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The following lemma applies to all Boolean functions such that at size S, every circuit of size is guar-
anteed to make at least δ2n errors.

Definition 0.1. A distributionD over Σn is said to have density δ‘ > 0 if for every string x ∈ Σn, we have
D(x) ≤ 1

δ2n .

This is related to a concept studied in pseudorandomness, called a δ-flat distribution.

Definition 0.2. A distribution onΣn isK-flat if there is a set of 0 < K ≤ 2n strings on which it is uniformly
distributed.

Note that every K-flat distribution is a K2n-dense distribution. Conversely, the set of density δ distri-
butions can be viewed as the set of distributions over δ2n-flat distributions.

We use the observation about the converse in the proof of the following theorem.

Theorem 0.3 (Impagliazzo hardcore lemma). For every δ > 0, f ∈ Σn → Σ, and ∀ϵ > 0, ifH1−δ
a (f) ≥ S,

then there is a δ-density distribution D such that for every circuit of size ≤ ϵ2

100nS, we have

Prx∼D[C(x) = f(x)] ≤ 1

2
+ ϵ. (1)

Point to ponder:

Why did we not write the conclusion of the above theorem simply by saying

H1/2+ϵ
a ≥ ϵ2

100n
S? (2)

A: The Ha notation is only when the input x ∼ Un. In the above, we conclude for x ∼ D. We do not
have the result for x ∼ Un. We can think of the above as a result as x being almost uniformly distributed
over a δ2n-sized subset of Σn, ignoring the subtle difference between a flat distribution and a δ-dense
distribution.

Proof overview: The simplified alternative proof, from Arora-Barak, is non-constructive: it does not
explicitly construct the δ-dense distribution H , but it shows that it exists. Impagliazzo’s original proof is
constructive.
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content of the theorem

The content of the Impagliazzo hardcore lemma is the following. If a function if (1−δ) hard on average,
then either

1. ∀ C of size S, the fraction of inputs it gets wrong is approximately δ2n. However, these “mistake
sets” may be disjoint. As a result, if we take a few circuits, it may turn out that every instance is
solvable by at least one of those circuits.

2. extremely hard on a few instances but may even be easy on others: ∃ a small set T approximately
of size (δ2n) on which every circuit of size S is wrong on nearly half the strings in T . On T c, the
function may be even easy to compute.

The theorem says that it is always the second case for every Boolean function f which is (1−δ) hard on
average!! This is somewhat hard to believe, except if one keeps in mind that the circuit sizes involved
may be small for “easy” Boolean functions.

Proof. Let f : Σn → Σ be such that H1−δ
a (f) ≥ S. Assume the lemma is false.

Consider the following two-player game: There are two players who play randomized strategies:

Complexity Theorist (C): plays first, and chooses a distribution over δ-density distributions. This is
equivalent to selecting a δ-density distribution D. (see inset)

Algorithmist (A): Chooses a distribution C over circuits of size ≤ ϵ2S
100n .

Now, the game proceeds: we draw a string x at random according to D and a circuit C at random
according to C. If C(x) = f(x), then the complexity theorist C pays 1 unit to player A. Otherwise, there is
no reward for A.

This is a zero-sum game, since, if C starts with c dollars and A starts with a dollars, then at the end of
the game, the combined capital of both players is still c+ a.

The von Neuman minmax theorem for zero sum games states that if both players adopt randomized
strategies, then the order of players does not matter: A can attain the same expected value even playing first.

Note that the expected value that A gains in the above game is:

1 × Prx∼D,C∼C [C(x) = f(x)] + 0 × Prx∼D,C∼C [C(x) ̸= f(x)] = Prx∼D,C∼C [C(x) = f(x)]. (4)

It is in the interest ofC (the complexity theorist), to minimize this value as much as possible. By assumption,
this value is at least 1/2 + ϵ.

By the von Neumann minimax theorem, we have

min
D

max
C

Prx∼D,C∼C [C(x) = f(x)] = max
C

min
D

PrC∼C,x∼D[C(x) = f(x)] ≥ 1

2
+ ϵ. (5)

Hence there is a distribution Cmax over circuits of this size such that

PrC∼Cmax,x∼D[C(x) = f(x)] ≥ 1

2
+ ϵ. (6)
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About randomized choices

A can choose a distribution C over S′-sized circuits (i.e. circuits of size ϵ2

100n ) since the set of such
circuits is finite.
How can C choose a δ-dense distribution at random? This requires explanation.
First, we note that the set of δ-dense distributions is precisely the set of convex combinations of δ2n
flat distributions, as we mentioned in the beginning of this chapter. Since there are 2n strings in Σn and(
2n

δ2n

)
ways to select the subset of elements on which to place the probability, we have

(
2n

δ2n

)
flat sources,

a finite set - denote this by F1, . . . , F( 2n

δ2n)
.

Now, a probability distribution over such δ-dense distributions is a convex combination of δ-dense
distributions. Such convex combinations of convex combinations of δ2n flat distributions can be written
merely as convex combinations of the finite number of δ2n flat distributions. This leads us to conclude
that a distribution over δ-dense distributions is itself a δ-dense distribution.
So for the player C, all (s)he has to do is to pick a set of convex weights a1, . . . , a( 2n

δ2n)
- i.e. all ai ≥ 0,

and
∑

ai = 1. The δ-dense distribution will be

( 2n
δ2n)∑
i=1

aiFi. (3)

Call a string x “tough” if PrC∼Cmax [C(x) = f(x)] < 1/2 + ϵ, and easy otherwise. (Note that this is a
probability over circuits for a given x.)

Then there are at most δ2n tough strings. Otherwise, we could let D be a uniform distribution over the
tough strings, and this would violate our assumption.

Let us choose a circuit C as follows: Set t = 50n/ϵ2, pick C1, . . . , Ct independently from Cmax. Let

C(x) = majority{C1(x), . . . , Cn(x)}. (7)

Using Chernoff bounds, the probability that for every easy string x,

PrC1,...Cn∼Cmax [C(x) ̸= f(x)] < 2−n. (8)

Using the fact that the sizes of each Ci is less than S′, we may verify that the circuit for computing C has
size less than S. (there are n smaller circuits, and then a circuit on top to compute the majority of n bits.)

Since there are at most 2n easy strings. By the union bound, there must be a circuit C such that C(x) =
f(x) for every easy x. But since there are less than δ2n tough strings, this means that

Prx∼Un [C(x) = f(x)] > 1− δ, (9)

which contradicts our assumption that H1−δ
a (f) ≥ S.

This completes the proof.
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