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1 Martin-Löf randomness
Definition 1.1. A set A ⊆ 2ω has MEASURE 0 iff ∀ε > 0 there is an open set Gε sets such that µ(Gε) < ε , and
A⊆

⋂
ε Gε .

Example 1.2. A singleton set {r} has measure 0, since for every ε > 0, we can construct the sequence
(
r− ε

2 ,r+
ε

2

)
.

It is possible to extend the idea to show that countably infinite sets have measure 0. Consequently, rationals form a
measure 0 set.

Example 1.3. We want to show that the set of all binary sequences in which some finite string is absent, has probability
0. This is also called the set of non-disjunctive sequences.

Consider the set of all binary sequences which does not contain a specific pattern, say 01. Define, for i ≥ 0,
Si : 2ω →{0,1} by

S01
i (X) =

{
1 if XiXi+1 6= 01
0 otherwise.

Example 1.4. which attains 1 exactly on the set of sequences which do not have 01 at the ith position. We want
P
[
∩i∈N1−1

(
S01

i
)]

. This is not easy to compute exactly, since Sis are dependent - for example, 01 occurring in the first
position forbids it occurring in the second position. However, it is easy to see that S01

0 ,S01
2 ,S01

4 , . . . are independent ran-

dom variables, since P
[
S01

2` = 1|S01
2 j1

, . . . ,S01
2 jk

]
= P[S01

2` = 1], for any finite collection of even indexed random variables

S01
2 j1

, . . . ,S01
2 jk

, where S01
2` /∈

{
S01

2 j1
, . . . ,S01

2 jk

}
. Moreover, P

[
∩i1−1

(
S01

i
)]
≤ P

[
∩i1−1

(
S01

2i

)]
. We have, by independence,

P
[
∩i1−1 (S01

2i
)]

= ∏
i

P
(
1−1 (S01

2i
))

= lim
n→∞

n

∏
i=0

P
(
1−1 (S01

2i
))

= lim
n→∞

(
3
4

)n

= 0,

hence P
[
∩i∈N1−1

(
S01

i
)]

= 0.
Since the number of finite strings is countable, taking a countable union over all such specific finite strings w∈ 2<ω ,

(replacing appropriately, 3/4 in the above calculation with
(

1− 1
2|w|

)
),we conclude that the set of non-disjunctive

sequences, ∪w∈2<ω ∩i∈N Sw
i , has measure 0.

Martin-Löf effectivized the notion of a measure 0 set to define a constructive measure 0 set, by requiring first, that
there is a uniform enumeration of the open sets Gm. Additionally, the measure of the open sets also decreases in an
“effective” manner - we require that the measures of the sets have upper bounds uniformly computable in m, the index
of the open set in the sequence.

Definition 1.5. A sequence of open sets 〈Gm〉m∈N is called a MARTIN-LÖF TEST if the sequence is uniformly c.e. and
for every m ∈ N,we have µ(Gm)≤ 2−n. An infinite binary sequence Z ∈ 2ω FAILS the test if Z ∈

⋂
m Gm.

Theorem 1.6. There is a universal Martin-Löf test.
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Proof. Let 〈Ge
m〉e,m∈N be an uniform c.e. enumeration of open sets such that for every e,m ∈ N, µ(Ge

m)≤ 2−m. Then
define, for b ∈ N, the set Ub = ∪e∈NGe

e+b+1. Since it is a c.e. union of uniformly c.e. open sets, each Ub is c.e. open.
It is also easy to see that Ubs are uniformly computably enumerable in b. Further, we have

µ(Ub)≤ ∑
e∈N

µ(Ge
e+b+1)≤ ∑

e∈N
2e+b+1 = 2b.

Now, suppose that Z ∈ 2ω is not MLrandom. Then for some e ∈ N, Z ∈ ∩mGe
m. By definition, for each b ∈ N,

Z ∈Ub, i.e. Z ∈ ∩bUb.

The universal Martin-Löf test defines the largest constructive measure 0 set, say S . Since each test captures
some “randomness deficiency”, the set S is the set of sequences which have randomness deficiency identifiable by a
“constructive” test, as realized by a Martin-Löf test. Hence, the complement of S , the smallest constructive measure
1 set, is the set of all “random” sequences. This set of sequences are now called Martin-Löf random sequences.

Definition 1.7. A sequence is MARTIN-LÖF RANDOM if it is an element of the smallest constructive measure 1 set.

Example 1.8. Adapting the estimate in Example 1.3, we can show that the set of disjunctive sequences has constructive
measure 0. [Exercise] This shows that every Martin-Löf random is disjunctive - i.e. every finite string appears in every
Martin-Löf random.

Example 1.9. A computable Z ∈ 2ω is not MLR. Consider Gm = [Z � m]. Then 〈Gm〉m∈N is a Martin-Lof test: it is
clear that Gms are uniformly c.e. Moreover, for every m ∈ N, µ(Gm)≤ 2−m.

The natural next question is whether we can show that every c.e. sequence is non-random. We introduce the
notion of a LEFT-C.E. REAL. A real number r is left-c.e. if its left cut, the set of rationals less than r, is c.e. - i.e.
{q ∈Q | q < r} is c.e.

Let S be an infinite language. Then its characteristic sequence χS is defined by χS[i] = 1 if the ithstring in the
standard enumeration is an element of S, otherwise χS[i] = 0. If S is computably enumerable, then χS is a left-c.e. real
- consider, for every k ∈ N, the set S � k of the set of all strings of length at most k which is accepted within k steps
by a fixed machine accepting S. Since S is infinite, it follows that χS�k is a rational which is strictly less than χS. The
sequence χS[k], k ∈ N, can be used to show that χS is left-c.e.

Now we pose the question: is every left-c.e. real non-random? We expect the answer to be yes, since such
sequences are approximable from below by Turing machines, even though the rate of convergence to the limit may not
be computable. Surprisingly, however, there are random left-c.e. reals. The most famous such example is Chaitin’s Ω,
described in the following example.

Example 1.10. It is not true that every left c.e. real is random. Consider the following sequence, called Chatin’s Ω:

Ω = ∑
p∈P

U(p)↓

1
2|p|

.

This is at most 1 by Kraft’s inequality. Moreover, it is left c.e. by a series of approximations 〈Ωs〉s∈N which consider
the summands corresponding to programs that halt by the sthstep.

Ωs = ∑
p∈P

U(p)[s]↓

1
2|p|

.

Why is Ω incompressible? It is possible to show that given the first n bits of Ω, we can decide whether all
programs of length ≤ n halt. [Homework] This then makes it possible to comptue the first string x in the standard
ordering of strings with K(x)> n. But this is possible only for finitely many strings (see below, the discussion on K).

Example 1.10 shows perhaps that the notion of Martin-Lof randomness is not a very “strong” notion of randomness.
We will see when we study the interaction of Turing reducibility and Martin-Lof randomness, another sense in which
this notion has some weakness.
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2 Equivalent characterizations of Martin-Löf randoms

2.1 Characterization using martingales
We defined ML non-randoms using constructive measure 0 sets. Another very useful way to look at ML non-randoms
is that there are betting strategies which can succeed in making unbounded amounts of money by betting on them.
This approach uses the notion of “martingales”, which are fair betting strategies.

In the following exposition, we will not give the general definition of a martingale, which requires measure theory,
and the notion of filtrations of σ -algebras. We will, instead, use the definition specialized for 2ω , as defined by Schnorr,
and independently developed in the works of J. Lutz and others.

Definition 2.1. A MARTINGALE m : 2<ω → [0,∞) is a function which satisfies the following conditions:

1. [finite initial capital] m(λ )≤ 1

2. [fairness] for every w ∈ 2<ω , we have m(w) = m(w0)+m(w1)
2 .

If condition 2 is replaced by m(w)≥ m(w0)+m(w1)
2 , then m is called a SUPERMARTINGALE.

The intuition is that a martingale is a “fair betting” strategy, betting on the binary tree. The martingale m starts
with a finite initial capital, m(λ ), which is upper bounded by 1. At any string w ∈ 2<ω , the martingale m bets on its
extensions w0 and w1. The fairness condition (condition 2) says that the expected amount of money after the next bet,
i.e. m(w0)+m(w1)

2 , is equal to the present capital, m(w). Thus on an average, m neither loses nor wins money.
Of course, this does not prevent m from making unbounded amounts of money on some specific paths along the

binary tree, as long as the set of those paths have 0 measure. This observation establishes a connection between
measure 0 sets and the success of martingales. We formally define the notion of a martingale succeeding, as follows.

Definition 2.2. A martingale m : 2<ω → [0,∞) SUCCEDS on Z ∈ 2ω if

limsup
n→∞

m(Z � n) = ∞.

The following inequality bounds the probability of success of a martingale.

Lemma 2.3. (Kolmogorov inequality) Let m : 2<ω → [0,∞) be a martingale. Then µ (Z ∈ 2ω | ∃n m(Z � n)> N)< 1
N .

Definition 2.4. The above notion is classical, and we now impose computability restrictions on it. Contrary perhaps to
our expectation, we do not insist that the martingale is computable, but only that there are computable approximations
to the value from below.

Definition 2.5. A martingale m : 2<ω → [0,∞) is called LOWER SEMICOMPUTABLE (or CONSTRUCTIVE) if there is
a total computable function m̂ : 2<ω ×N→ [0,∞)∩Q such that the following conditions hold.

1. [monotonicity from below] For every w ∈ 2<ω and every n ∈ N, we have m̂(w,n)≤ m̂(w,n+1)≤ m(w).

2. [(non-effective) convergence] For every w ∈ 2<ω , we have limn→∞ m̂(w,n) = m(w).

Lemma 2.6. For every lower semicomputable martingale m : 2ω → [0,∞), there is a Martin-Löf test 〈Gi〉i∈N such that
every infinite binary sequence on which m succeeds, is in ∩i∈NGi. Conversely, for every Martin-Löf test 〈Gi〉i∈N, there
is a lower semicomputable martingale m : 2ω → [0,∞) which succeeds on every infinite sequence in ∩i∈NGi.

Proof. Denote, for every x ∈ 2<ω , the set of all infinite binary sequences with x as a prefix, by [x].
Let 〈Gi〉i∈N be the universal Martin-L{̈o}f test. For each i ∈ N, define mi : 2<ω → [0,∞) by

mi(x) = µ(Gi∩ [x])2|x|.

Then mi(λ )≤ 2−i, and for every x ∈ 2<ω , we have

m(x0)+m(x1)
2

=
µ(Gi∩ [x0])2|x0|+µ(Gi∩ [x1])2|x1|

2
=

µ(G∩ [x0])+µ(G∩ [x1])
2

2|x|+1 =
µ(G∩ [x])

2
2|x|+1 = m(x),
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where the third equality follows since µ is a probability measure. Hence mi is a martingale.
Note that for every X ∈ 2ω , for every prefix x of X inside Gi, we have mi(x) = µ(Gi∩ [x])2|x| = µ([x])2|x| = 1.
Now, define the function m : 2ω → [0,∞) by m = ∑i∈N mi. We can easily verify that m is a lower semicomputable

martingale. Also, if X ∈ ∩i∈NGi. Then, for each i ∈ N, we conclude that limsupn→∞ m(x) = ∞.
Conversely, let m : 2ω → [0,∞) be a lower semicomputable martingale. Then, for every i ∈ N consider the set

Gi = {Z ∈ 2ω | ∃n m(Z � n) > 2i}. It is easy to verify that Gis are uniformly c.e. open in i. Moreover, by the
Kolmogorov inequality, µ(Gi)≤ 2i. If limsupn m(Z � n) = ∞, then Z ∈ ∩i∈NGi.

Corollary 2.7. There is a universal semicomputable martingale.

Proof. This is the martingale which corresponds to the universal MLtest.

Since a sequence is Martin-Löf random if and only if it fails the universal MLtest, we have the following.

Theorem 2.8. X is Martin-Löf random if and only if the universal constructive martingale fails on it.

2.2 Characterization using incompressibility
Let P ⊆ 2<ω be a prefix-free set, i.e. if a string x is in P , then no proper prefix of x, or a proper extension of x can
be in P .

Example 2.9. The set {0n1 | n ∈ N} is an infinite prefix-free set.

...
Prefix-free sets are quite sparse. The following lemma is an important property of prefix-free sets, and captures a

sense in which they are sparse.

Lemma 2.10. (Kraft inequality) If P ⊆ 2ω is a prefix-free set, then we have ∑x∈P 2−x ≤ 1.

Proof. Consider the following experiment: we toss an unbiased fair coin multiple times, marking the outcome as 1 if
Heads, and 0 if tails until we either hit an element in P and stop, or we toss forever. Then the probability of hitting
an x ∈Pis exactly 2−x. By the prefix-free property, along any one sequence of trials, we can hit at most one element
of P . Thus, the probability that our experiment halts and produces some element of P is exactly ∑x∈P 2−|x|. Since
this is the probability of an event in a well-defined probability space, it is at most 1.

Fix a prefix-free machine M. Consider the following cylinder sets:

RM
b =

[{
x ∈ 2<ω | KM(x)≤ |x|−b

}]
.

This is the set of all infinite binary sequences with some b-compressible prefix.

Lemma 2.11. 〈RM
b 〉b∈N is a Martin-Löf test.

Proof. The condition KM(x) ≤ |x| − b is equivalent to checking that there is some prefix-free program σ such that
M(σ) = x, and |σ | ≤ |x|−b. Hence the sets RM

b are c.e. uniformly in b.
Now we show that µ(RM

b )≤ 2−b. Consider SM
b = {x ∈ 2<ω | KM(x)≤ |x|−b}, and let V M

b ⊂ SM
b be the subset of

strings which are minimal under the prefix ordering - that is, if x,y are both in SM
b and y extends x, then y /∈V M

b . Then

∑
x∈V M

b

1
2|x|

= µ(RM
b ).

Let x ∈V M
b and let σx be a shortest M-description of x. Since |σx| ≤ |x|−b,we have 2−|σx| ≥ 2b2−|x|. Then

1≥ ∑
x∈V M

b

1
2|σx|

≥ 2b
∑

x∈V M
b

1
2|x|

= 2b
µ(RM

b ),

from which it follows that µ(RM
b )≤ 2−b.
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The following result relies on a technique called Levin’s coding theorem. See Nies 09 for an exposition. We skip
the proof of Levin’s coding theorem since it is technical.

Theorem 2.12. A sequence X ∈ 2ω is Martin-Löf random iff ∃b∀n K(X � n)> n−b, equivalently, X /∈ RM
b .

Proof. By the previous lemma, 〈RM
b 〉b∈Nis a Martin-Löf test. Hence, if there is a b such that X /∈ RM

b , then X is
MLrandom.

Now, suppose 〈Gm〉m∈N is a Martin-Löf test and X ∈ ∩mGm. We can assume that µ(Gm)≤ 2−2m.
We form a BOUNDED REQUEST SET L.
We obtain, uniformly in m, an antichain 〈xm

i 〉i<Nm , such that Gm = [{xm
i | i < Nm}].

Let
L = {(xm

i , |xm
i |−m+1) | m ∈ N, i < Nm} .

Since µ(Gm)≤ 2−2m, the contribution of Gm to L is at most 2−2m+m−1 = 2−m−1, hence L is a bounded request set.
Let Md be the prefix-free machine for L given by Levin’s coding theorem. Fix b ∈ N and let m = b+d +1. Since

X ∈ Gm, we have a prefix xm
i of X for some i. Thus, K(xm

i )≤ |xm
i |−m+1+d = |x|−b.

3 Facts about Martin-Löf randoms
This material is adapted from Section 3.2 of Nies 2009. We formulate the proofs in terms of Martin-Löf tests, whereas
Nies uses K-incompressibility.

Definition 3.1. Z ∈ 2ω satisfies the strong law of large numbers if

lim
n→∞

∑
n−1
i=0 Zi

n
=

1
2
.

Theorem 3.2. Every Martin-Löf random satisfies the strong law of large numbers.\

Proof. For m,n ∈ N, define

Bm,n =

{
w ∈ 2n |

∣∣∣∣∣n−1

∑
i=0

wi−
n
2

∣∣∣∣∣≥ 1
2m

}
.

Using Chernoff bound (see, for example, Corollary 4.6 of Mitzenmacher, Upfal, second edition), we have

P(Bmn)≤ 2e−n/2×(2−2m/3).

Let Bm = ∪n∈NBm,n. Then, we have

P(Bm) = P

(⋃
n∈N

Bm,n

)
≤ ∑

n∈N
2e−n/2×(2−2m/3) = 2e−2m/6.

Hence, Cm defined to be

Theorem 3.3. Suppose Y ∈ 2ω is a tail of Z ∈ 2ω . Then Y is ML-random if and only if Z is ML-random

Proof. Suppose Gm is an open set containing Z with measure less than 2−m, and Z = σY for some finite string σ . Let
T : [0,1]→ [0,1] denote the left-shift defined by T x = 2x mod 1. We observe that T |σ |Z = Y .

Since Gm contains Z, it follows that T |σ |(Gm) contains Y . By induction on the length of any finite string τ , it is
possible to show that µ

[
T |τ|(Gm)

]
≤ 2|τ|µ[Gm].

Hence,
〈
T |σ |(Gm+|σ |)

〉
m∈N is a Martin-Löf test for Y .

Generalizing the technique, we get the following theorem.

Lemma 3.4. Suppose f : N→ N is a computable 1-1 function. If X ∈ 2ω is MLrandom, then so is f−1(X).

4 van Lambalgen’s Theorem
<to be added>
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5 The Kučera-Gács Theorem
This theorem shows a surprising interaction between Turing reducibility and Martin-Löf randomness. Intuitively, we
do not expect any meaningful data (e.g. non-random data) to be computed from random data - for example, van
Lambalgen’s theorem implies that the bits in the even bits of a Martin-Löf random are themselves Martin-Löf random.
On the other hand, the following theorem shows that for any data, there is some Martin-Löf random from which we
can compute it.

We follow the proof by Merkle and Mihailovic, which utilizes martingales. The overview of the martingale argu-
ment is as follows: pick the universal constructive martingale. Since it wins only on a measure 0 subset of 2ω , any
finite string r must have two extensions on which the the martingale loses money, a left path and a right path. We
define an infinite sequence R by finite extension along one of these losing paths at each stage. If our given infinite
sequence X has 0 at the current position, then R chooses the left path, otherwise, R chooses the right path. Since the
martingale loses money, R is random, and by construction, X ≤T R.

Lemma 5.1. (Space Lemma) Given a rational δ > 1 and an integer k>0, we can compute a length `(δ ,k) such that
for any martingale m : 2<ω → [0,1) and any σ ,∣∣∣{τ ∈ 2`(δ ,k) | m(στ)≤ δm(σ)

}∣∣∣≥ k.

Proof. By Kolmogorov inequality, we have∣∣∣{τ ∈ 2`(δ ,k) | m(στ)> δm(σ)
}∣∣∣

2`(δ ,k)
≤ 1

δ
.

Let `(δ ,k) = dlog k
1− 1

δ

e. Then

∣∣∣{τ ∈ 2`(δ ,k) | m(στ)≤ m(σ)
}∣∣∣≤ 2`(δ ,k)− 2`(δ ,k)

δ
=

k
1−δ−1 −

k
δ (1−δ−1)

=
k

1−δ−1

(
1−δ

−1)= k.

We want to encode an arbitrary sequence X ∈ 2ω into an MLR Y . Clearly, X cannot be coded into Y as a subse-
quence at easily recognized locations. Thus, it is difficult to try X ≤mR. However, we show that X ≤wtt R. The idea is
to encode X at the “bad” locations for the universal martingale as provided by the Space Lemma above.

Theorem 5.2. For any X ∈ 2ω , there is a Martin-Löf random R ∈ 2ω such that X ≤ R.

Proof. Let m : 2ω → [0,∞) be a universal c.e. martingale. Assume that liminfn m(R � n)< ∞.
Let r0 > r1 > .. . be a sequence of positive rationals so that ∏i∈N ri converges. For each stage s, let `s = `(rs,2) as

in the Space Lemma. Then, for every stage s, there are at least two strings τ of length `s where m(στ)≤ rsm(σ).
Let X be given. We now construct R that wtt-computes X . At stage s, if X [s] = 0, then Rs−1 is extended by a string

τs which is either the leftmost path above, or the rightmost path from the Space Lemma.
Also observe that R is random, since the capital of the martingale is infinitely often upper bounded by ∏i ri < ∞.
We now show how to compute X from R. Suppose, inductively, that we have computed the prefix X � s from

R �
(
∑

s−1
i=1 `s−1

)
. We know that the next extension of R, namely, τ , is either the leftmost path from the Space Lemma,

or the rightmost path from the Space Lemma. We simulate the martingale m on all extensions of R �
(
∑

s−1
i=1 `s−1

)
of

length `s until either all paths to the left of τ have capital ≥ δm
(
R �
(
∑

s−1
i=1 `s−1

))
or all paths to the right of τ have

capital ≥ δm
(
R �
(
∑

s−1
i=1 `s−1

))
. By construction, exactly one of these must happen, and this can be detected since m

is a c.e. martingale. In the first case, τ must be the leftmost path, hence X [s+1] = 0, otherwise X [s+1] = 1.

6 Degrees containing randoms
As an easy consequence of the proof of the Kučera-Gács theorem, we have the following result about what kind of
degrees contain a Martin-Löf random.
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Theorem 6.1. If 0′ ≤ a, then a contains a Martin-Löf random.

Proof. Let a≥ 0′ and let X ∈ a. It suffices to show that there is a Martin-Löf random which is Turing-equivalent to X .
Let R be the random constructed as in the proof of the Kučera-Gács theorem, which computes X . Then X ≤ R.
We now show that R ≤ X ⊕ /0′. Observe that to compute the bits of R, it suffices to know the bits of X together

with the knowledge of which sets are s-admissible for each s. This can be computed from X and /0′. Thus, R≤ X⊕ /0′.
Since X ≥ /0′, it follows that R≤ X .

Hence, we conclude that X ≡ R, thus R ∈ a.

7 A counterexample by Ville
A selection rule is a partial function f : 2ω 99K {yes,no} which is the basis for the selection of an output subsequence
from a given sequence. After observing a k-length prefix, for example, f may say whether to select the kthbit into
the output sequence or not. Define the partial function s f : 2ω ×N 99K N by s f (α,n) = k if k is the nth prefix length
k such that f (α � k) = yes, if such a k exists, and is undefined otherwise. If s f (α,n) = k, then define S f (α,n) =
∑

n−1
i=0 α[s f (α, i)], the number of 1s in the first n bits of the output sequence.

For the particular selection function f which always says yes at every prefix of every string, we denote S f (α,n)
by S(α,n).

The following theorem by Ville shows that for every selection process, there is some sequence such that the selected
subsequence may not have some desirable randomness properties. The theorem is interesting: it does not, as we may
expect, select a subsequence whose frequency of 1s differs from that of the input sequence. Rather, it says that the
output sequence converges to the limit only from one side. This lopsided convergence is a behavior we can exploit to
bet and win on it using a martingle.

Theorem 7.1. (Ville) Let E be any countable collection of selection functions. Then there is a sequence α ∈ 2ω such
that the following hold.

1. [Frequency stability of the whole sequence] limn
S(α,n)

n = 1
2 .

2. [Frequency stability of every selected subsequence] For every f ∈ E which selects infinitely many bits of α ,
limn

S f (α,n)
n = 1

2 .

3. [Monotone convergence from below for the whole sequence] For every n, S(α,n)
n ≤ 1

2 .

In the following discussion, we prove a weaker version of Ville’s theorem, where the collection of selection functions
is finite.

Proof. Without loss of generality, we assume that the function which selects every index is an element of E. This
implies, first, that E is not empty, and further, condition 2 subsumes 1.

Consider α � n. Let C(n) = { f ∈ E | f (α � n) = yes} be the set of functions which select the index n. Set α[n] = 0
if the set C(n) has appeared an even number of times in C(0),C(1), . . . ,C(n), and set α[n] = 0 otherwise. This ensures
condition 3, since each 1 appearing in α can be uniquely matched with a preceding 0 in a previous position.

Now, suppose n0 < n1 < .. . is a strictly increasing sequence of positions selected by f ∈ E. For any C ⊆ E, let
ni0 < ni1 < .. . be the possibly finite sequence of positions at which C appears as the set of functions selecting the
position. We have α

[
ni j

]
is when j is even, and 1 when j is odd. Thus, the number of 1s among the first n bits of α

selected by f differ by at most 1 for every subset of E. Thus∣∣∣n
2
−S f (α,n)

∣∣∣≤ 2|E|,

and it follows that limn
S f (α,n)

n = 1
2 .
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8 Schnorr randomness
C. P. Schnorr in 1971 criticized that Martin-Löf tests are not sufficiently computable, and that the tests ought to be
computable in a strict sense. This leads to a weaker notion of randomness, now called SCHNORR RANDOMNESS.
Contrast this with Remark ?? where we said that the Kučera-Gács theorem indicates that we need a stronger notion of
randomness. Thus both stronger and weaker notions of randomness than MLrandomness are justified, and are studied
in the literature. Here, we cover the basics of Schnorr randomness.

Definition 8.1. A SCHNORR TEST is a ML test 〈Gm〉m∈N such that µ(Gm) is computable, uniformly in m. Z ∈ 2ω

FAILS the test if Z ∈ ∩m∈NGm, otherwise Z PASSES the test. A real Z ∈ 2ω is SCHNORR RANDOM if it passes every
Schnorr test.

The difference between a Schnorr test and a ML test is that the probability of Gm must be exactly known and be
computable, whereas in an ML test, an upper bound suffices. (Since Gm is c.e. open, µ(Gm) is lower semicomputable.)

Since we are not in the setting of lower semicomputability, we do not expect there to be a universal Schnorr test.
This is indeed the case.

Theorem 8.2. There is no universal Schnorr test.

It suffices to show that there is no single Schnorr test which covers all Schnorr non-randoms. In other words, for
every Schnorr test, there is a Schnorr non-random which passes the test. Surprisingly, computable sets suffice for the
argument.

Proof. Let Z be a computable set. Then 〈[Z � m]〉m∈N is a sequence of clopen sets such that for every m, µ([Z � m]) =
2m, hence uniformly computable. Thus Z is not Schnorr random.

However, every Schnorr test is passed by a computable set. Let 〈Gm〉m∈N be a Schnorr test. Let us focus on the
complement of the first open set, G1. We note that 2ω −G1 is a Π0

1class having positive, computable measure. By
Exercise ..., it follows that it has a computable path Z ∈ 2ω . But Z /∈ ∩m∈NGm, so Z passes the Schnorr test.

8


