeterministic) finite automata as in [3], one can
convert it into a (deterministic/nondeterministic) ordinary automata in polyno-
mial time.

In [1], size of the automata recognising pre∗(C) (and the time to construct
it) is double exponential in the size of hpds H (of order-2) and the size of au-
tomata A, recognising C. The authors in [1], in fact solve the more general
case of 2-player (or alternating) hpds with the same bounds. Further, in [1], A,
recognising C is also assumed to be alternating. Our bounds match theirs in the
general case. We consider the special case when H is nondeterministic and A in
given as a non-deterministic automata, in this case we show that an automata
recognising pre∗(C) can be constructed in time single exponential in the size of
hpds H and size of automata A. In case of 2-player (or alternating) hpds and non-
deterministic A our construction takes double exponential time which matches
the bound in [1], in fact in this case we construct an alternating automata with
single exponential states to recognise attractor set of C.

In [2], results of [4] are used to give uniform winning strategies in two player
reachability games on order-1 hpds . Two kinds of strategies are given in [2],
the first is minimum cost positional strategy executable in linear time and the
second is computable by a order-1 hpds . We generalize these results to order-2
hpds reachability games. We show a minimum cost positional strategy executable
in linear time and a strategy executable by second order pushdown automata in
order-2 hpds reachability games.

2 Preliminaries

A higher order pushdown system (hpds) H is a triple (Q, Γ, ∆), where Q is a
finite set of control states, Γ is a (finite) stack alphabet and ∆ ⊆ Q × Γ × Act

is transition relation of H. For an order-2 hpds , the set of actions is defined as
Act = {push

q,w
1 , push

q
2, pop

q
i | i ∈ {1, 2}, q ∈ Q, w ∈ Γ ∗}.

Configurations of a hpds are pairs (q, s), where q is a control state of the
hpds and s is its stack configuration. The set of stack configurations of the
ordinary pushdown automata (order−1 hpds) denoted by S1 and the set of
stack configurations of an order−2 hpds denoted by S2 are defined as follows.

S1 = { [1 w]1 | w ∈ Γ ∗} , S2 = { [2 α]2 | α ∈ (S1)
∗}

Throughout this paper we use symbol [i to denote start of stack of order
i and]i for the end of stack of order i. Let pushw

1 , push2, pop1, pop2 stand for
stateless counterparts of actions push

q,w
1 , push

q
2, pop

q
1, pop

q
2 respectively. These

stateless counterparts act on stack configurations as follows.
pushw

1 ([1 a1 · · ·al]1) = [1 wa2 · · ·al]1,
pushw

1 ([2 s1 · · · sk]2) = [2 pushw
1 (s1)s2 · · · sk]2

push2([2 s1 · · · sk]2) = [2 s1s1s2 · · · sk]2
pop1([2 s1 · · · sk]2) = [2 pop1(s1) · · · sk]2,
popm([m s1 · · · sk]m) = [m s2 · · · sk]m, if k ≥ 1 else undefined, m ∈ {1, 2}.
We also define topmost element, top(s), of a stack configuration s, as below.
top([1 a1 · · ·al]1) = a1 , top([2 s1 · · · sk]2) = top(s1)
Transition relation ↪→H is defined on configurations of a hpds of order 2 as

follows.
(q′, s) ↪→H (q, Pushw

1 (s)) if (q′, top(s), Push
q,w
1) ∈ ∆

(q′, s) ↪→H (q, Push2(s)) if (q′, top(s), Push
q
2) ∈ ∆,

(q′, s) ↪→H (q, Popi(s)) if (q′, top(s), P op
q
i) ∈ ∆, i ∈ {1, 2}.

Let S be a set of stack configurations of hpds H, pre∗H(S) is defined as
pre∗H(S) = {s | ∃s′ ∈ S[s ↪→H s′]}. We omit the subscript H from ↪→H whenever
it is clear from the context. ↪→∗ stands for the reflexive, transitive closure of ↪→.

We consider regular subsets of hpds configurations. Let H = (Q, Γ, ∆) be a
hpds of order−2. We define Q′ = {q′ | q ∈ Q}. A finite (multi)automata for
recognising configurations of H is given as A = (SA, Γ2, Q

′, δ, F), where SA is
the set of states of A, Γ2 = Γ ∪{ [i,]i | 1 ≤ i ≤ 2} is the input alphabet for A. δ

is the transition relation of A, Q′ is the set of its initial states and F is the set
of final states of A. Multi-automata were first introduced in [4] for order-1 PDS.

For any automata B and a state q of it, we use the notation L(B, q) to denote
the set of strings accepted by B when started in state q. The set of configurations,
CA, accepted by multi-automata A above is given as
CA = L(A) = {(q, s) | s ∈ L(A, q′)}.

2.1 Alternating Automata

An alternating automata R is given as (P, Σ, δ, F), where P is a finite set of
states Σ is input alphabet and F is the set of final states. Transition function δ

of R is given as δ : P ×Σ → B+(P), where B+(P) is the set of positive boolean

formulae (constructed using connectives ∧ and ∨ only) over atoms in P . As any
function in B+(P), can be written as a disjunction of conjunctions of elements
in P , transition function can also be thought of as a relation on P ×Σ × 2P . In
other words, it can be seen as a union of transitions of the form (q, a, S), where
q ∈ P , a ∈ Σ and S ⊆ P .

A run of an alternating automata on a input is a tree. More efficiently we
can represent it as a dag as in [2, 10]. Since we allow ε transitions (and later
transitions on a string of letters instead of a single letter), all paths through this
dag may not be of equal length. We give a slightly modified definition of a run
dag useful for our purposes.

A run-dag of automata B on input w is a rooted dag in which each node is
labeled with a state of B and each edge is labeled with an input symbol or input
string including empty string ε. If a node is labeled with q then all outgoing edges
from q in the dag are labeled by the same string u. Further, if the set of labels
of nodes to which these edges are connected is {qi1 , . . . , qik

} then there must be
a one step transition (q, u, {qi1 , . . . , qik

}) ∈ δ The concatenation of all labels in
any maximal path (path which is not contained in a bigger path) through this
dag should be a prefix of the string w, such that if it is a proper prefix of w then
its terminal node is labeled with a constant true or false.

A run dag is accepting if all its terminal nodes are labeled with ‘true’ or with
final states of B.

We extend the function/relation δ to take its second argument as a string
instead of a single letter as follows. (p, w, S) ∈ δ if there is a run dag on input
w with root labeled as p and its leaves are labeled with either ‘true’ or with an
element in S.

3 Computing pre∗ for Hpds of order−2

Let H = (Q, Γ, ∆) be an order−2 hpds . We define Q′ = {q′ | q ∈ Q}.
Let A = (SA, Γ2, Q

′, δA,F) be a deterministic finite multi-automata with Q′ as
initial states. Let A accept a set CA of configurations of H. It is assumed w.l.o.g.
that sets Q and SA are mutually disjoint.

We design an alternating finite automata RH,A to accept pre∗H(CA).

RH,A = (SR, Γ2, δR,F × {↓})

State set of RH,A, denoted SR, is a disjoint union of several sets as below.

Let Q′′ = {q′′ | q ∈ Q}, UQ,A,↓ = Q ∪ SA ∪ {↓}, UA,↓ = SA ∪ {↓}

[To remember notation U can be thought of as union]

R1 = (Q × UQ,A,↓) ∪ (SA × UA,↓)

R2 = {sw | s ∈ R1, (w ∈ Γ) or (Push
q,w
1 ∈ ∆, for some q ∈ Q)}

SR = Q′′ ∪ R1 ∪ R2 ∪ (Q × {2})

It will be shown that w ∈ L(RH,A, q′′i) iff (q′′i , w) ∈ pre∗H(CA). We use below
R instead of RH,A when no confusion occurs.

We define the transition function δR as
⋃

i≥0 δi, where δi, i = 0, 1, 2, . . .

are defined below iteratively. The sequence δi, i = 0, 1, 2, . . . is monotone when

viewed as a relation on SR×Γ2×B+(SR). This part of the construction is called
saturation procedure.

3.1 Intuitive Idea

The idea behind the construction is to start with the transition group (0). The
automata now looks at the top of the stack symbol and sees which moves in
hpds are possible. The push1 and pop1 move are handled as in order-1 case.
Pop2 move is simply handled by ignoring the input till the end of current order-
1 stack. The push2 operation is to be handled differently as it makes two copies
of the current order-1 stack while there is only one copy in the input. To do so,
we simultaneously verify the operation on the top stack of the configuration and
the stack below. For this we need to know in which state is the top stack popped?
This is done by guessing this state. So at a push2 move the computation splits
into two threads one thread verifies that the current stack can be popped in
some state q and the other thread starts running on the current input with this
state. The verifying thread will die on meeting the end of current order-1 stack
either successfully or unsuccessfully.

The computation in the two threads is similar in many cases so we use unify-
ing notation for states involving pairs. States (p, ↓), through the use of ↓ indicates
main thread which is to continue beyond the current order-1 stack. Other pairs
denote threads which check constraints. Note both these type of threads can
spawn further threads.

In this way we will be able to keep information about hpds configurations
that can be reached. At each step, the automata has a choice to explore the next
configuration reached or check if the current configuration is in the target set,
whose pre∗ is being computed. These are the main ideas, the construction below
shows how these can be made to work.

3.2 Transitions in δ0

The transitions of R below are grouped according to transitions in hpds H.
To improve readability of triples below, we show SR × Γ2 part of the triple in
lightface and B+(SR) component in boldface.

(0). For q ∈ Q, (q
′′

, [2[1, (q, ↓)) ∈ δ0.

(i). (q, a,popp
1) ∈ ∆ then for t ∈ Q ∪ SA ∪ {↓}, ((q, t), a, (p, t)) ∈ δ0.

(ii). (q, a,pushp
2) ∈ ∆

(a)

then for each t ∈ Q, ((q, t), a,
∨

ql∈Q

[(p,ql)a ∧ (ql, t)a]) ∈ δ0,

(b)

and for each t ∈ UA,↓, ((q, t), a,
∨

t1∈Q∪SA

[(p, t1)a ∧ (t1, t)a]) ∈ δ0

/* See Lemma 1(5-7), for the intuitive meaning of states (p, ql)a etc. */
(iii). (q, a,popp

2) ∈ ∆ then we have the following triples in δ0

(a) ((q, ↓), a, (p,2)),
(b) ((r, 2), b, (r,2)), r ∈ Q, b ∈ Γ /* skip the current order-1 stack */
(c) ((r, 2),]1[1, (r, ↓)), /* beginning of the next order-1 stack reached */
(d) ((r, 2),]1]2, (δA(r′, [2]2), ↓)), /* this corresponds to the case when the

popped stack was the last one */
(e) ((q, p), a, true) /* popping the stack in state q on ‘a′ satisfies the con-

straint (q, p) */

(iv). (q, a,pushp,u
1) ∈ ∆ then for t ∈ UQ,A,↓, ((q, t), a, (p, t)u) ∈ δ0

(v). Transitions related to A
/* We have the following transitions for simulating automata A on a guessed
hpds configuration. */

(a) (q
′′

, [2, (δA(q′, [2), ↓)), for q ∈ Q.
/* The guessed configuration is the initial configuration */

(b) ((q, t), ε, (δA(q′, [2[1), t)), for all q ∈ Q, t ∈ UA,↓.
/* The automata R guesses a configuration */

(c)
((t1, t2), a, (δA(t1, a), t2)), for (t1 ∈ SA, t2 =↓, a ∈ Γ ∪ {[1,]1})

OR for (t1 ∈ SA, t2 ∈ SA, a ∈ Γ).
/* Simulates A in the first component */

(d) For t2 ∈ SA,

((t1, t2),]1, true) ∈ δ0 if δA(t1,]1) = t2
((t1, t2),]1, false) ∈ δ0 otherwise

/* accepts if the constraint is satisfied at the end of current order-1 stack
*/

(vi). Transitions from states in R2

((t1, t2)a, ε, (δA(t1, [1a), t2)), for all t1 ∈ SA, t2 ∈ UA,↓, a ∈ Γ .

3.3 Saturation Step

Saturation process is as follows.
δk+1 := δk ∪ V , where
V = {((p, t)x, ε, S) | p ∈ Q, t ∈ UQ,A,↓, ((p, t), x, S) ∈ δk, (p, t)x ∈ R2}
For each k, δk ⊆ SR × Γ2 × 2SR . As (δk)k≥0 is a monotonically increasing

sequence, the saturation procedure terminates in at most |SR| × |Γ2| × 2|SR|

iterations.

3.4 Correctness of the Construction

The following lemma easily follows from the construction.

Lemma 1. 1. For t ∈ SA, w ∈ L(R,(t, ↓)) iff w ∈ L(A, t).
2. For t1, t2 ∈ SA, w ∈ L(R, (t1, t2)) iff w = x]1v, x ∈ Γ ∗ and

δA(t1, x]1) = t2.

3. w ∈ L(R,(q, 2)) iff w = x]1[1u for x ∈ Γ ∗ and u ∈ L(R, (q, ↓)) or w = x]1]2
for x ∈ Γ ∗ and [2]2 ∈ L(A, q′).

4. For q ∈ Q, w ∈ L(R, q′′) iff w = [2[1v for some v, and v ∈ L(R, (q, ↓)) or

w ∈ L(A, q′).
5. For r ∈ Q × (Q ∪ SA ∪ {↓}) and ru ∈ R2, w ∈ L(R, ru) iff uw ∈ L(R, r).
6. For t ∈ SA, a ∈ Γ , w ∈ L(R, (t, ↓)a) iff [1aw ∈ L(A, t).
7. For (t1, t2) ∈ SA × SA, a ∈ Γ , w ∈ L(R, (t1, t2)a) iff w = x]1v, x ∈ Γ ∗ and

δA(t1, [1ax]1) = t2.

Proof. We omit easy details from this extended abstract. ut

The theorem below is at the heart of the correctness proof.

Theorem 1. Let ↪→∗ be the reachability relation on configurations of hpds H.

The following assertions hold for all p, q ∈ Q, t ∈ SA, v, w ∈ Γ ∗
2 .

1. For q ∈ Q, w ∈ L(R, (q, ↓)) iff there is a τ ∈ L(A) such that

(q, [2[1w) ↪→∗ τ .

2. For p, q ∈ Q, w ∈ L(R, (p, q)) iff w = x]1u, for some x ∈ Γ ∗, and

(p, [2[1x]1]2) ↪→∗ (q, [2]2).
3. For p ∈ Q and t ∈ SA, w ∈ L(R, (p, t)) iff w = x]1u, for some x ∈ Γ ∗, and

(p, [2[1x]1]2) ↪→∗ (r, [2[1v]1]2) and δA(r, [2[1v]1) = t.

Proof. This is proved in two parts. We omit the details here which may be found
in full version. ut

Combining Lemma 1 part (4) and Theorem 1 part (1), we immediately have
the following corollary.

Corollary 1. For q ∈ Q, w ∈ L(R, q′′) iff w ∈ pre∗(CA).

We have presented the construction for deterministic A, however essentially
the same construction works for non-deterministic A also. The only change is
that we replace δA(r, a) by ∨ of states instead of a single state. More precisely,
transitions (iii.d), (v) and (vi) only need to be modified. We omit easy details.

Note that the situation changes if A is alternating. In that case, the form of
pairs (q, t) is to be replaced by (q, T), where T ⊆ SA. This is because a path
in the simulation of A is given by a set of states. Consequently the number of
states in the automata becomes exponential in SA.

Corollary 2. Let H be a nondeterministic hpds with |Q| states and |∆| tran-

sitions and let A be a nondeterministic automaton with |SA| states. Then one

can effectively construct a finite alternating automata with O((|Q|+ |SA|)
2 · |∆|)

states to recognize pre∗(CA).

From the above alternating automata recognizing pre∗(CA), we can get by
standard construction a equivalent nondeterministic automata with 2z states,
where z is a polynomial in the size of H and A. This is one exponential less than
what the construction of [1] gives though the construction of [1] is optimal if H
and A are alternating.

4 Two Player Reachability Game over Hpds

In rest of the paper, we extend our techniques to study two player reachability
games over configuration graphs of second order hpds . Two player games in
general are an important model of reactive computation and have been widely
studied in the context of verification and synthesis of finite/infinite state systems
over the last few years, see [12, 13].

We first recall some preliminary notions about these games. A game structure
can be imposed on the configuration graph of a hpds by partitioning the states
of the hpds into two parts. H = (Q0⊕Q1, Γ, ∆) is a game structure where states
in Qm, m ∈ {0, 1}, correspond to player m.

A position in such a game is a configuration of H. A position belongs to player
m if control state in this position (configuration) ∈ Qm. Starting from a initial
position π0 a play proceeds as follows, if π0 belongs to player-m then player-m
chooses a position π1 such that π0 ↪→H π1. The play now enters position π1 and
continues this way, at stage i if position πi belongs to player-m, m ∈ {0, 1}, then
player-m chooses a position πi+1 such that πi ↪→H πi+1. A play is a sequence
(possibly infinite) π0π1 · · ·πi · · · of successive game positions.

In a reachability game for player k, k ∈ {0, 1}, a set of game positions (config-
urations of hpds) E is also given. Player-k wins a play in this game if a position
∈ E is reached during this play otherwise player-(1− k) wins.

A strategy for player m, m ∈ {0, 1}, from position π0, is a function which
associates to each prefix π0π1 · · ·πi of a play, where πi belongs to player m, a
position πi+1 such that πi ↪→H πi+1. A strategy σ for player-m from position
π is a winning strategy if in any play begining with π where player-m plays
according to σ, player-m wins the play. A position π is winning for player-m if
there is a winning strategy for player-m from position π. The set of all winning
positions of player-m is called winning region or player-m.

It is well known that the winning region of player-k in the reachability game
for player-k is is given by attractor of E with respect to k, denoted Attrk(E)
and defined as below.

Attr0
k(E) = E

Attr
j+1
k (E) = {(q, s) | q ∈ Qk, ∃τ ∈ Attr

j
k(E)[(q, s) ↪→ τ]}

∪ {(q, s) | q ∈ Q1−k, ∀τ [((q, s) ↪→ τ) → τ ∈ Attr
j
k(E)]}

Attrk(E) =
∧

j≥0 Attr
j
k(E)

Note that the reachability problem of the previous section can be considered
as a special case where all states belong to one player.

5 Regularity of the Attractor Set

Let reachability game for player k be given by game structure
H = (Q0 ⊕ Q1, Γ, ∆) and a regular set L(A) specified by automata A. In this
section we show that winning region of player-k in the above game is regular.

We can modify the automata R of section 3 to Rk to compute attractor set
with respect to player k. We need to replace the states such as (p, t) in section 3

by (p, T), T ⊆ Q ∪ SA, as player k may not be able to guarantee to bring the
game in specific configuration but only in a set of configurations.

The state set of Rk, St(Rk), is defined as follows.
Let P(Z) denote the powerset of Z, let UP(Q,A) = P(Q ∪ SA) and let

UP(Q,A),↓ = UP(Q,A) ∪ {↓}.

Let R
(k)
1 = (Q ∪ SA) × UP(Q,A),↓

Let R
(k)
2 = {sw | s ∈ R

(k)
1 , (w ∈ Γ) or (Push

q,w
1 ∈ ∆, for some q ∈ Q)}

St(R(k)) = Q′′ ∪ R
(k)
1 ∪ R

(k)
2 ∪ (Q × {2})

Intuitive meaning of state (p, T) is that Rk accepts a configuration C from
(p, T) iff either player k can guarantee that current order-1 stack can be popped
in a state ∈ T (in fact, T ∩Q) or it guarantees that the game from configuration
C can reach a configuration C ′ without popping topmost order-1 stack of C and
in a run of A on input C ′, A reaches a state ∈ T (in fact, T ∩ SA) at the end of
reading topmost order-1 stack of C. This is proved in Theorem 2(ii).

Transition function δRk is defined using the saturation procedure as in sec-
tion 3.

5.1 Transitions in δ0

(0). For q ∈ Q, (q
′′

, [2[1, (q, ↓)) ∈ δ0.

(i). q ∈ Qk, (q, a,popp
1) ∈ ∆ then for all T ∈ UP(Q,A),↓, ((q, T), a, (p,T)).

(ii). q ∈ Qk, (q, a,pushp
2) ∈ ∆ then for all T ∈ UP(Q,A),↓,

((q, T), a,
∨

T1⊆Q∪SA

[(p,T1)a
∧

∧t∈T1
(t,T)a])

(iii). q ∈ Qk, (q, a,popp
2) ∈ ∆ then we have the following triples in δ0

(a) ((q, ↓), a, (p,2)),
(b) ((r, 2), b, (r,2)), r ∈ Q, b ∈ Γ

(c) ((r, 2),]1[1, (r, ↓)),
(d) ((r, 2),]1]2, (δA(r′, [2]2), ↓)),
(e) ((q, T), a, true), if p ∈ T

(iv). q ∈ Qk, and (q, a,pushp,u
1) ∈ ∆ then for all T ∈ UP(Q,A),↓, ((q, T), a, (p,T)u)

(v). Transitions related to A

(a) (q
′′

, [2, (δA(q′, [2), ↓)), for q ∈ Q.
(b) ((q, T), ε, (δA(q′, [2[1),T)), for all T ∈ UP(Q,A),↓.

(c)
((t1, T), a, (δA(t1, a),T)), for (t1 ∈ SA, T =↓, a ∈ Γ ∪ {[1,]1})

OR for (t1 ∈ SA, T ∈ UP(Q,A), a ∈ Γ).
(d) For T ∈ UP(Q,A),

((t1, T),]1, true) ∈ δ0 if δA(t1,]1) ∈ T

((t1, T),]1, false) ∈ δ0 otherwise

(vi). Transitions from states in R2

((t1, T)a, ε, (δA(t1, [1a),T)), for all t1 ∈ SA, T ∈ UP(Q,A),↓.
(vii). q ∈ Q1−k

We define for T ∈ UP(Q,A),↓,
I1((q, T), a) =

∧

{(p, T) | (q, a, pop
p
1) ∈ ∆}

I2((q, T), a) =
∧

{(q, T)u | (q, a, push
p,u
1) ∈ ∆}

I3((q, T), a) =
∧

{
∨

T1∈UP(Q,A)
[(q, T1)a ∧t∈T1 (t, T)a] | (q, a, push

p
2) ∈ ∆}

I4((q, ↓), a) =
∧

{(p, 2) | (q, a, pop
p
2) ∈ ∆}

For T ∈ UP(Q,A),

I4((q, T), a) =

{

false if (q, a, pop
p
2) ∈ ∆, for some p 6∈ T

true otherwise

We add the following triples to δ0, for T ∈ UP(Q,A),↓,

((q, T), a,

4
∧

j=1

Ij((q, T), a))

[Intuitively, I1, I2, I3 and I4 cover the cases when player 1 − k chooses moves
pop1, push1, push2 and pop2 respectively. In case of pop2, if player 1 − k can
pop the current stack to reach a state 6∈ T , then constraint of reaching a
state in T at the end of current order-1 stack can not be met and Rk rejects
from this state.]

5.2 Saturation Step

Saturation process is as follows.
δk+1 := δk ∪ {((p, T)x, ε, δk((p,T),x)) | p ∈ Q, (p, T)x ∈ R2}

5.3 Correctness of the Construction

Following is an easy Lemma, analogous to Lemma 1 of section 3.

Lemma 2. 1. For t ∈ SA, w ∈ L(R
k
, (t, ↓)) iff w ∈ L(A, t).

2. For t1 ∈ SA, T ∈ UP(Q,A), w ∈ L(R
k
, (t1, T)) iff w = x]1v, x ∈ Γ ∗ and

δA(t1, x]1) ∈ T .

3. w ∈ L(Rk
, (q, 2)) iff w = x]1[1u for x ∈ Γ ∗ and u ∈ L(Rk

, q) or w = x]1]2
for x ∈ Γ ∗ and [2]2 ∈ L(A, q′).

4. For q ∈ Q, w ∈ L(R
k
, q′′) iff w = [2[1v for some v, and v ∈ L(R

k
, (q, ↓)) or

w ∈ L(A, q′).

5. For r ∈ Q × (UP(Q,A),↓) and ru ∈ Rk
2 , w ∈ L(R

k
, ru) iff uw ∈ L(R

k
, r).

6. For t ∈ SA, a ∈ Γ , w ∈ L(R
k
, (t, ↓)a) iff [1aw ∈ L(A, t).

7. For (t1, T) ∈ SA×UP(Q,A), a ∈ Γ , w ∈ L(R
k
, (t1, T)a) iff w = x]1v, x ∈ Γ ∗

and δA(t1, [1ax]1) ∈ T .

Proof. Proof is similar to that of Lemma 1, we omit it. ut

To state the main theorem in correctness proof, we first introduce a notation.
Let T ⊆ Q∪SA, we define M(T) = {(r, [2s]2) | s ∈ S∗

1 , δA(r′, [2s) ∈ T}. M(T) is
the set of configurations of H, on which automata A has a run which reaches a
state in T after seeing the last order−1 stack. Using this notation, we have the
following main theorem in the correctness proof which is analogous to Theorem 1
of section 3.

Theorem 2. The following assertions hold for all p, q ∈ Q, and T ⊆ Q ∪ SA.

1. w ∈ L(R
k
, (q, ↓)) iff (q, [2[1w) ∈ Attrk(L(A)).

2. w ∈ L(Rk
, (p, T)) iff w = x]1u, for some x ∈ Γ ∗,

and (p, [2[1x]1]2) ∈ Attrk({(q, [2]2) | q ∈ T} ∪ M(T)).

Proof. In the full version. ut

Corollary 3. w ∈ L(R
k
, q′′) iff (q, w) ∈ Attrk(L(A)).

Proof. Immediate, using Theorem 2(1.) and Lemma 2(4.). ut

6 Strategy Extraction

From the results of section 3 and section 5, it follows that one can decide for an
arbitrary configuration whether it is in pre∗(C) or it is in the winning region of
player-k by simply checking membership in the corresponding automata. It is a
natural question to ask if a configuration u is in pre∗(C), can we also determine
the sequence of transitions of H which starting from u reach a configuration in
C or if u is in winning region of player-k then can we determine what is the
winning strategy of player-k from u to reach set E.

These questions have relevance to synthesis of transition systems and have
been investigated in [2] in the context of PDS. It turns out that accepting runs
of the corresponding automata on a configuration encode such strategies. In [2],
two kinds of strategies are synthesized for a player to win a reachability game
(in its winning region) in a PDS. One of these is executable by a pushdown
automata and another is a minimum cost strategy executable in linear time. In
this section we generalize these results of [2] to the setting of order-2 hpds .

6.1 Strategy Executable by Order-2 Hpda

An order-2 hpda executing a strategy is a deterministic order-2 pushdown au-
tomata with input and output tapes. It reads the moves of player 1−k from the
input tape and and outputs the moves of player k on the output tape. A more
formal definition can be given as in section 3.3 in [2].

In this section, we show how to design a order-2 hpda to execute player-k’s
winning strategy in the second order hpds reachability game.

Theorem 3. Let a game structure H for second order hpds and a regular set

E be given. One can effectively design a second order hpda B such that for

every configuration C in the winning region of player-k, after an appropriate

initialization B’s stack, B executes the winning strategy of player-k from position

C. The initialization of B can be done in linear time in the length of C.

Proof. We sketch the construction of B. The initialization of B’s stack is by
an accepting dag of automata computing Attrk(E) on input C. Let this dag be
D. We assume that each node of D has more information than just a state of
automata, for example it has information about transition taken at that node.
We view D as layered dag, a sequence of set of nodes or transitions. This sequence
is initially stored in the stack of B linearly, with root of D as top of B’s stack.
The control states of B include a subset of Rk’s state and some auxiliary states.
Initially B is in state q′′. Transition function of B depends on its control state
(say z) and topmost symbol (say φ) of B’s stack, and also on the input tape if
the control state of B corresponds to player 1−k’s state in H. We describe below
the action of B in various cases which are grouped according to transitions in
hpds .

Intuitively, D codes the winning strategy of player k from C. B walks through
various paths in D (depending on player 1 − k’s choices). B’s state represents
state of the node B is currently at, while φ represents all nodes at that level of
D.

(0) If z = q
′′

and (q
′′

, [2[1, q) ∈ φ, then B pops the topmost element of the stack
and enters state q.

(i) If z = (q, T), q ∈ Qk and ((q, T), a, (p,T)) ∈ φ then B outputs pop
p
1, pops

topmost element of its stack and moves to state (p, T).
(ii) z = (q, T), q ∈ Qk and ((q, T), a, (p,T)u) ∈ φ then B outputs push

p,u
1 , pops

topmost element of its stack and moves to state (p, T)u.
(iii) z = (q, T), q ∈ Qk and ((q,T), a, (p,T1)a ∧

∧

t∈T1
(t,T)a) ∈ φ for some

T1 ⊆ Q ∪ SA then B outputs push
p
2 and pops the top element from the

stack. (The current top of the stack has transitions with source (p, T1)a and
(t, T)a for each t ∈ T1). B remembers the transition α begining with (p, T1)a

and modifies the current top element of stack to contain transitions with
source (t, T)a only, for t ∈ T1. (That is B pops the top element and pushes
a new one which contains only transitions with source (t, T)a of the old top
element).
Now B does a push2 operation. Deletes the topmost element of the stack
and pushes a dag expansion of transition α on the stack and changes its
control state to (p, T1).

(iv) (q, a,popp
2) ∈ ∆ If z = q, q ∈ Qk and (q, ↓), a, (p,2))φ then B outputs pop

p
2,

pops the top element from the stack and changes its control state to (p, 2).
If z = (r, 2) and ((r, 2), b, (r,2)) ∈ φ then B does pop1 and remains in state
(r, 2).
If z = (r, 2) and ((r, 2),]1[1, (r, ↓)) ∈ φ then B does pop1 and enters state
(r, ↓).

If z = (r, 2) and ((r, 2),]1]2, (δA(r′, [2]2), ↓)) ∈ φ then B enters the Halt state.
If z = (r, 2) and ((q, T), a, true) ∈ φ (corresponding to (q, a,popp

2) ∈ ∆)
then B does a pop

p
2 operation. In the topmost element of the stack now it

examines a transition with source (p, T)b for b ∈ Γ and enters state (p, T)b.
[such a unique (p, T)b is guaranteed to be there, by action of B in step (ii)].

(v),(vi) Transitions related to A:
If z = q′′ or z = (q, t) and the first or second transitions of group (v) ∈ φ

then B enters a Halt state. /* A configuration in the target set is reached
*/.

(vii) If z = q and q ∈ Q1−k then B reads the input to find transition say, β. B now
finds transitions begining with the target set of β in the top stack symbol
and proceeds to take same actions as in one of the earlier cases corresponding
to β.

(viii) Transition is added in the saturation step:
Let z = (p, T)x and ((p, T)x, ε, S) ∈ φ. S is a conjunction of states. Further
let l be the least number such that this transition is in δl+1.
B pops the topmost element from the stack and pushes a dag rooted at
(p, T) for input x whose leaves are states S and has transitions in δl only. B

changes its control state to (p, T).

This finishes the description of the hpda B. ut

Note that unlike in [2], the strategy executed by this hpda is not constant
time. This is because for a single pop2 operation in hpds there are as many
transitions (of group (iii).b) in the accepting dag as the number of elements in
the order-1 stack. It seems possible to make the strategy constant time by doing
a initialization of B’s stack in several order-1 stacks each containing the portion
of D corresponding to an order-1 stack in C. We have not worked out the details
yet.

6.2 Computing Min-Cost Strategy

Let C be a configuration in the winning region of player k in a hpds reachability
game for player-k. The number of steps (also called cost) in which player k is
guaranteed to reach the target set E assuming the worst case behaviour from
the opponent is easily seen to be the least j such that C ∈ Attr

j
k(E). A winning

strategy of player k in which he plays at any configuration a move which guar-
antees him to win the game in minimum cost from that configuration is called
minimum cost winning strategy of player k.

Analogous to a result of [2], we show that min-cost value for player k from
a configuration C can be characterized using accepting dags of Rk on input C.
Further, there is an accepting dag of Rk on input C which codes a min-cost
strategy of player k.

We define a cost labeled dag as a dag D alongwith a labeling by natural
number of each node of D. The labeling value of node n, denoted L(n), is defined
using the rules below.

(0) Nodes with states in set SA×UA,↓ or leaves marked ‘true’ have cost L(n) = 0.
(i) Transition rule used at n is ((q, T), a, (p,T)), q ∈ Qk

[Corresponding to (q, a, pop
p
1) ∈ ∆]

Let n1 be the child of n corresponding to (p,T) then L(n) = 1 + L(n1).
(ii) Transition rule used at n is ((q, T), a, (p,T1)a

∧

∧t∈T1
(t,T)a), for some

T1 ⊆ Q ∪ SA.
[Corresponding to (q, a, push

p
2) ∈ ∆]

Let n0, n1, · · ·nr be children of n corresponding to (p, T1)a, {(t, T)a | t ∈ T1}
respectively. We have L(n) = 1 + L(n0) + max{L(ni) | 1 ≤ i ≤ r}

(iii) Transition rule used at n corresponds to (q, a,popp
2) ∈ ∆ for q ∈ Qk

(a) If the rule used is ((q, ↓), a, (p,2)) let n1 be the child of n corresponding
to (p,2). then we have L(n) = 1 + L(n1).

(b) If the rule used is ((q, T), a, true) then we define L(n) = 1.
(c) If the rule used is ((r, 2), b, (r,2)) let n1 be the child of n corresponding

to (r,2). then we define L(n) = L(n1).
(d) If the rule used is ((r, 2),]1[1, (r, ↓)), let n1 be the child of n corresponding

to (r, ↓) then we define L(n) = L(n1).
If the rule used is ((r, 2),]1]2, (δA(r′, [2]2), ↓) then we define L(n) = 0

(iv) Transition rule used at n is (q, a,pushp,u
1) ∈ ∆, q ∈ Qk

[Corresponding to (q, a,pushp,u
1) ∈ ∆]

Let n1 be the child of n corresponding to (p,T)u. We define L(n) = 1+L(n1).
(v),(vi) Transitions related to A: If rule used at n is from groups (v) or (vi) then we

define L(n) = 0.
(vii) Let n correspond to a state q ∈ Q1−k. (the rule used is from group (vii))

In this case n has children corresponding to each rule of ∆ applicable at n. Let
the cost of choosing these moves be {c1, · · · , cr}. then L(n) = max{c1, · · · , cr}.

(viii) Transition used at n is ((p, T)x, ε, S) (introduced in saturation step)
[Which is added during saturation procedure and is in δl+1.]
Let D1 be a cost labeled dag on input x for this transition, and using tran-
sitions of δl only. We define L(n) = value at the root of D1.
(Note the use of recursion here as labeling inside Dl must satisfy the cost
labeling rules. Also note that the choice of dag D1, is not unique.)

The following theorem is analogous to Theorem 2 of section 5 and is proved
in the similar way.

Theorem 4. Let D be a cost labeled dag for input w with root of D marked with

state m and cost with j.

1. (q, [2[1w) ∈ Attr
j
k(L(A)) iff there is an accepting dag D of Rk for input w,

rooted at (q, ↓) and with cost labeled j at its root.

2. Let p ∈ Q, T ⊆ Q ∪ SA and x ∈ Γ ∗.

(p, [2[1x]1]2) ∈ Attr
j
k({(q, [2]2) | q ∈ T}∪M(T)) iff there is an accepting dag

D of Rk for input x]1, rooted at (p, T) and with cost labeled j at its root.

Proof. It follows by considering cost labeling in the proof of Theorem 2. ut

We construct a minimum cost dag of Rk on C in bottom up manner, con-
sidering at each step all possible moves of Rk and choosing the one leading to
minimum cost and satisfying the rules of cost labeled dag. For transitions of the
kind ((p, T)x, ε, S), we use the algorithm recursively constructing the dag with
transitions of lower levels only. For a fixed H,A this can be done in time linear
in the length of the configuration. This leads to the following theorem.

Theorem 5. For a fixed H, A, k, there is a linear time algorithm which takes

as its input a configuration of player k and outputs the minimum cost move

of player k in the reachability game above if the input configuration is in the

winning region of player k.

7 Conclusion

We have given an alternative construction of finite automata recognizing pre∗H(C),
where C is a regular set of configurations of a second order pushdown system
H. Our construction is explicit and simple to understand. It also yields results
about strategy synthesis which are a generalization from pushdown reachability
games to second order pushdown reachability games. Our approach can be ex-
tended to pushdown systems of higher than second order also though some new
phenomenon arise there which make the construction more involved. This will
be future work.

References

1. Hague, M., Ong, L.: Symbolic backwards-reachability analysis for higher-
order pushdown systems. In proc. FoSSaCS, 2007 (Also downloadable from
www.comlab.ox.ac.uk/oucl/work/matthew.hague)

2. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In proc.
ICALP (2003) 315–333

3. Bouajjani, A., Meyer, A.: Symbolic reachability analysis of higher-order context-
free processes. In proc. FSTTCS (2004) LNCS 3328.

4. Bouajjani, A., Esparza, J., Maler O.: Reachability analysis of pushdown automata:
Applications to model checking. In proc. Concur (1997) 135-150

5. Walukiewicz, I.: Pushdown processes: games and model checking. Information and
computation 164 (2001) 234–263

6. Carayol, A., Wohrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In proc. FSTTCS (2003) 112-123

7. Maslov, A. N.: Multilevel stack automata. In Problems of Information Transmis-
sion, 15:1170-1174, 1976.

8. Engelfriet, J.: Iterated stack automata and complexity classes. Information and
computation 95 (1991) 21–75

9. Damm, W.: The IO and OI hierarchies. Theoretical Computer Science 20 (1982)
95–208

10. Loding, C., Thomas, W.: Alternating Automata and Logics over Infinite Words,
IFIP TCS’00, LNCS 1872, pp. 521-535, 2000.

11. Caucal, D.: On infinite terms having a decidable monadic theory. In proc. MFCS
(2002) 165-176.

12. Gradel, E., Thomas, W., Wilke, Th.: Automata, logics, and infinite games, LNCS
2500, Springer, 2002.

13. Kupferman, O., Vardi, M. Y.: An Automata-Theoretic Approach to Reasoning
about Infinite-state Systems, In Proc. CAV 2000, LNCS 1885, 2000.

