Impagliazzo hardcore predicate lemma

Satyadev Nandakumar

August 17, 2023

The following lemma applies to all Boolean functions such that at size S, every circuit of size is guaranteed to make at least $\delta 2^{n}$ errors.

Definition 0.1. A distribution D over Σ^{n} is said to have density $\delta^{*}>0$ if for every string $x \in \Sigma^{n}$, we have $D(x) \leq \frac{1}{\delta 2^{n}}$.

This is related to a concept studied in pseudorandomness, called a δ-flat distribution.
Definition 0.2. A distribution on Σ^{n} is K-flat if there is a set of $0<K \leq 2^{n}$ strings on which it is uniformly distributed.

Note that every K-flat distribution is a $K 2^{n}$-dense distribution. Conversely, the set of density δ distributions can be viewed as the set of distributions over $\delta 2^{n}$-flat distributions.

We use the observation about the converse in the proof of the following theorem.
Theorem 0.3 (Impagliazzo hardcore lemma). For every $\delta>0, f \in \Sigma^{n} \rightarrow \Sigma$, and $\forall \epsilon>0$, if $H_{a}^{1-\delta}(f) \geq S$, then there is a δ-density distribution D such that for every circuit of size $\leq \frac{\epsilon^{2}}{100 n} S$, we have

$$
\begin{equation*}
\operatorname{Pr}_{x \sim D}[C(x)=f(x)] \leq \frac{1}{2}+\epsilon \tag{1}
\end{equation*}
$$

Point to ponder:

Why did we not write the conclusion of the above theorem simply by saying

$$
\begin{equation*}
H_{a}^{1 / 2+\epsilon} \geq \frac{\epsilon^{2}}{100 n} S ? \tag{2}
\end{equation*}
$$

A: The H_{a} notation is only when the input $x \sim U_{n}$. In the above, we conclude for $x \sim D$. We do not have the result for $x \sim U_{n}$. We can think of the above as a result as x being almost uniformly distributed over a $\delta 2^{n}$-sized subset of Σ^{n}, ignoring the subtle difference between a flat distribution and a δ-dense distribution.

Proof overview: The simplified alternative proof, from Arora-Barak, is non-constructive: it does not explicitly construct the δ-dense distribution H, but it shows that it exists. Impagliazzo's original proof is constructive.

content of the theorem

The content of the Impagliazzo hardcore lemma is the following. If a function if $(1-\delta)$ hard on average, then either

1. $\forall C$ of size S, the fraction of inputs it gets wrong is approximately $\delta 2^{n}$. However, these "mistake sets" may be disjoint. As a result, if we take a few circuits, it may turn out that every instance is solvable by at least one of those circuits.
2. extremely hard on a few instances but may even be easy on others: \exists a small set T approximately of size $\left(\delta 2^{n}\right)$ on which every circuit of size S is wrong on nearly half the strings in T. On T^{c}, the function may be even easy to compute.

The theorem says that it is always the second case for every Boolean function f which is $(1-\delta)$ hard on average!! This is somewhat hard to believe, except if one keeps in mind that the circuit sizes involved may be small for "easy" Boolean functions.

Proof. Let $f: \Sigma^{n} \rightarrow \Sigma$ be such that $H_{a}^{1-\delta}(f) \geq S$. Assume the lemma is false.
Consider the following two-player game: There are two players who play randomized strategies:
Complexity Theorist (C): plays first, and chooses a distribution over δ-density distributions. This is equivalent to selecting a δ-density distribution D . (see inset)

Algorithmist (A): Chooses a distribution \mathcal{C} over circuits of size $\leq \frac{\epsilon^{2} S}{100 n}$.
Now, the game proceeds: we draw a string x at random according to D and a circuit C at random according to \mathcal{C}. If $C(x)=f(x)$, then the complexity theorist \mathbf{C} pays 1 unit to player \mathbf{A}. Otherwise, there is no reward for \mathbf{A}.

This is a zero-sum game, since, if \mathbf{C} starts with c dollars and \mathbf{A} starts with a dollars, then at the end of the game, the combined capital of both players is still $c+a$.

The von Neuman minmax theorem for zero sum games states that if both players adopt randomized strategies, then the order of players does not matter: A can attain the same expected value even playing first.

Note that the expected value that \mathbf{A} gains in the above game is:

$$
\begin{equation*}
1 \times \operatorname{Pr}_{x \sim D, C \sim \mathcal{C}}[C(x)=f(x)]+0 \times \operatorname{Pr}_{x \sim D, C \sim \mathcal{C}}[C(x) \neq f(x)]=\operatorname{Pr}_{x \sim D, C \sim \mathcal{C}}[C(x)=f(x)] . \tag{4}
\end{equation*}
$$

It is in the interest of \mathbf{C} (the complexity theorist), to minimize this value as much as possible. By assumption, this value is at least $1 / 2+\epsilon$.

By the von Neumann minimax theorem, we have

$$
\begin{equation*}
\min _{D} \max _{\mathcal{C}} \operatorname{Pr}_{x \sim D, C \sim \mathcal{C}}[C(x)=f(x)]=\max _{\mathcal{C}} \min _{D} \operatorname{Pr}_{C \sim \mathcal{C}, x \sim D}[C(x)=f(x)] \geq \frac{1}{2}+\epsilon . \tag{5}
\end{equation*}
$$

Hence there is a distribution $\mathcal{C}_{\text {max }}$ over circuits of this size such that

$$
\begin{equation*}
\operatorname{Pr}_{C \sim \mathcal{C}_{\text {max },}, x \sim D}[C(x)=f(x)] \geq \frac{1}{2}+\epsilon . \tag{6}
\end{equation*}
$$

About randomized choices

A can choose a distribution \mathcal{C} over S^{\prime}-sized circuits (i.e. circuits of size $\frac{\epsilon^{2}}{100 n}$) since the set of such circuits is finite.
How can \mathbf{C} choose a δ-dense distribution at random? This requires explanation.
First, we note that the set of δ-dense distributions is precisely the set of convex combinations of $\delta 2^{n}$ flat distributions, as we mentioned in the beginning of this chapter. Since there are 2^{n} strings in Σ^{n} and $\binom{2^{n}}{\delta 2^{n}}$ ways to select the subset of elements on which to place the probability, we have $\binom{2^{n}}{\delta 2^{n}}$ flat sources,

Now, a probability distribution over such δ-dense distributions is a convex combination of δ-dense distributions. Such convex combinations of convex combinations of $\delta 2^{n}$ flat distributions can be written merely as convex combinations of the finite number of $\delta 2^{n}$ flat distributions. This leads us to conclude that a distribution over δ-dense distributions is itself a δ-dense distribution.
So for the player \mathbf{C}, all (s)he has to do is to pick a set of convex weights $a_{1}, \ldots, a_{\left(\delta_{\delta 2}^{2 n}\right)}^{2 n}-i . e$ all $a_{i} \geq 0$, and $\sum a_{i}=1$. The δ-dense distribution will be

$$
\begin{equation*}
\sum_{i=1}^{\substack{\left.2 n \\ \delta 2^{n}\right)}} a_{i} F_{i} \tag{3}
\end{equation*}
$$

Call a string x "tough" if $\operatorname{Pr}_{C \sim \mathcal{C}_{\text {max }}}[C(x)=f(x)]<1 / 2+\epsilon$, and easy otherwise. (Note that this is a probability over circuits for a given x.)

Then there are at most $\delta 2^{n}$ tough strings. Otherwise, we could let D be a uniform distribution over the tough strings, and this would violate our assumption.

Let us choose a circuit C as follows: Set $t=50 n / \epsilon^{2}$, pick C_{1}, \ldots, C_{t} independently from $\mathcal{C}_{\text {max }}$. Let

$$
\begin{equation*}
C(x)=\operatorname{majority}\left\{C_{1}(x), \ldots, C_{n}(x)\right\} . \tag{7}
\end{equation*}
$$

Using Chernoff bounds, the probability that for every easy string x,

$$
\begin{equation*}
\operatorname{Pr}_{C_{1}, \ldots C_{n} \sim \mathcal{C}_{\max }}[C(x) \neq f(x)]<2^{-n} . \tag{8}
\end{equation*}
$$

Using the fact that the sizes of each C_{i} is less than S^{\prime}, we may verify that the circuit for computing C has size less than S. (there are n smaller circuits, and then a circuit on top to compute the majority of n bits.)

Since there are at most 2^{n} easy strings. By the union bound, there must be a circuit C such that $C(x)=$ $f(x)$ for every easy x. But since there are less than $\delta 2^{n}$ tough strings, this means that

$$
\begin{equation*}
\operatorname{Pr}_{x \sim U_{n}}[C(x)=f(x)]>1-\delta, \tag{9}
\end{equation*}
$$

which contradicts our assumption that $H_{a}^{1-\delta}(f) \geq S$.
This completes the proof.

