The residual error sharply increases when dimension is reduced below 2 because 2 is the lowest dimensions that these set of images can be represented in (in terms of theta1 and theta2)
It is impossible to exactly represent these images using any number of dimensions less than 2
The boundary theta-s are not on the boundary of this graph
The residual errors increases with the higher number of configurations
theta1 | theta1 | y1 | y1 |
21.708280 | 23.289759 | -323.3017 | -415.4495 |
20.963717 | 26.445587 | -375.5832 | 287.6242 |
25.773035 | 19.942950 | -188.7415 | -127.9989 |
26.921942 | 10.453383 | -450.5406 | 82.4779 |
28.739040 | 16.162862 | 294.9661 | 439.1663 |
24.460459 | 12.614105 | -126.0120 | -245.5464 |
27.325196 | 7.879244 | -4.2116 | -49.3457 |
23.942938 | 21.592861 | 169.0180 | 378.5916 |
28.450352 | 13.065413 | 572.2561 | -562.2537 |
27.155386 | 4.504699 | 85.6251 | 96.5912 |
24.558251 | 7.640685 | -267.3923 | 355.7070 |
25.452280 | 12.361451 | 103.3769 | 216.0948 |
25.685854 | 23.495475 | -28.8359 | -66.9891 |
28.677191 | 4.586599 | 269.4704 | 363.4453 |
22.755089 | 12.452133 | 98.4703 | -117.8967 |
29.240948 | 9.477505 | -234.7320 | -486.0001 |
27.894608 | 4.657732 | 336.4506 | -824.1019 |
20.822057 | 27.990783 | 104.2011 | -26.7218 |
20.255749 | 12.828469 | -190.7173 | -508.8002 |
23.821824 | 9.272910 | 361.0947 | 157.9159 |
We can say that
2.3295e+004
3.1665e+003
These two eigen values are pretty large as compared to the rest of the eigen values. e.g. The subsequent 3 eigen values are:
1.335e+003 <\p>
1.005e+003
3.23e+002
Plot of points in 2d after PCA:
Code used:
model = lle(double(data),8,2);
disp(model);
yprime = model(:,1)+model(:,2);
[IDX, D] = knnsearch((model)',(yprime)','k',8);
[COEFF,scores,latent] = princomp((double(data))','econ');
latentd = sort(latent,'descend');
disp(latentd(1));
disp(latentd(2));
i1=0;
i2=0;for i=1:size(latent)
if(i1==0)
if(latent(i) == latentd(1))
i1=i;
end
end
if(i2==0)
if(latent(i) == latentd(2))
i2=i;
end
end
end
scores2 = [scores(:,i1), scores(:,i2)];
scatter(scores2(:,1),scores2(:,2));
COEFF2 = [COEFF(:,i1), COEFF(:,i2)];
data1 = [scores(1,1)*COEFF2(:,1), scores(1,2)*COEFF2(:,2)];
data2 = [scores(2,1)*COEFF2(:,1), scores(2,2)*COEFF2(:,2)];
datavg = data1+data2;
finaldat = datavg(:,1)+datavg(:,2);
img1 = reshape(finaldat,100,100);
img1 = imresize(img1 ,[800 800]);
imshow(img1);
Columns 1 through 5
0.4152 0.4633 -0.9008 0.1889 -1.8013 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 6 through 10 1.2107 0.1692 -0.1742 -1.1041 0.2440 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 11 through 15 1.1688 0.7376 -0.8987 -0.4803 1.5450 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 16 through 20 -1.0656 -0.1976 0.7152 1.3658 1.4343 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 21 through 25 -0.9348 1.4439 0.0749 0.4982 0.3161 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 26 through 30 -0.3003 -1.0394 -0.1051 0.3519 -0.2138 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 31 through 35 0.2435 0.4666 1.5578 -0.1426 1.2610 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 36 through 40 0.6492 -1.8609 -0.4142 -1.8033 0.8148 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 41 through 45 -1.8098 -0.8328 0.0760 0.5499 -0.0984 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 46 through 50 1.0985 -0.7668 0.2669 0.0386 0.7633 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 51 through 55 0.2686 1.2689 0.1492 0.2066 1.4287 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 56 through 60 -0.8853 0.8936 1.4169 0.0851 0.3552 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 61 through 65 -1.8288 1.2826 -0.7267 -0.3751 -1.7093 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 66 through 70 0.8434 -1.6805 -1.1359 -1.5234 0.2007 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 71 through 75 0.2780 -1.4879 0.2388 0.7024 -1.0986 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 76 through 80 -0.6116 -1.5418 -0.8451 -0.1752 -1.6009 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 81 through 85 -0.3770 -0.8422 0.1032 -1.6888 1.5523 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 86 through 90 -0.6695 0.2864 1.6278 0.4872 1.0765 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 91 through 95 0.9887 -1.2443 -0.4657 0.7740 1.2824 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 96 through 100 1.2910 -1.0248 -1.5243 1.1915 1.5986 1.0000 1.0000 1.0000 1.0000 1.0000
Code used:
model = lle(double(data),8,2);
disp(model);
yprime = model(:,1)+model(:,2);
[IDX, D] = knnsearch((model)',(yprime)','k',8);
However the knnsearch function kept giving errors and hence the question couldnt be fully answered
After executing pca.m on the 2k pics the 2d plot of points:
Error generated: ??? Error using ==> svd Out of memory. Type HELP MEMORY for your options.
Conducting isomap on 2k data, 2D plot obtained: