Unconditional Pseudorandomness: Expanders and Extractors

October 31, 2023

Contents

1 Random walks and eigenvalues 1
1.1 Distributions as vectors, and the spectral gap $\lambda(G)$. 2

2 Expander Graphs 5
2.1 Algebraic Definition (Spectral expansion) 6
2.2 Combinatorial Definition (Edge expansion) 6
2.3 Expander Mixing Lemma . 7
2.4 Algebraic expansion implies combinatorial expansion 8
2.5 Combinatorial expansion implies algebraic expansion 9
2.6 Error reduction using expanders 11

3 Undirected graph reachability in non-deterministic logspace 14

1 Random walks and eigenvalues

We consider random walks on undirected graphs. The graphs can have "multi edges" (i.e. there may be multiple parallel edges between the same set of vertices), and self-loops.

We first recall some basic facts from linear algebra. We use the linear space \mathbb{R}^{n}. If $u, v \in \mathbb{R}^{n}$ are two vectors, then their inner product is

$$
\langle u, v\rangle=\sum_{i=[n]} u_{i} v_{i} .
$$

The vectors are orthogonal if their inner product is 0 . The L_{2}-norm of any vector $v \in \mathbb{R}^{n}$, denoted $\|v\|$, is

$$
\|v\|=\sqrt{\langle v, v\rangle} .
$$

A unit vector is one whose L_{2}-norm is 1 .
The Pythagorean theorem says that if $u, v \in \mathbb{R}^{n}$ are orthogonal, then $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.

The L_{1}-norm of a vector $v \in \mathbb{R}^{n}$, denoted $|v|$, is $|v|=\sum_{i \in[n]}\left|v_{i}\right|$.
The relation between these norms is as follows.
Fact 1. For every $v \in \mathbb{R}^{n}$, we have

$$
\frac{|v|}{\sqrt{n}} \leq\|v\| \leq|v|
$$

Proof. The upper bound on $\|v\|$ follows from the following observation. We have

$$
\|v\|^{2}=\sum_{i \in[n]} v_{i}^{2}=\sum_{i \in[n]}\left|v_{i}\right|^{2} \leq\left(\sum_{i \in[n]}|v|_{i}\right)^{2},
$$

where the last inequality is due to the fact that the last term contains an additional term $\sum_{i, j \in[n], i<j} 2|v|_{i}|v|_{j}$ which is non-negative. Conversely, we have,

$$
|v|=\sum_{i \in[n]}\left|v_{i}\right|=\sum_{i \in[n]}\left|v_{i} \times 1\right| \leq\left(\sum_{i \in[n]}\left|v_{i}\right|^{2}\right)\left(\sum_{i \in[n]} 1^{2}\right)=n\|v\|,
$$

using the Cauchy-Schwartz inequality.

1.1 Distributions as vectors, and the spectral gap $\lambda(G)$

Let G be a d-regular graph (with self-loops and parallel edges), and \boldsymbol{p} be a probability distribution on the vertices of G.

Pick a vertex i from G at random according to the distribution p. Now, let q be the distribution over the vertices defined over the neighbors $N(i)$ of the selected vertex i.

Then for every vertex $1 \leq j \leq n, q(j)=\sum_{i \in N(j)} p(i) \times \frac{1}{d}$.
Thus, $q=A p$, where A is the normalized adjacency matrix of $G-A[i][j]$ is defined to be the number of edges between i and j, divided by $1 / d$. We call A the random-walk matrix of G. Since G is an undirected graph, A is a symmetric matrix. Since G is d-regular, the sum of entries in each row
and each column is exactly one. Such a matrix is called a doubly stochastic matrix.

By induction, it is easy to show that the probability distribution over the vertices when we start a random walk at vertex i and take ℓ steps is $A^{\ell} e_{i}$.
Definition 2. Let 1 be the vector $\left(\frac{1}{n}, \ldots, \frac{1}{n}\right) \in \mathbb{R}^{n}$. Denote by 1^{\perp} the set of vertices orthogonal to 1 . The parameter $\lambda(G)$ is defined to be

$$
\lambda(G)=\max _{\substack{v \in 1^{\perp} \\\|v\|=1}}\|A v\| .
$$

We now show that $\lambda(G)$ is the second eigenvalue of the normalized adjacency matrix of a d-regular graph. This needs some pre-requisite results.

Lemma 3. All eigenvalues of a Hermetian matrix are real.
Proof. Let M be a Hermetian matrix, i.e. $M=M^{*}$ (entries of M^{*} are complex conjugates of the corresponding entries of M). Let x be an eigenvector corresponding to an eigenvalue λ of M. Then

$$
\begin{aligned}
\langle\lambda x, x\rangle & =\lambda^{*} x^{*} x \\
& =x^{*} M^{*} x \\
& =x^{*} M x \\
& =\lambda x x^{*},
\end{aligned}
$$

since $M=M^{*}$ for a Hermetian matrix. Since $x \neq 0$, we have $\lambda=\lambda^{*}$, implying that λ is real.

Hence the eigenvalues of the normalized adjacency matrices of undirected graphs are real. We now have a special property for the eigenvalues of d regular undirected graphs. Here, the real eigenvalues are upper bounded in absolute value by 1 .

Lemma 4. Let A be the normalized adjacency matrix of a d-regular graph, and λ be an arbitrary eigenvalue of A. Then $|\lambda| \leq 1$.

Proof. We show that the spectral norm of A is at most 1. Recall that the spectral norm is
$\|A\|=\max \left\{\|A v\|: v \in \mathbb{R}^{n},\|v\|=1\right\}=\max \{|\lambda|:$ is an eigenvalue of $A\}$.
First we show that $\|A\| \leq n^{2}$. Note that all powers of A are also stochastic. Now, since

$$
\langle w, B z\rangle=\left\langle B^{*} w, z\right\rangle
$$

and $\langle w, z\rangle \leq\|w|\|\mid\| z \|$ by the Cauchy-Schwarz inequality, we have

The above lemma stated that the largest absolute value of any eigenvalue for the adjacency matrix of a d-regular graph is 1 . The following states that 1 is indeed

Lemma 5. If A is the adjacency matrix of a d-regular graph, then its largest eigenvalue is 1 .

Proof. HW2

Lemma 6. 1 is an eigenvalue of the normalized adjacency matrix of a dregular graph.

Proof. It suffices to observe that $u=(1 / n, \ldots, 1 / n)$ is an eigenvector corresponding to the eigenvalue 1 . Indeed, we have, for every $i \in[n],(A u)_{i}=$ $\sum_{j \in[n]} a_{i j} u_{j}=1 / n\left(\sum_{j \in[n]} a_{i j}\right)=1 / n=u_{i}$.

Hence, we know that the absolute values of the eigenvalues of the normalized adjacency matrix of a d-regular graph can be sorted as $1=\left|\lambda_{1}\right| \geq$ $\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$, with corresponding eigenvectors $1, v_{2}, \ldots, v_{n}$. Also, since $1^{\perp}=\operatorname{Span}\left\{v_{2}, \ldots, v_{n}\right\}$, the value $\lambda(G)$ will be maximized by the vector v_{2}, hence, $\lambda(G)=\left|\lambda_{2}\right|$.

The quantity $1-\lambda(G)$ (i.e. the difference between the first and the second eigenvalues) of the normalized adjacency matrix of a d-regular graph is called the spectral gap of the matrix. Its importance is that it controls the rate at which iterated applications of A to a probability vector p causes it to converge to 1 in L_{2}-norm.

Lemma 7. Let G be a regular graph, and p be a probability distribution over its vertices. Then for every $\ell \in \mathbb{N}$, we have

$$
\left\|A^{\ell} p-1\right\| \leq \lambda^{\ell} .
$$

Since $\lambda<1$, we conclude that iterated applications of A to any distribution p will lead to the uniform distribution on the vertices.

Every connected graph has a non-trivial spectral gap.
Lemma 8. Let G be a d-regular connected graph with n vertices, and selfloops at each vertex. Then $\lambda(G) \geq 1-\frac{1}{12 n^{2}}$.
Proof. Let $\epsilon=\frac{1}{6 n^{2}}$. Let $u \perp 1$ be a unit vector (i.e. $\sum_{i \in[n]} u_{i}=0$ and $\|u\|=1$: note here that u is not a probability vector), and let $v=A u$.

We show that $\|v\| \leq 1-\frac{\epsilon}{2}$. If $\|v\| \leq 1-\frac{\epsilon}{2}$, then $\|v\|^{2} \leq 1+\epsilon^{2} / 2-2 \epsilon \leq 1-\epsilon$, hence, $\|v\|^{2} \leq 1-\epsilon$. Thus it suffices to show that $1-\|v\|^{2} \geq \epsilon$. Since u is a unit vector, we show that $\|u\|^{2}-\|v\|^{2} \geq \epsilon$.

We first show that

$$
\begin{equation*}
\|u\|^{2}-\|v\|^{2}=\sum_{i \in[n]} \sum_{j \in[n]} A_{i, j}\left(u_{i}-v_{j}\right)^{2} . \tag{1}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\sum_{i, j} A_{i j}\left(u_{i}-v_{j}\right)^{2} & =\sum_{i, j} A_{i, j} u_{i}^{2}-2 \sum_{i, j} A_{i j} u_{i} v_{j}+\sum_{i, j} A_{i j} v_{j}^{2} \\
& =\|u\|^{2}-2\langle A u, v\rangle+\|v\|^{2} \\
& =\|u\|^{2}-2\langle v, v\rangle+\|v\|^{2} \\
& =\|u\|^{2}-\|v\|^{2}
\end{aligned}
$$

Thus, we have established (1)
Now, we show that $\sum_{i, j} A_{i, j}\left(u_{i}-v_{j}\right)^{2} \geq \epsilon$. Since u is a unit vector whose coordinates sum to zero, there must be coordinates $u_{i}>0$ and $u_{j}<0$ such that at least one of these co-ordinates must have absolute value $\geq \frac{1}{\sqrt{n}}$, implying $u_{i}-u_{j} \geq \frac{1}{\sqrt{n}}$. Let us rename u_{i} as u_{1} and u_{j} as u_{D+1}, where D is the diameter of G. Since G is connected, there is a path $u_{1}, u_{2}, \ldots, u_{D+1}$. We have

$$
\begin{aligned}
\frac{1}{\sqrt{n}} & \leq u_{1}-u_{D+1} \\
& =\left(u_{1}-v_{1}\right)+\left(v_{1}-u_{2}\right)+\cdots+\left(v_{D}-u_{D+1}\right) \\
& \leq\left|u_{1}-v_{1}\right|+\left|v_{1}-u_{2}\right|+\cdots+\left|v_{D}-u_{D+1}\right| \\
& \leq \sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(v_{1}-u_{2}\right)^{2}+\cdots+\left(v_{D}-u_{D+1}\right)^{2}} \sqrt{2 D+1}
\end{aligned}
$$

where the last two inequalities follow from the relation between the L_{2} and L_{1} norms of the vector ($u_{1}-v_{1}, v_{1}-u_{2}, \ldots, v_{D}-u_{D+1}$). Thus

$$
\sum_{i, j} A_{i j}\left(u_{i}-v_{j}\right)^{2} \quad \geq \frac{1}{d n(2 D+1)} \geq \frac{1}{2 d n^{2}}
$$

using the trivial estimate $D \leq n-1$. Thus, we have $\lambda(G) \geq 1-\frac{1}{4 d n^{2}}$. Using the tighter estimate $D \leq \frac{3 n}{(d+1)}$ for regular graphs yields the result as stated.

2 Expander Graphs

We now give two approaches to the notion of an expander graph - an algebraic approach, and a combinatorial approach. We show the relationships between the two.

2.1 Algebraic Definition (Spectral expansion)

First, we give the definition of an expander graph based on the parameter $\lambda(G)$.

Definition 9. If G is an n-vertex d-regular graph with $\lambda(G)<1$, then we say that G is an (n, d, λ)-graph.
A family of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ is an expander graph family if there are constants d and $\lambda<1$ such that for every $n \in \mathbb{N}, G_{n}$ is an (n, d, λ)-graph.

The smallest value of $\lambda(G)$ is $(1-o(1)) \frac{2 \sqrt{d-1}}{d}$, which are attained by Ramanujan graphs.
Definition 10. We say that the expander graph family $\left(G_{n}\right)_{n \in \mathbb{N}}$ is explicit if there is a polynomial-time aglorithm that, given 1^{n}, outputs the adjacency matrix of G_{n}. We say that $\left(G_{n}\right)_{n \in \mathbb{N}}$ is strongly explicit if there is a polynomial-time algorithm that, given $\langle n, v, i\rangle \in \mathbb{N} \times V \times[d]$, outputs the index of the $i^{\text {th }}$ neighbor of the vertex v in G_{n}. [n and d are as in Definition 9.

2.2 Combinatorial Definition (Edge expansion)

Let $G=(V, E)$ denote a graph with the set of vertices V and the set of edges E.

Definition 11. A constant (d)-degree regular graph $G=(V, E)$ is an expander if $\exists c>0 \forall S \subseteq V,|S| \leq|V| / 2$ implies that

$$
\frac{|\{(a, b) \in E \mid a \in S, b \in V-S\}|}{|\{(a, b) \in E \mid a \in S\}|} \geq c .
$$

That is, a constant fraction of edges incident on vertices of S must be edges from S to its complement.

We now outline a probabilistic argument for the existence of expander graphs. This construction is only one of many possible constructions.

Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of vertices in a graph G we are about to construct. Consider permutations $\pi_{1}, \ldots, \pi_{d}:[n] \rightarrow[n]$ chosen independently and uniformly at random from the set of all permutations. We add edges to the graph as follows. For each permutation $\pi_{i}, 1 \leq i \leq d$, if $\pi_{i}(k)=\ell$, then we add the edge $\{k, \ell\}$ to G. Then G is a $2 d$-regular graph. [For each permutation π_{i} and each k, we have $\pi_{i}(k)=\ell$, and for some integer j (possibly ℓ), we have $\pi_{i}(j)=k$. If j, k, ℓ are all distinct, this adds two edges per permutation to the vertex k. If $j=\ell \neq k$, then this adds parallel edges $\{k, \ell\}$. If $j=k=\ell$, then this adds two self-loops to k.]

Theorem 12. (Existence of expander graphs) The above construction yields a $\left(n, 2 d, \frac{1}{10}\right)$ expander.
Proof. (Outline) The proof is a probabilistic argument. We show that the probability that G is not an expander is less than 1 . This implies that there is some expander following the above construction.

Consider $S \subset V,|S| \leq n / 2$, and let $\bar{S}=V \backslash S$. Let $S=\left\{v_{s_{1}}, \ldots, v_{s_{k}}\right\}$. Select a vertex $v_{s_{i}}$. Define the indicator random variables

$$
X_{j}= \begin{cases}1 & \text { if the jth neighbor of } v_{s_{i}} \text { is in } \bar{S} \\ 0 & \text { otherwise }\end{cases}
$$

Then $\mathbb{E}\left[E\left(v_{s_{i}}, \bar{S}\right)\right]=\mathbb{E}\left[\sum_{j \in[2 d]} X_{i j}\right]=\frac{d}{n}(n-k)$.
Using Hoeffding bound, it is possible to bound the probability that a random choice of π_{1}, \ldots, π_{d} violates the expander property for the given cut S. Using union bound, we show that the probability that there is some cut which violates the expander property, is strictly less than 1.

2.3 Expander Mixing Lemma

Lemma 13. Let G be a d-regular undirected graph, and S, T be disjoint subsets of vertices. Then

$$
\left|E(S, T)-\frac{d|S||T|}{|V|}\right| \leq \lambda(G) \sqrt{|S||T|}
$$

Proof. Note that

$$
|E(S, T)|=1_{S}^{\top} A 1_{T}
$$

and

$$
|S||T|=1_{s}^{\top} J 1_{T}
$$

where J is the all-one matrix. Hence,

$$
\begin{aligned}
\left|E(S, T)-\frac{d|S||T|}{|V|}\right| & =\left|1_{S}^{\top} A 1_{T}-\frac{d}{|V|} 1_{s}^{\top} J 1_{T}\right| \\
& =\left|1_{S}^{\top}\left(A-\frac{d}{|V|} J\right) 1_{T}\right| \\
& \leq\left\|1_{S}^{\top}\right\|\left\|A-\frac{d}{|V|} J\right\|\left\|1_{T}\right\| \\
& =\lambda(G) \sqrt{|S||T|}
\end{aligned}
$$

This explains why expander graphs are considered "pseudorandom" - the number of edges from any S to any disjoint T is similar to what you would expect in a random graph.

2.4 Algebraic expansion implies combinatorial expansion

Lemma 14. If Gis an (n, d, λ)-expander, then it is an $\left(n, d, \frac{(1-\lambda)}{2}\right)$-edge expander.

Proof. Let A be the normalized adjacency matrix of G. Let S and T be arbitrary disjoint subsets of vertices in G. Using the property that the second largest (in absolute value) eigenvalue of A is λ, we show that at least $\frac{1-\lambda}{2}$ fraction of the edges in S cross to T.

Define $x \in \mathbb{R}^{n}$ by

$$
x_{i}= \begin{cases}+|T| & i \in S \\ -|S| & i \in T \\ 0 & \text { otherwise }\end{cases}
$$

Then,

$$
\|x\|^{2}\left|=\left|S \||T|^{2}+|T|\right| S\right|^{2}=|S||T|(|S|+|T|)
$$

and

$$
\sum_{i \in[n]} x_{i}=\sum_{i \in S}|T|-\sum_{i \in T}|S|=|S||T|-|T||S|=0 .
$$

Thus $x \in 1^{\top}$.
Consider the sum of weights obtained by placing the weight $\frac{\left(x_{i}-x_{j}\right)}{2 d}{ }^{2}$ on every edge $\{i, j\}$ in the graph G. If the edge is inside S or inside T, then this weight is 0 , otherwise it is $(|S|+|T|)^{2}$. That is, if we define $Z=$ $\sum_{i, j} A_{i j}\left(x_{i}-x_{j}\right)^{2}$, then it is clear that

$$
Z=\frac{2}{d} E(S, T)(|S|+|T|)^{2}
$$

On the other hand, we also have
$Z=\sum_{i, j} A_{i j} x_{i^{2}}-2 \sum_{i, j} A_{i j} x_{i} x_{j}+\sum_{i, j} A_{i j} x_{j}^{2}=2\|x\|^{2}-2\langle x, A x\rangle$.
Since $\|A x\| \leq \lambda\|x\|$, we have $2\langle x, A x\rangle \leq 2 \lambda\|x\|^{2}$. This yields that

$$
\frac{1}{d} E(S, T)(|S|+|T|)^{2} \geq(1-\lambda)\|x\|^{2}
$$

hence,

$$
\frac{1}{d} E(S, T) \quad(|S|+|T|) \geq(1-\lambda)|S||T|
$$

thus yielding

$$
E(S, T) \geq(1-\lambda) d \frac{|S||T|}{|S|+|T|} \geq(1-\lambda) d \frac{|S||T|}{|V|}
$$

as required.

2.5 Combinatorial expansion implies algebraic expansion

Lemma 15. If G is an (n, d, ρ) edge expander, then its second largest eigenvalue is at most $\left(1-\frac{\rho^{2}}{2}\right)$.

Proof. Let $G=(V, E)$ be an n-vertex d-regular graph such that for every $S \subset V,|S|<n / 2$, there are $\rho d|S|$ edges between S and its omplement. Let A be G's normalized adjacency matrix.

Let λ be the ssecond largest eigenvalue of A. We need to establish that $\lambda \leq\left(1-\frac{\rho^{2}}{2}\right)$. Then there is a vector $u \perp \mathbf{1}$ such that $A u=\lambda u$. Since $u \perp 1$, we have $\langle u, 1\rangle=\sum_{i \in[n]} u_{i}=0$, it is clear that u has positive and negative co-ordinates. Write $u=v+w$ where v is non-zero in co-ordinates where u are positive, and w is non-zero in co-ordinates where u has negative entries. Assume, without loss of generality, that v contains at most $n / 2$ non-zero entries (otherwise, we can use $-u$). Define

$$
Z=\sum_{i, j} A_{i j}\left|v_{i}^{2}-v_{j}^{2}\right|
$$

If we show that

$$
\begin{align*}
& Z \geq 2 \rho\|v\|^{2} \\
& Z \leq \sqrt{8(1-\lambda)}\|v\|^{2} \tag{2}
\end{align*}
$$

then it follows that

$$
\lambda \geq 1-\frac{\rho^{2}}{2}
$$

\S We first show that $Z \geq 2 \rho\|v\|^{2}$. Sort the co-ordinates of v so that $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$, with $v_{i}=0$ for all $i \geq \frac{n}{2}$. Note that

$$
v_{i}^{2}-v_{j}^{2}=\left(v_{i}^{2}-v_{i+1}^{2}\right)+\left(v_{i+1}^{2}-v_{i+2}^{2}\right)+\cdots+\left(v_{j-1}^{2}-v_{j}^{2}\right) .
$$

Hence,
$Z=\sum_{i \in[n]} \sum_{j \in[n]} A_{i j}\left|v_{i}^{2}-v_{j}^{2}\right|=\sum_{i \in[n]} \sum_{j \in[i+1, n]} 2 A_{i j}\left(v_{i}^{2}-v_{j}^{2}\right)=2 \sum_{i \in[n]} \sum_{j \in[i+1, n]} \sum_{k \in[i+1, j-1]} A_{i j}\left(v_{k}^{2}-v_{k+1}^{2}\right)$.
We now estimate the sum above. For every edge $\{i, j\}$, for every $k \in[i, j)$, the term $\left(v_{k}^{2}-v_{k+1}^{2}\right)$ appears once with a weight $2 / d$. Since $v_{k}=0$ for $k \geq n / 2$, this means that the above sum is

$$
\frac{2}{d} \sum_{k \in[n / 2]} \left\lvert\, E\left([k],[k+1, n] \left\lvert\,\left(v_{k}^{2}-v_{k+1}^{2}\right) \geq \frac{2}{d} \sum_{k \in[n / 2]} \rho d k\left(v_{k}^{2}-v_{k+1}^{2}\right) .\right.\right.\right.
$$

We have, using the fact that $v_{i}=0$ for all $i \geq n / 2$, $\sum_{k \in[n / 2]} k\left(v_{k}^{2}-v_{k+1}^{2}\right)=v_{1}^{2}-v_{2}^{2}+2 v_{2}^{2}-2 v_{3}^{2}+\cdots+(n-1) v_{n-1}^{2}-(n-1) v_{n}^{2}=\|v\|^{2}$.
Hence

$$
Z \geq \frac{2}{d} d \rho\|v\|^{2}
$$

establishing the lower bound for Z.

Proof. We now show the upper bound $Z \leq \sqrt{8(1-\lambda)}\|v\|^{2}$. Since $u=v+w$ as stated before, we have $\langle v, w\rangle=0$. Further, $A u=\lambda u$. Thus, we have
$\langle A v, v\rangle+\langle A w, v\rangle=\langle A(w+v), v\rangle=\langle A u, v\rangle=\langle\lambda u, v\rangle=\langle\lambda(v+w), w\rangle=\lambda\langle v, v\rangle=\lambda\|v\|^{2}$.
Since $\langle A w, v\rangle$ is not positive, we have that $\frac{\langle A v, v\rangle}{\|v\|^{2}} \geq \lambda$. Hence,

$$
1-\lambda \geq 1-\frac{\langle A v, v\rangle}{\|v\|^{2}}=\frac{\|v\|^{2}-\langle A v, v\rangle}{\|v\|^{2}}=\frac{\sum_{i, j} A_{i j}\left(v_{i}-v_{j}\right)^{2}}{2\|v\|^{2}} .
$$

Multiplying the numerator and the denominator with the term $\sum_{i, j} A_{i j}\left(v_{i}+v_{j}\right)^{2}$, we get
$\frac{\left(\sum_{i, j} A_{i j}\left(v_{i}-v_{j}\right)^{2}\right)\left(\sum_{i, j} A_{i j}\left(v_{i}+v_{j}\right)^{2}\right)}{2\|v\|^{2}\left(\sum_{i, j} A_{i j}\left(v_{i}+v_{j}\right)^{2}\right)} \geq \frac{\left(\sum_{i, j} A_{i j}\left(v_{i}-v_{j}\right)\left(v_{i}+v_{j}\right)\right)^{2}}{2\|v\|^{2}\left(\sum_{i, j} A_{i j}\left(v_{i}+v_{j}\right)^{2}\right)}$
using the Cauchy Schwarz inequality. Hence,

$$
1-\lambda \geq \frac{\left(\sum_{i, j} A_{i j}\left(v_{i}^{2}-v_{j}^{2}\right)\right)^{2}}{2\|v\|^{2}\left(\sum_{i, j} A_{i j}\left(v_{i}+v_{j}\right)^{2}\right)}=\frac{Z^{2}}{2\|v\|^{2} 2\left(\|v\|^{2}+\langle A v, v\rangle\right)} \geq \frac{Z^{2}}{8\|v\|^{2}}
$$

establishing the upper bound.
This completes the proof.

2.6 Error reduction using expanders

One way of reducing the probability of error in a probabilistic algorithm for a decision problem is to execute it k times independently, and taking the majority output. By Chernoff bounds, it is possible to show that if the probability of error of one execution is at most $1 / 3$, then the probability of the majority of k executions being wrong is $2^{-\Omega(k)}$. If one execution of the algorithm uses m random coins, then the multiple executions take $m k$ random coins.

Using expanders, we can reduce the number of random coins to $m+O(k)$ random coins.

The idea is as follows. Let G be a $\left(2^{m}, d, 1 / 10\right)$-graph from a strongly explicit expander graph family. ${ }^{1}$ Note especially that the number of vertices

[^0]in the graph G is equal to the total number of possible random coins used by the algorithm. Then, we do as follows:
let v_{1} at random For $\mathrm{i}=2$ to k do: From the d neighbors of v_{i-1}, choose a vertex v_{i} at random. [Requires $O(\log d)$ random bits] Run the algorithm with the random coins being v_{1}, \ldots, v_{m} and output the majority
Algorithm 1: Error reduction using a random walk on an expander
We now analyze the probability of error of the above algorithm. Assume that we have an algorithm which makes one-sided errors: for strings not in the language, the original algorithm always says no, and for strings in the language, the algorithm says "yes" with probability $2 / 3$.

In the following theorem, setting $\beta=1 / 3$ and $\lambda=1 / 10$ implies that the probability that the above algorithm will reject an input in the language is bounded by $2^{-\Omega(k)}$.

Theorem 16. (Expander walks)
Let G be an (n, d, λ) expander. Let $B \subseteq[n]$ have at most βn vertices, where $\beta \in(0,1)$. Let $X_{1}, \ldots, X_{k} \in[n]$ be random variables denoting a $k-1$ step random walk in G starting from X_{1}, with X_{1} being uniformly chosen from $[n]$. Then,

$$
\operatorname{Pr}\left[\wedge_{i-1}^{k}\left(X_{i} \in B\right)\right] \leq((1-\lambda) \sqrt{\beta}+\lambda)^{k-1}
$$

To get some intuition about what the theorem says, think of B being a "bad set" which we want to escape. If B is very large, i.e. $\beta \approx 1$, then the right-side expression is approximately 1 , so the above bound is useless - so the bad set cannot be very large. If, on the other hand, the bad set is, say, $0.1 n$, then the probability that all the randomly chosen vertices are in the bad set slowly decays with k - the rate of decay is not as fast as λ^{k-1}, but it is still some γ^{k-1},where $\gamma=(1-\lambda) \sqrt{\beta}+\lambda<1$.

Proof. For $1 \leq i \leq k$, let B_{i} denote the event $X_{i} \in B$.
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined by $(T u)_{i}=u_{i}$ if $i \in B$ and 0 otherwise. Then this transformation "zeroes out" coordinates not in B. It is easy to verify that for every probability vector p over $[n]$, we have $T p$ is a vector whose co-ordinates sum to the probability (according to p) of chosing a vertex in B. If we normalize so that the sum of coordinates of $T p$ is 1 , then we obtain the cpnditional probability distribution of p conditioned on the event of chosing a vertex in B.

Hence, let $\mathbf{1}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$ be the uniform distribution, and let p^{i} be the conditional distribution of X conditioned on the events B_{1}, \ldots, B_{n}. Then

$$
\begin{aligned}
& p^{1}=\frac{1}{\operatorname{Pr}\left[B_{1}\right]} T \mathbf{1} \\
& p^{2}=\frac{1}{\operatorname{Pr}\left[B_{2} \mid B_{1}\right] \operatorname{Pr}\left[B_{1}\right]} T A T \mathbf{1} \\
& \ldots \\
& p^{i}=\frac{1}{\operatorname{Pr}\left[B_{i} \mid B_{1}, \ldots, B_{i-1}\right]}(T A)^{i-1} T \mathbf{1} .
\end{aligned}
$$

Since p is a probability vector, $|p|=1$. Hence, $\operatorname{Pr}\left[\wedge_{i-1}^{k}\left(X_{i} \in B\right)\right]=$ $\left|(T A)^{k-1} T \mathbf{1}\right| \leq \sqrt{n}\left\|(T A)^{k-1} T \mathbf{1}\right\|$, where the last inequality is due to the relation between L_{1} and L_{2} norms. It suffices now to show that

$$
\sqrt{n}\left\|(T A)^{k-1} T \mathbf{1}\right\| \leq((1-\lambda) \sqrt{\beta}+\lambda)
$$

We now assume the following fact, given as Lemma 21.4 in the book. Let A be a random-walk matrix of an (n, d, λ)-expander graph G. Let J be the matrix with all entries equal to $1 / n$. (This corresponds to the adjacency matrix of an n-clique with self-loops. Then

$$
A=(1-\lambda) J+\lambda C
$$

where $\|C\|=: \max \left\{\left\|A v_{2}\right\|: v_{2} \perp \mathbf{1}\right\} \leq 1$.
The use of this fact is as follows. For any probability vector p, we may view the probability vector $A p$ a convex combination of $J p$ (the uniform distribution) and $C p$. This can be interpreted as $A p$ goes to $J p$ with probability $1-\lambda$ and $C p$ with probability λ.

Let $T A$ be written as $(1-\lambda) T J+\lambda T C$. Then

$$
\begin{aligned}
\|T A\| & =(1-\lambda)\|T J\|+\lambda\|T C\| \\
& =(1-\lambda) \sqrt{\frac{\beta n}{n^{2}}}+\lambda\|T C\| .
\end{aligned}
$$

Since $\|T\| \leq 1$, we have $\|T C\| \leq 1$. Hence

$$
\|T A\| \leq(1-\lambda) \sqrt{\beta}+\lambda,
$$

whence

$$
\left\|(T A)^{k-1} T \mathbf{1}\right\| \leq((1-\lambda) \sqrt{\beta}+\lambda)^{k-1} \frac{\sqrt{\beta}}{\sqrt{n}},
$$

as required.

3 Undirected graph reachability in non-deterministic logspace

This section contains the result by Reingold that the randomized logspace algorithm for $s-t$ connectivity in undirected graphs, which relies on random walks, can be completely derandomized.

Theorem 17. (Reingold)

$U P A T H \in L$.
We consider undirected graphs that have a lot of parallel edges. We can assume that we have 4-regular graphs, without loss of generality because of the following reason. If a vertex has degree at most 3 , then we can add parallel self-loops. If a vertex v has degree greater d^{\prime} than 3 , then we can replace it with a cycle of d^{\prime} vertices such that each of the edges incident on v now becomes incident on a unique vertex in the cycle. Since this is a local transformation, it can be performed in logspace.

It is easy to check connectivity in expander graphs. Indeed, Lemma 7 shows that the probability distribution of the $k^{\text {th }}$ vertex in a random walk is approximately $\frac{1}{n} \pm \sqrt{n} \lambda^{k}$. Then a random walk of length $k-O(\log n)$ from s will reach t with positive probability. Hence, If every connected component in G is an expander, then there is a number $k=O(\log n)$ such that every pair of connected vertices have a path of length $\leq k$ between them.

Proof. Assume that the input graph G has degree d^{50} for some sufficiently large d so that there is an $\left(d^{50}, d / 2,0.01\right)$-expander H. We can ensure this by sufficiently many self-loops if necessary. Since d^{50} is a constant independent of the number of vertices in G, we can store H in $O(1)$ bits.

Let

$$
\begin{aligned}
& G_{0}=G \\
& G_{k}=\left(G_{k-1} ® H\right)^{50},
\end{aligned}
$$

where \circledR^{\circledR} denotes the replacement product defined as follows.
Let R, R^{\prime} be two graphs such that R has n vertices, and degree D and R^{\prime} has D vertices and degree d^{\prime}. The (balanced) replacement product of R and R^{\prime}, denoted $R ® R^{\prime}$, is the nD-vertex, 2d'-degree graph defined as follows.

1. For every vertex u of R, the graph $R ® R^{\prime}$ has a copy of R^{\prime}.
2. If $\{u, v\}$ is an edge in R, then we place d^{\prime} parallel edges between the $i^{\text {th }}$ vertex in the copy of R^{\prime} corresponding to u and the $j^{\text {th }}$ vertex in the copy of R^{\prime} corresponding to v.

Coming back to the construction, if G_{k-1} has N vertices and degree d^{50}, then $G_{k-1} \circledR H$ is a $d^{50} N$-vertex graph with degree d, hence $\left(G_{k-1} \circledR H\right)^{50}$ is
making
graph regular
checking
connec-
tivity in
expanders
G, H and $G_{k} \mathrm{~S}$
replacement product
degree and connectivity of G_{k}
a $d^{50} N$-vertex graph with degree d. If two vertices were connected in G_{k-1}, then they are connected in G_{k}, and if they were disconnected in G_{k-1}, they remain disconnected in G_{k}.

We show that $G_{10 \log n}$ is an expander, and this is an easy instance of
components
in G_{k} are $U P A T H$. Specifically, we can show that every connected component in G_{k} is an $\left(d^{50} n, d^{20}, 1-\epsilon\right)$-expander, where $\epsilon=\min \left(\frac{1}{20}, \frac{1.5^{k}}{12 n^{2}}\right)$.

Set $k=\log n$. Then $G_{10 \log n \text { is an expander with expansion parameter }}$ $\leq 1-\frac{1}{20}$. Hence to find whether s and t are connected, we enumerate over all paths in $G_{10 \log n}$.

Now we argue that, given the input $G=G_{0}$, we can perform a single step of a random walk in G_{k}. That is, given a descriptionof a vertex s in G_{k}, and an $i \in\left[d^{20}\right]$, we can compute the $i^{\text {th }}$ neighbor of G_{k}.

A vertex in $G_{k-1}{ }^{\circledR} H$ is represented by a pair $[u, v], u \in V\left(G_{k-1}\right), v \in$ $V(H)$, and the index of a neighbor is represented by a pair $[b, i], b \in 0,1$, $i \in[d / 2]$. If $b=0$, then the designated neighbor is $\left[u, v^{\prime}\right]$ where v^{\prime} is the $i^{\text {th }}$ neigbor of u in H. Otherwise, $[b, i]$ designates $\left[u^{\prime}, v^{\prime}\right]$ such that u^{\prime} is the $v^{\text {th }}$ neighbor of u in G_{k-1} and v^{\prime} is the index of u as a neighbor of u^{\prime} in G_{k-1}. This can be computed by a recursive algorithm, in logspace.

[^0]: ${ }^{1}$ This means $\lambda \leq 1 / 10$, using the algebraic definition.

