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Abstract

When learning a new math concept, should learners be first taught the concept and its associ-

ated procedures and then solve problems, or solve problems first even if it leads to failure and

then be taught the concept and the procedures? Two randomized-controlled studies found that both

methods lead to high levels of procedural knowledge. However, students who engaged in problem

solving before being taught demonstrated significantly greater conceptual understanding and ability

to transfer to novel problems than those who were taught first. The second study further showed

that when given an opportunity to learn from the failed problem-solving attempts of their peers,

students outperformed those who were taught first, but not those who engaged in problem solving

first. Process findings showed that the number of student-generated solutions significantly pre-

dicted learning outcomes. These results challenge the conventional practice of direct instruction to

teach new math concepts and procedures, and propose the possibility of learning from one’s own

failed problem-solving attempts or those of others before receiving instruction as alternatives for

better math learning.

Keywords: Mathematics education; Learning; Problem solving; Productive failure; Vicarious failure

1. Introduction

Suppose one wants to teach students a math concept (and its associated procedures) that

is novel to them, say standard deviation (SD). The traditional, most prevailing method is

to first teach students the concept and procedures of SD and then get them to solve prob-

lems requiring those concept and procedures. This sequence of instruction followed by

problem solving is commonly known as direct instruction (DI; Kirschner, Sweller, &

Clark, 2006). A contrasting method is one that reverses the sequence, that is, engages

students in problem solving first and then teaches them the concept and procedures. I call

this sequence of problem solving followed by instruction productive failure (PF; Kapur,
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2010, 2012). By failure, I simply mean that students will typically fail to generate or dis-

cover the correct solution(s) by themselves. However, to the extent that students are able

to use their prior knowledge to generate suboptimal or even incorrect solutions to the prob-

lem, the process can be productive in preparing them to learn better from the subsequent

instruction that follows (Kapur & Bielaczyc, 2012; Schwartz & Martin, 2004). In this way,

PF combines the benefits of exploratory problem solving and instruction, thereby mitigat-

ing the possibility that students do not discover the correct concepts and procedures on

their own (Kapur & Rummel, 2012).

There are several reasons to believe in the effectiveness of DI. First, it affords students

the opportunities to attend to and acquire the correct procedures and knowledge, while

concomitantly reducing the probability of encoding of errors and misconceptions (Sweller

& Chandler, 1991). Without such instruction, students may not be able to discover correct

knowledge and procedures on their own (Klahr & Nigam, 2004). Second, when students

do not have the knowledge to solve a problem, they often search the problem space for

solutions by engaging in resource-intensive processes such as trial and error or means-

ends analysis, which burden the limited working memory capacity. Because all conscious

processing happens in the working memory, working memory is less available for learn-

ing new concepts and procedures if it is mainly occupied with such a search of the prob-

lem space (Kirschner et al., 2006). By showing the learner exactly what to do and how to

do it, DI reduces this burden on the cognitive resources, thereby facilitating the develop-

ment of correct domain knowledge and procedures (Klahr & Nigam, 2004; Sweller &

Chandler, 1991). Finally, DI can also mitigate problems associated with learner disen-

gagement and frustration that can arise in starting with problem solving first (Hardiman,

Pollatsek, & Weil, 1986).

There are also several reasons to believe in the effectiveness of PF. First, starting

with problem solving may be better at activating and differentiating relevant prior

knowledge provided students are able to use their priors to generate suboptimal or

even incorrect solutions to the problem (DeCaro & Rittle-Johnson, 2012; Schwartz,

Chase, Oppezzo, & Chin, 2011). Even though generation of solutions may place

higher cognitive demands and is difficult for novices, such difficulty can aid encoding

and schema assembly (Hiebert & Grouws, 2007; Schmidt & Bjork, 1992), and prepare

students to learn better from the subsequent instruction (Kapur, 2012; Schwartz &

Martin, 2004). Second, to the extent that students are able to persist in problem solv-

ing in spite of the higher cognitive demands, generating solutions may afford students

greater agency, and therefore engage them more (diSessa, Hammer, Sherin, & Kolpa-

kowski, 1991). Third, generating solutions prior to instruction may also help students

notice the inconsistencies and realize the limits of their prior knowledge (DeCaro &

Rittle-Johnson, 2012). Fourth, prior knowledge activation and differentiation may

afford greater opportunities for comparisons between student-generated solutions and

correct solutions, thereby helping students’ attend to and better encode critical features

of the new concept. Consequently, such comparisons may increase the likelihood of

students selecting correct knowledge and procedures over incorrect ones (Siegler,

1994, 2002).
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The aim of this paper was to test the competing sets of hypotheses supporting DI and

PF through two experimental studies. Study 1 compares the DI with PF for teaching the

concept and procedures of SD. Study 2 extends Study 1 by providing a stricter compari-

son for PF in vicarious failure (VF). Although one can learn vicariously from both pro-

cesses and outcomes, for the purposes of this study, I operationalize VF as learning

vicariously from the outcomes, that is, the case where students study and evaluate their

peers’ solutions before receiving instruction.

2. Study 1: Comparing learning from PF and DI

2.1. Participants and design

Participants were 75 ninth-grade mathematics students (14–15 year olds; 38 boys, 37

girls) from a co-ed private school in the national capital region of India. All students

were of Indian ethnicity. Students had not had any instruction on SD because this topic is

not taught until the eleventh grade.

2.1.1. Pretest and math ability
One week before the study, all students took a paper-and-pencil pretest (a = 0.75)

comprising six items: three multiple-choice items on central tendencies, one multiple-

choice item each on distributions and SD, and one open-response item on SD. Each cor-

rect answer was awarded one mark. The open-response item was scored as correct or

incorrect by two independent raters with an inter-rater reliability of 1.00 as no student

was able to answer it correctly. Composite score on the pretest was scaled linearly to 10;

this score upon 10 formed the measure of prior knowledge. In addition, the school pro-

vided data from their most recent standardized test on mathematics for the cohort, which

was taken as a measure of math ability.

2.1.2. Design
On the day of the experiment, students experienced two 1 h phases one after the other:

a problem-solving phase and an instruction phase. The experimental manipulation was in

the random assignment of students to the sequence in which they experienced the two

phases. Although students came from different classes, they were randomly combined to

form each condition. In PF condition (n = 37; 19 boys, 18 girls), students first experi-

enced the problem-solving phase followed by the instruction phase. In the DI condition

(n = 38; 19 boys; 19 girls), students experienced instruction phase followed by the prob-

lem-solving phase. The same teacher taught both the conditions. The time on task, the

number of problems solved, and materials for each of the phases were identical in both

the conditions. Neither the teacher nor the students were made aware of the experimental

hypotheses being tested.

In the problem-solving phase, students were seated in a classroom and asked to generate

as many solutions as possible to a problem on SD (Fig. 1). Students worked individually
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without any help as indeed one would in an examination setting. Students were provided

with blank A4 sheets of paper and were asked to clearly number and demarcate their

solutions. Because students could only rely on their prior knowledge to generate solutions,

the number of solutions generated by a student was taken as a proxy measure of his/her prior

knowledge activation and differentiation (see supplementary materials Appendix A for

coding and counting of student-generated solutions).

In the instruction phase, students were seated in a classroom and their teacher—an

experienced mathematics teacher at the high-school level—taught the concept and proce-

dures of SD. The teaching of SD was organized around four problems that included

cycles of teacher modeling through worked-out examples demonstrating the concept and

procedures, student practice, and feedback (see supplementary materials Appendix B).

The design of the four problems in the form of simultaneously presented contrasting

cases was done in line with the well-established finding that contrasting cases help stu-

dents attend to critical features of the problem, and therefore aid learning (Rittle-Johnson

& Star, 2009; Schwartz et al., 2011). No other problems or solutions (e.g., incorrect or

suboptimal solutions) were used. Throughout this phase, the teacher directed attention to

the critical features of SD and highlighted common errors and misconceptions. Student

performance on the fourth problem was taken as an indicator of their learning of the pro-

cedure for calculating and conceptually interpreting SD. Two independent raters scored

students solutions on the fourth problem as either incorrect or correct with an inter-rater

reliability of 0.91. Solutions that deployed the correct formulation and procedure but con-

tained computational errors were scored as correct.

Who is the most consistent 
Basketball player?

Mike and Dave are the top two 
players in a Basketball league.
The table shows the number of 
points scored by Mike and Dave 
over the course of 20 games in 
the league.

An award has to be given to the 
more consistent player of the 
two. The decision has to be 
made mathematically. 

Design as many measures of 
consistency as you can to 
determine the more consistent 
player. 

Show all working.

Points scored by Mike and Dave
Game Mike Dave 

1 24 23
2 19 19
3 24 26
4 20 24
5 25 20
6 21 21
7 25 23
8 21 24
9 26 25
10 22 29
11 26 24
12 22 22
13 27 25
14 23 24
15 27 27
16 23 23
17 28 24
18 24 28
19 29 24
20 24 25

Fig. 1. The problem given to students during the problem-solving phase.
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2.1.3. Mental effort and engagement
Immediately after each phase, all students took a five-item, five-point (1 = strongly

disagree to 5 = strongly agree) Likert scale engagement survey (a = 0.79). Students also

estimated their amount of mental effort using a nine-point rating scale that is commonly

used in the cognitive load literature as a measure of cognitive load (Paas, 1992). Thus,

each student had two engagement scores (calculated as the average rating of the five

items) and two mental effort scores.

2.1.4. Posttest
Immediately after the second phase, all students took a 40-min posttest (a = 0.84)

comprising 19 items targeting: (a) procedural knowledge (testing the basic procedure for

computing and interpreting SD; 2 multiple-choice items), (b) conceptual understanding

(testing understanding of critical features of SD and deducing its mathematical properties;

11 multiple-choice and 3 open-response items), and (c) transfer (testing whether students

can adapt knowledge of SD to solve problems on the concept of normalization not taught

during instruction; 3 multiple-choice items). Each correct answer was awarded one mark.

The open-response items for conceptual understanding were scored as correct or incorrect

by two independent raters with an inter-rater reliability of 0.97. Composite scores for

each type of item were scaled linearly to 10. This score upon 10 for the three types of

items, namely procedural knowledge, conceptual understanding, and transfer, formed the

three dependent variables.

All instruments (pretest, posttest, engagement survey, and mental effort rating) are

available as supplementary materials online.

2.2. Results

2.2.1. Process results
2.2.1.1. Problem-solving phase: Productive failure students produced on average about

six solutions, M = 6.08, SD = 1.53. Students used central tendencies (mean, median, and

mode) as well as range. Students generated dot diagrams and line graphs to qualitatively

examine the clustering and fluctuation trends. Another common solution was to count the

frequency with which a player scored above, below, and at the mean to quantify the clus-

tering at the mean. Students also calculated year-on-year deviation to argue that the

greater the sum (or sometimes the average) of the deviations, the lower the consistency.

By comparison, DI students produced on average about three solutions, M = 2.85,

SD = 0.45 during their problem-solving phase. All DI students generated the canonical

solution, in addition to using the range, dot diagrams, or line graphs. More important,

100% of DI students were able to generate the canonical solution to the problem, whereas

none of the PF students were able to do so.

2.2.1.2. Instruction phase: The percentages of PF and DI students with correct solutions

on the fourth problem were 97.3% and 97.4%, respectively. Table 1 presents the descriptive
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statistics for mental effort and engagement as well as summary of pre- and posttest

performance.

2.2.1.3. Mental effort and engagement: Productive failure students reported significantly

greater mental effort than DI students during the problem-solving phase (F[1,
71] = 53.98, p < .001, d = 1.70) as well as the instruction phase (F[1, 71] = 52.09,

p < .001, d = 1.66). There were no significant differences on engagement scores between

the conditions during the two phases.

2.2.2. Pre–posttest results
2.2.2.1. Math ability and prior knowledge: ANOVAs with experimental condition as the

between-subjects factor revealed no significant difference between the two conditions on

math ability (F[1, 73] = 0.01, p = .933), and prior knowledge (F[1, 73] = 0.08,

p = .784).

2.2.2.2. Posttest: A MANCOVA with scores on procedural knowledge, conceptual under-

standing, and transfer as the three dependent variables, experimental condition as the

between-subjects factor, and math ability, prior knowledge, average engagement score,

and average mental effort score as the four covariates revealed significant multivariate

main effects only of math ability (F[3, 69] = 4.36, p = .007) and condition (F[3,
67] = 13.49, p < .001). There were no other significant effects of the covariates or any

interaction effects. The model was not sensitive to the exclusion of engagement and men-

tal effort scores.

Univariate ANCOVAs suggested that there was no significant difference between PF and

DI students on procedural knowledge (F[1, 69] = 0.02, p = .896). However, PF students

significantly outperformed DI students on conceptual understanding (F[1, 69] = 40.23,

p < .001, d = 2.00) and transfer (F[1, 69] = 16.92, p < .001, d = 1.52).

Table 1

Study 1: Summary of math ability, pretest, mental effort, engagement, and posttest performance

Productive Failure Direct Instruction

Max M SD M SD

Math ability 100 84.8 11.92 85.02 11.16

Prior knowledge (pretest) 10 4.65 1.70 4.53 2.11

Mental effort (PS) 9 7.65 0.86 6.18 0.87

Mental effort (I) 9 7.38 0.76 6.00 0.90

Engagement (PS) 5 4.46 0.41 4.39 0.48

Engagement (I) 5 4.48 0.44 4.48 0.49

Posttest

Procedural knowledge 10 9.24 1.38 9.47 1.27

Conceptual understanding 10 6.33 1.25 3.84 1.24

Transfer 10 5.37 1.46 3.11 1.51

I, instruction phase; PS, problem-solving phase.

M. Kapur / Cognitive Science 38 (2014) 1013



Finally, the number of solutions generated by PF students during their problem-solving

phase was significantly correlated with their posttest scores on conceptual understanding

(r[37] = .65, p < .001) and transfer (r[37] = .81, p < .001), but not with procedural

knowledge. There were no such significant correlations in the DI condition.

2.3. Discussion

Productive failure students, in spite of reporting greater mental effort than DI students,

significantly outperformed DI students on conceptual understanding and transfer without

compromising procedural knowledge.1 Evidence therefore supports the hypothesis that the

PF method activated and differentiated students’ prior knowledge during the problem-

solving phase, which may have prepared them to learn from the subsequent instruction

phase. The significant correlation between the number of solutions generated by PF stu-

dents during the problem-solving phase—a proxy indicator of prior knowledge activation

and differentiation—and their conceptual understanding and transfer performance on the

posttest lends further credibility to this explanation.

However, Study 1 raises a further question: If prior knowledge activation and differen-

tiation is essential for learning from subsequent instruction, then is it necessary to have

students generate their own solutions or can they simply study and evaluate solutions

generated by their peers before receiving instruction (that is, learn from VF)? Study 2

addresses this question by comparing learning from PF, VF, and DI.

Once again, there are competing sets of hypotheses supporting the case for PF and VF.

On one hand, students who generate solutions may understand their own solutions better

than students who study and evaluate them (Roll, Aleven, & Koedinger, 2011). Conse-

quently, PF students may engage in deeper comparisons between the solutions than VF

students, which may increase the likelihood of PF students attending to the critical fea-

tures of the problem (Terwel, van Oers, van Dijk, & van den Eeden, 2009). As argued

earlier, such comparisons may also increase the likelihood of PF students selecting cor-

rect procedures and features over incorrect ones (Durkin & Rittle-Johnson, 2012; Siegler,

2002). Finally, students who generate solutions may benefit from greater agency (diSessa

et al., 1991) and therefore be more engaged than VF students in learning from the subse-

quent instruction.

On the other hand, studying and evaluating solutions presented as worked examples

may take up fewer cognitive resources than generating solutions, which means that VF

students may have more resources for better encoding and schema acquisition (Kirschner

et al., 2006; Roll et al., 2011). An extensive body of empirical work suggests that learn-

ing from worked examples is significantly better than learning from problem solving (for

a review, see Kirschner et al., 2006). Furthermore, research on expertise suggests that

although both generation and evaluation require domain knowledge (Bransford, Brown, &

Cocking, 2000), generation may place a greater burden on the learners’ domain knowl-

edge than evaluation (in addition to burdening the working memory). In fact, the exper-

tise reversal effect (Kalyuga, Ayres, Chandler, & Sweller, 2003) suggests that students

with more domain knowledge may benefit more from the cognitively more demanding
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processes. As both PF and VF students do not have the necessary domain knowledge to

solve the problem, it follows that VF students may benefit more from evaluation of solu-

tions than PF students from generation of solutions.

Given that Study 1 demonstrated the effectiveness of PF over DI, and the main differ-

ence between PF and VF is one of generating solutions and generating evaluations of

solutions, that is, both are preparatory activities prior to instruction aimed at activating

and differentiating prior knowledge, it can be hypothesized that when compared to DI

students, VF students will also likely benefit from prior knowledge activation and differ-

entiation, preparing them to learn better than DI students from instruction.

3. Study 2: Comparing learning from PF, VF, and DI

3.1. Participants and design

Participants were 111 ninth-grade mathematics students (14–15 year olds; 55 boys, 56

girls) from the same school as in Experiment 1, but from a different cohort. A random-

ized-controlled, pre-post design was used to assign students to one of three conditions: DI

(n = 38; 19 boys, 19 girls), PF (n = 37; 18 boys; 19 girls), or VF (n = 36; 18 boys, 18

girls).

The PF and DI conditions were exactly the same as in Study 1. The same teacher from

Study 1 taught the instruction phase to all three conditions. The VF condition differed

from the PF condition in only one aspect: The problem-solving phase was replaced with

an evaluation phase in which students were given 1 hour to study and evaluate student-

generated solutions (available from Study 1). Each solution was presented on an A4 sheet

of paper with the prompt: “Evaluate whether this solution is a good measure of consis-

tency. Explain and give reasons to support your evaluation.” The number of solutions

given was pegged to the average number of solutions produced by the PF groups, that is,

six. The most frequently generated solutions by the PF students were chosen for VF con-

dition. Because student-generated solutions often lacked clarity in their presentation that

may make it difficult for other students to understand, let alone evaluate them, they were

converted into well-designed worked examples. Figs. S1–S3 in the supplementary materi-

als present the six solutions. Vicarious failure students received the solutions one-by-one

counterbalanced for order and were given about 10 min for each. As in the PF condition,

no help was provided during the evaluation phase.

3.1.1. Evaluation training
Pilot work suggested that while students did not have problems studying and under-

standing the solutions, students did better evaluations when they were given an example

of what constituted a mathematically valid evaluation. Therefore, the first of the six stu-

dent-generated solutions on central tendencies was provided as an example that contrasted

a valid with an invalid evaluation (see Fig. S1). Students were given 10 min to go

through this evaluation example after which they evaluated the remaining five solutions.
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Two independent raters coded evaluations for each solution as valid or invalid using the

coding scheme described in Appendix A of the supplementary materials. Table S1 in

the supplementary materials presents examples of valid and invalid evaluation for each

solution.

3.2. Results

3.2.1. Process results
3.2.1.1. Problem-solving phase for PF and DI students: Productive failure students pro-

duced on average about six solutions (M = 6.15, SD = 0.97). By comparison, DI students

produced on average about three solutions (M = 2.95, SD = 0.39) during their problem-

solving phase. Once again, 100% of DI students were able to generate the canonical solu-

tion to the problem, whereas none of the PF students were able to do so.

3.2.1.2. Evaluation phase for VF students: On average, VF students produced 0.85

(SD = 0.41) valid and 0.35 (SD = 0.23) invalid evaluations per solution. These results

suggest that VF students were able to understand and evaluate the solutions.

3.2.1.3. Instruction phase for all students: The percentages of PF, VF, and DI students

with correct solutions on the fourth problem were 94.7%, 94.7%, and 97.4%, respectively.

Table 2 presents the descriptive statistics for mental effort and engagement as well as

summary of pre- and posttest performance.

3.2.1.4. Mental effort and engagement: For the problem-solving phase, there was a sig-

nificant multivariate effect of condition on mental effort scores (F[2, 106] = 10.69,

p < .001). Planned pairwise comparisons showed that PF students reported significantly

Table 2

Study 2: Summary of math ability, pretest, mental effort, engagement, and posttest performance

Productive

Failure Vicarious Failure Direct Instruction

Max M SD M SD M SD

Math ability 100 85.0 12.37 85.4 13.06 84.46 12.15

Pretest 10 4.48 2.23 4.05 2.76 4.37 2.50

Mental effort (PS) 9 7.38 1.04 6.39 1.02 6.30 1.19

Mental effort (I) 9 7.30 1.02 6.44 1.03 5.82 1.11

Engagement (PS) 5 4.42 0.43 4.36 0.42 4.28 0.55

Engagement (I) 5 4.43 0.44 4.32 0.38 4.36 0.52

Posttest

Procedural knowledge 10 8.86 1.90 8.89 1.85 9.21 1.85

Conceptual understanding 10 6.57 1.26 4.72 1.48 3.57 1.41

Transfer 10 5.36 1.47 3.31 1.87 3.06 2.09

I, instruction phase; PS, problem-solving phase.
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greater mental effort than VF students (F[1, 71] = 16.85, p < .001, d = 0.96), as well as

DI students (F[1, 73] = 16.10, p < .001, d = 0.97). There was no significant difference

between VF and DI students.

For the instruction phase, there was a significant multivariate effect of condition on

mental effort scores (F[2, 106] = 18.56, p < .001). Planned pairwise comparisons showed

that PF students reported significantly greater mental effort than VF students (F[1,
71] = 12.63, p = .001, d = 0.84), as well as DI students (F[1, 73] = 35.99, p < .001,

d = 1.39). Vicarious failure students reported significantly greater mental effort than DI

students (F[1, 72] = 6.37, p = .014, d = 0.58). There were no significant differences on

engagement scores between the conditions during the two phases.

3.2.2. Pre–posttest results
3.2.2.1. Math ability and prior knowledge: ANOVAs with experimental condition as the

between-subjects factor revealed no significant difference between the two conditions on

math ability (F[2, 108] = 0.05, p = .950) and prior knowledge (F[2, 108] = 0.29,

p = .751).

3.2.2.2. Posttest: A MANCOVA with scores on procedural knowledge, conceptual under-

standing, and transfer as the three dependent variables, experimental condition as the

between-subjects factor, and math ability, prior knowledge, average engagement score,

and average mental effort score as the four covariates revealed significant multivariate

main effects of math ability (F[3, 102] = 6.85, p < .001) and experimental condition

(F[3, 102] = 11.49, p < .001). There were no other significant effects of the covariates or

any interaction effects. The model was not sensitive to the exclusion of engagement and

mental effort scores.

Univariate ANCOVAs revealed no significant difference between the three conditions on

procedural knowledge (F[2, 104] = 0.25, p = .783). However, there was a significant dif-

ference between the three conditions on conceptual understanding (F[2, 104] = 36.21,

p < .001) and transfer (F[2, 104] = 11.46, p < .001). Planned pairwise comparisons

revealed that:

1. Productive failure students significantly outperformed VF students on conceptual

understanding (F[1, 69] = 36.73, p < .001, d = 1.35) and transfer (F[1, 69] = 28.78,

p < .001, d = 1.23).

2. Productive failure students significantly outperformed DI students on conceptual

understanding (F[1, 71] = 106.47, p < .001, d = 2.25) and transfer (F[1, 71] =

30.62, p < .001, d = 1.29).

3. Vicarious failure students significantly outperformed DI students only on conceptual

understanding (F[1, 70] = 12.99, p = .001, d = 0.80).

Finally, the number of solutions generated by PF students during their problem-solving

phase was significantly correlated with their posttest scores on conceptual understanding

(r[37] = .82, p < .001) and transfer (r[37] = .88, p < .001), but not with procedural

knowledge. There were no such significant correlations in the DI condition. The numbers
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of valid or invalid evaluations or their sum did not significantly correlate with the posttest

scores.

4. General discussion

Study 2 replicated the findings of Study 1, and together they clearly demonstrate that

PF is a more effective teaching method than DI. These findings are consistent with the

general math education literature that emphasizes the role of struggle in learning (e.g.,

Hiebert & Grouws, 2007). Findings are also consistent with and build upon recent work

showing that problem solving prior to instruction is more effective than the other way

around (DeCaro & Rittle-Johnson, 2012; Schwartz et al., 2011).

Specifically, Studies 1 and 2 make novel contributions in at least three ways. First,

Study 2 shows that in addition to preparatory activities such as exploratory problem solv-

ing and inventing with contrasting cases, studying and evaluating peer-generated solutions

prior to instruction can also be more effective than DI. However, a more significant and

novel contribution of Study 2 is that it helps differentiate and demonstrate the greater

efficacy of engaging in the cognitive processes of generation and exploration of solutions

than studying and evaluating the solutions. Second, both studies evidence a theoretically

important link between variability in student production within the problem-solving phase

and variability in their learning outcomes. Finally, in contrast to recent work where some

form of guidance was provided during the problem-solving phase (e.g., DeCaro and

Rittle-Johnson, 2012 provided accuracy feedback, Kapur, 2012 and Schwartz et al., 2011

provided peer collaborative support), Studies 1 and 2 did not provide any such guidance.

Given that the proponents of DI have argued that collaborative support or feedback pro-

vided during problem solving can help manage the high cognitive load during problem

solving, Studies 1 and 2 provide an important demonstration of the effectiveness of

unguided problem solving prior to instruction, even though such problem solving may

invoke a high cognitive load and not result in correct solutions. Of course, this is not to

be taken as an argument that failure during problem solving is a necessary condition for

learning. Instead, integrating findings from Studies 1 and 2 with recent research suggests

that both unguided and guided problem solving prior to instruction seem to be more

effective than DI.

One explanation of the better performance of PF students comes by way of prior

knowledge activation and differentiation during the problem-solving phase, which may

help them better notice and attend to the critical features of the concept—an explanation

that is consistent with those put forth in past research (DeCaro & Rittle-Johnson, 2012;

Schwartz et al., 2011; Siegler, 1994). To support this explanation, one must minimally

evidence two things: (a) students who were given opportunities to activate and differenti-

ate prior knowledge prior to instruction learned better on average than those who did not.

The better performance of PF over DI students on conceptual understanding (items that

targeted critical features of the concept) in both the studies provides such evidence. For

example, a student having generated a solution of summing the year-on-year deviations
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may better understand the need to take deviations from the mean as opposed to some

other point in the distribution than a student who did not have the opportunity to generate

such a solution, and (b) the greater the prior knowledge activation and differentiation in

students who were given such an opportunity, the better the learning on average. To the

extent that student-generated solutions and evaluations can be seen as a proxy indicator

of prior knowledge activation and differentiation (or as Schwartz and colleagues refer to

it as an indicator of a build-up of prior knowledge), the significant relationship between

the number of student-generated solutions and learning outcomes seems to provide such

evidence.

Given that there was no difference between the three conditions on procedural knowl-

edge (items that targeted the ability to deploy the correct procedures for calculating and

interpreting SD), the explanation that PF may have increased the likelihood of correct

procedures being selected over incorrect ones was not evidenced. Finally, the explanation

by way of better engagement was also not evidenced as there was no significant differ-

ence between the conditions on engagement.

It could also be argued that generating solutions may help manage cognitive load

because students have to rely on their prior knowledge to do so. According to cognitive

load theory (Sweller & Chandler, 1991), if information from the long-term memory (e.g.,

prior knowledge) can be brought to bear on problem solving, the constraints of working

memory can be better managed (Kirschner et al., 2006). Evidence from the two studies,

however, did not support this argument. Productive failure students reported significantly

greater cognitive load than VF and DI students.

Therefore, there is a need to explain why PF students learned better than VF and DI

students in spite of reporting higher cognitive load. A simple explanation could be that

there is a trade-off between adverse effects of higher cognitive load and the facilitative

effects of prior knowledge activation and differentiation; the latter outweighing the for-

mer provided the cognitive load is not so high that learners give up. Thus conceived,

high cognitive load may not be monotonically bad for learning (Hiebert & Grouws,

2007; Schmidt & Bjork, 1992). In addition to designing for an optimal amount of cogni-

tive load, a synthesis across several studies suggests other key design features for PF for

its benefits to be realized: (a) the problem must admit multiple solutions, strategies, and

representations, that is, afford sufficient problem and solution spaces for exploration, (b)

the problem should activate learner’s prior knowledge—formal as well as intuitive—to

solve the problem. Whether or the extent to which the learner is able to correctly solve

the problem will depend in part upon the amount and nature of guidance provided, (c)

students must themselves generate and explore solutions and not simply be presented

with peers’ solutions (for a fuller explication of design principles of PF, see Kapur &

Bielaczyc, 2012). Over the course of several studies, these features have been used to

design and test PF activities in a range of topics in mathematics (e.g., ratio and propor-

tion, SD, normalization) as well as science (e.g., Newtonian kinematics, electric current,

genetics).

Interestingly, studies 1 and 2 also showed that students generated more solutions to

the problem before receiving instruction than after. This possibly suggests that although
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instruction may guide students to produce correct solutions, it may also create a lock-in

and constrain search for new solutions. These findings are consistent with the work of

Bonawitz et al. (2011), who demonstrated a similar effect on children playing with toys

with versus without guidance from adults. An explanation that Bonawitz et al. (2011)

proposed is that students may infer from instruction by a knowledgeable adult that all the

relevant knowledge and procedures that they need to learn have already been taught dur-

ing instruction. Such an inference, on one hand, reduces the likelihood of search for irrel-

evant solutions but, on the other hand, also comes at the expense of limiting exploration.

Finally, it could be argued that the better performance of PF students could be attrib-

uted to the recency of instruction they received. There are several reasons why recency

may not sufficiently explain the findings. First, performance on the transfer items suggests

that the better performance of PF students cannot be due to recency because the content

required to solve this item was not covered during instruction. Likewise, the content for

five of the eleven conceptual understanding items (items 4a-e identified in the supplemen-

tary materials) was not explicitly covered during instruction but had to be deduced from

it. Second, similar findings were obtained in prior quasi-experimental comparisons

between PF and DI (Kapur, 2010, 2012, 2013), wherein the posttest was not administered

immediately after instruction but 1–2 days later. Third, note that DI students engaged in

problem solving that tested their ability to apply the concept and procedures of SD (and

not on an unrelated task), and findings suggest that they did so successfully. Taken

together, these reasons mitigate the possibility that the better performance of PF students

was mainly due to recency.

In conclusion, these findings simply suggest that when learning a new concept and its

associated procedures, we seem to learn better from our own failed solutions than those

of others, although, absent the opportunity to learn from our own failures, we are better

off trying to learn from others’ failed solutions than from DI.
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Note

1. It must be acknowledged that performance on procedural knowledge was generally

at ceiling, and therefore, the posttest may not have been able to pick differences on

procedural knowledge. A ceiling effect is in part due to the relatively straightfor-

ward nature of computing and interpreting SD.
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