
Pseudorandom generators: Derandomizing BPP

October 3, 2023

1 Pseudorandom generator

Definition 1. A distribution R over {0, 1}m is (S, ϵ)-pseudorandom if for every circuit C of size ≤ S,

|Prx∼R [C(x) = 1]− Prx∼Um [C(x) = 1]| < ϵ.

Thus, to every small enough circuit,R looks close to being uniformly at random. Here, the first parameter
S denotes the size of the circuit, and ϵ denotes the distinction tolerance.

Definition 2. Let S : N → N be some “stretch function”. A E-time computable function G : {0, 1}∗ →
{0, 1}∗ is called a pseudorandom generator if |G(z)| = S(|z|) for every string z, and for every ℓ ∈ N, the
distribution G(Uℓ) is (S(ℓ)3, 1/10)-pseudorandom.

Here S denotes the stretch parameter, which also relates polynomially to the circuit size of the distin-
guishing circuit. Thus S plays two roles in the above definition.

Discussion on the parameters: The “stretch” acheived on any ℓ-length string is S(ℓ). The collection of
such strings produced (a distribution supported on2ℓmany strings out of 2S(ℓ)many strings overall) is resilient
against circuits of size S(ℓ)3.

The choices of the constants 3 and 1/10 are arbitrary, but are made fixed for easing the discussion below.
A degenerate case: Suppose G is the identity function, G(z) = z. Then the output distribution is Uℓ. Is

Uℓ a (ℓ3, 1/10)-pseudorandom distribution? Yes, because the difference in Definition 1 will be 0 for circuits
of any size.

2 Derandomization from Pseudorandom generators

We first see how we can use pseudorandom generators to derandomize BPP. In the next section, we see how
to construct pseudorandom generators from average-case hard functions.

The idea in the present section is quite simple: brute-force enuemerate the entire range of the PRG, and
then run the randomized algorithm on all generated pseudorandom seeds instead of the uniformly random
coins.

Theorem 3. If there is an S(ℓ)-pseudorandom generator, then, for every polynomial-time computable func-
tion ℓ : N → N, BPTIME(S(ℓ(n)) ⊆ DTIME(2cℓ(n)).

Discussion of the parameters. Suppose we want the target to be DTIME(nc). Then clearly, ℓ(n) =
log(n). If S(ℓ(n)) = ncon the left, then this means that the stretch function S must be exponential, i.e.
S(k) = 2k. So BPP=P using the above result requires pseudorandom generators with exponential stretch.
(It also follows that they must be indistinguishable for S(ℓ(n))3 = n3c-sized circuits.)

1

Proof. Suppose L ∈ BPTIME(S(ℓ(n)). Then there is an algorithm A : {0, 1}∗ → {0, 1}∗that on input
x ∈ {0, 1}n, runs in time cS(ℓ(n)) for some constant c, and satisfies

Pr
r∼{0,1}S(ℓ(n)) [A(x, r) = L(x)] ≥ 2

3 .

Consider the following deterministic algorithm B. On input x, over all z ∈ {0, 1}ℓ(n), it runs A(x,G(z))
and outputs their majority.
We claim that for all sufficiently large n, the fraction of z for whichA(x,G(z)) = L(x) is at least 2/3−0.1.
If this claim is true, then note that the algorithm B is always correct on x, hence L ∈ DTIME(2cℓ(n)).
Suppose the claim is false, and there is an infinitely many xs for which

Pr[A(x,G(z)) = L(x)] < 2/3− 0.1.

Then, for infinitely many lengths, there are circuits which hardcode the appropriate x to do the following:
on input r, output A(x, r). Then∣∣∣[Pr

z∼{0,1}ℓ(n)(A(x,G(z)) = L(x)
]
−
[
Prr∼US(ℓ(n))

(A(x, r) = L(x)
]∣∣∣ ≥ 0.1,

which violates the assumption that G is a pseudorandom generator.

We now see a construction of a simple pseudorandom generator.

Theorem 4. Suppose there is a function in E with average-case hardness n4. Then there is an S(ℓ)-
pseudorandom generator for S(ℓ) = ℓ+ 1.

That is, given any binary string “seed” z, the pseudorandom generator outputs a string of length one more
than that of z. The set of output strings as z ranges over n-length strings will be a pseudorandom distribution
over {0, 1}n+1.

Proof. Le G(z) = z ◦ f(z). Then we show that G is ((ℓ+ 1)3, 1/10)-pseudorandom.
If there is a circuit C of size 2(ℓ+ 1)3 < ℓ4such that

Prz∼{0,1}n [C(z1 . . . zn) = f(z)] >
1

2
+

1

20(ℓ+ 1)
>

1

2
+

1

ℓ4
,

then this violates the assumption that f is hard on average for circuits of size < n4.

3 Pseudorandom generators from strong average-case hardness

We describe two initial ideas for extending the observation in Theorem 4. We could consider the pseudoran-
dom generator which extends z by two bits - first by using the first half of the string and evaluating a hard
function on it, and then by using the second half of the string and evaluating a hard function on it. That is,
for every z ∈ {0, 1}ℓ,

G(z) = z1 . . . zℓ/2 ◦ f(z1 . . . zℓ/2) ◦ zℓ/2+1 . . . zn ◦ f(zℓ/2+1 . . . zℓ).

The analysis is similar as before, except that we have to note that f(z1 . . . zℓ/2) and f(zℓ/2+1 . . . zℓ) are
independent, hence the first cannot help in predicting the second.

Can we generalize this observation, dividing z into a fixed number of blocks, and interspersing the values
of f on those blocks? This will produce a psuedorandom string from a random z. However, the output string

2

is going to be only at most twice as long as the original string (since the extra number of bits will be equal
to the number of blocks, and there are at most |z| many blocks).

We need an exponential stretch.
This is where the Nisan-Wigderson generator comes into the picture. Some of the ideas are similar to the

blockwise encoding. The major conceptual difference is that we will reuse bits in many blocks. Thus, the
blocks will “overlap” significantly, and the overlapping blocks may not even occur adjacent to each other in
z. Formally, the concept we use is the notion of a combinatorial design.

3.1 The Nisan-Wigderson Pseudorandom generator.

Definition 5. Let I = {I1, . . . , Im}be a family of subsets of the set of integers {1, 2, . . . , ℓ} where every
set in the family has exactly n integers. (n ≤ ℓ). Let f : {0, 1}n → {0, 1} be a Boolean function.

The Nisan-Wigderson pseudorandom generator [1] is the function NWf,I : {0, 1}ℓ → {0, 1}m defined
by

NWf,I(z) = f (zi1) ◦ · · · ◦ f (zim) ,

where zij is the substring obtained by restricting z to the indices from Ij .

Discussion on the parameters: The maximum value of m is
(
ℓ
n

)
. This value is maximal when n is ℓ/2,

where the number of subsets can be
(

ℓ
ℓ/2

)
= 2Θ(ℓ) by Stirling’s approximation. So the generator can stretch

an ℓ-length string to length 2Θ(ℓ).
For the generator to produce pseudorandom outputs from random z, the following conditions must be

met:

1. f must satisfy hardness assumptions,

2. the family of sets I must form a combinatorial design, defined below.

Definition 6. Let d < n < ℓ. A (d, n, ℓ)-combinatorial design is a family of sets I = {I1, . . . , Im}of
subsets of {1, 2, . . . , ℓ} ,where each subset has exactly n elements, and two distinct sets have at most d
common elements.

We now show that

1. combinatorial designs with 2d/10 subsets can be constructed in time 2O(ℓ)time (Lemma 7)

2. If a function’s average-case hardness is 22d, then the Nisan-Wigderson generator is
(
Ha(f)
10 , 1

10

)
-

pseudorandom.

Here the stretch function is the number of subsets, which is 2d/10. The circuit size bound is Ha(f)
10 = 22d

10 .
Thus the stretch function and the circuit size are polynomially related.

Lemma 7. There is an algorithm, which, given ⟨d, n, ℓ⟩where d < n and 10n2/d < ℓ, runs for 2O(ℓ)steps,
and outputs an (d, n, ℓ)-combinatorial design containing 2d/10subsets of {1, 2, . . . , ℓ} .

Proof. Start with ∅and keep adding sets to the collection as long as they satisfy the intersection condition and
the cardinality condition, till we get 2d/10subsets. We have to argue that under the assumption that d < n
and 10n2/d < ℓ, there are enough such sets.

3

We argue that if ℓ = 10n2/d and {I1, . . . , Im} is a collection of n-element subsets of {1, 2, . . . , ℓ}where
pairwise intersections of distinct sets have at most d elements, if m < 2d/10, then there is an n-element
subset I of {1, 2, . . . , ℓ}such that it has at most d common elements with the previously selected sets.

For this, instead of counting such sets, we use the probabilistic method. Select I at random by selecting
n elements independently at random, with each element chosen to be in I with probability 2n/ℓ. Then the
expected size of I is 2n, and the expected size of any intersection, by independence, is |I∩Ij | = 2n2/ℓ < d/5
for any 1 ≤ j ≤ m. Hence by Chernoff bound,

Pr [|I| > n] > 0.9

Pr [|I ∩ Ij | ≥ d] ≤ 0.5× 2d/10

The probability that I will have at least n elements and have at most d elements in common with all the
remaining elements, is at least 0.4. This completes the proof.

References

[1] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System Sciences,
49:149–167, 1994.

4

