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1 Random walks and eigenvalues

We consider random walks on undirected graphs. The graphs can have �multi
edges� (i.e. there may be multiple parallel edges between the same set of
vertices), and self-loops.

We �rst recall some basic facts from linear algebra. We use the linear
space Rn. If u, v ∈ Rn are two vectors, then their inner product is

〈u, v〉 =
∑
i=[n]

uivi.

The vectors are orthogonal if their inner product is 0. The L2-norm of
any vector v ∈ Rn, denoted ||v||, is
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||v|| =
√
〈v, v〉.

A unit vector is one whose L2-norm is 1.
The Pythagorean theorem says that if u, v ∈ Rnare orthogonal, then

||u+ v||2 = ||u||2 + ||v||2.
The L1-norm of a vector v ∈ Rn, denoted |v|, is |v| =

∑
i∈[n] |vi|.

The relation between these norms is as follows.

Fact 1. For every v ∈ Rn, we have

|v|√
n
≤ ||v|| ≤ |v|

Proof. The upper bound on ||v|| follows from the following observation. We
have

||v||2 =
∑
i∈[n]

v2
i =

∑
i∈[n]

|vi|2 ≤

∑
i∈[n]

|v|i

2

,

where the last inequality is due to the fact that the last term contains an
additional term

∑
i,j∈[n],i<j 2|v|i|v|j which is non-negative. Conversely, we

have,

|v| =
∑
i∈[n]

|vi| =
∑
i∈[n]

|vi × 1| ≤

∑
i∈[n]

|vi|2
∑

i∈[n]

12

 = n||v||,

using the Cauchy-Schwartz inequality.

1.1 Distributions as vectors, and the spectral gap λ(G)

Let G be a d-regular graph (with self-loops and parallel edges), and pbe a
probability distribution on the vertices of G.

Pick a vertex i from G at random according to the distribution p. Now,
let q be the distribution over the vertices de�ned over the neighbors N(i) of
the selected vertex i.

Then for every vertex 1 ≤ j ≤ n, q(j) =
∑

i∈N(j) p(i)×
1
d .

Thus, q = Ap, where A is the normalized adjacency matrix of G-A[i][j]
is de�ned to be the number of edges between i and j, divided by 1/d. We
call A the random-walk matrix of G. Since G is an undirected graph, A is
a symmetric matrix. Since G is d-regular, the sum of entries in each row
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and each column is exactly one. Such a matrix is called a doubly stochastic

matrix.
By induction, it is easy to show that the probability distribution over the

vertices when we start a random walk at vertex i and take ` steps is A`ei.

De�nition 2. Let 1 be the vector
(

1
n , . . . ,

1
n

)
∈ Rn. Denote by 1⊥the set of

vertices orthogonal to 1. The parameter λ(G) is de�ned to be

λ(G) = max
v∈1⊥

||v||=1

||Av||.

We now show that λ(G) is the second eigenvalue of the normalized ad-
jacency matrix of a d-regular graph. This needs some pre-requisite results.

Lemma 3. All eigenvalues of a Hermetian matrix are real.

Proof. Let M be a Hermetian matrix, i.e. M = M∗(entries of M∗are com-
plex conjugates of the corresponding entries of M). Let x be an eigenvector
corresponding to an eigenvalue λ of M . Then
〈λx, x〉 = λ∗x∗x

= x∗M∗x

= x∗Mx

= λxx∗,
since M = M∗for a Hermetian matrix. Since x 6= 0, we have λ = λ∗,
implying that λ is real.

Hence the eigenvalues of the normalized adjacency matrices of undirected
graphs are real. We now have a special property for the eigenvalues of d-
regular undirected graphs. Here, the real eigenvalues are upper bounded in
absolute value by 1.

Lemma 4. Let A be the normalized adjacency matrix of a d-regular graph,

and λ be an arbitrary eigenvalue of A. Then |λ| ≤ 1.

Proof. We show that the spectral norm of A is at most 1. Recall that the
spectral norm is

||A|| = max {||Av|| : v ∈ Rn, ||v|| = 1} = max {|λ| : λis an eigenvalue of A} .

First we show that ||A|| ≤ n2.Note that all powers of A are also stochastic.
Now, since

〈w,Bz〉 = 〈B∗w, z〉

and 〈w, z〉 ≤ ||w||||z|| by the Cauchy-Schwarz inequality, we have
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The above lemma stated that the largest absolute value of any eigenvalue
for the adjacency matrix of a d-regular graph is 1. The following states that
1 is indeed

Lemma 5. If A is the adjacency matrix of a d-regular graph, then its largest

eigenvalue is 1.

Proof. HW2

Lemma 6. 1 is an eigenvalue of the normalized adjacency matrix of a d-

regular graph.

Proof. It su�ces to observe that u = (1/n, . . . , 1/n) is an eigenvector cor-
responding to the eigenvalue 1. Indeed, we have, for every i ∈ [n], (Au)i =∑

j∈[n] aijuj = 1/n
(∑

j∈[n] aij

)
= 1/n = ui.

Hence, we know that the absolute values of the eigenvalues of the nor-
malized adjacency matrix of a d-regular graph can be sorted as 1 = |λ1| ≥
|λ2| ≥ · · · ≥ |λn|,with corresponding eigenvectors 1, v2, . . . , vn. Also, since
1⊥ = Span {v2, . . . , vn}, the value λ(G) will be maximized by the vector v2,
hence, λ(G) = |λ2|.

The quantity 1 − λ(G) (i.e. the di�erence between the �rst and the
second eigenvalues) of the normalized adjacency matrix of a d-regular graph
is called the spectral gap of the matrix. Its importance is that it controls the
rate at which iterated applications of A to a probability vector p causes it
to converge to 1in L2-norm.

Lemma 7. Let G be a regular graph, and p be a probability distribution over

its vertices. Then for every ` ∈ N, we have

||A`p− 1|| ≤ λ`.

Since λ < 1, we conclude that iterated applications of A to any distribu-
tion p will lead to the uniform distribution on the vertices.

Every connected graph has a non-trivial spectral gap.

Lemma 8. Let G be a d-regular connected graph with n vertices, and self-

loops at each vertex. Then λ(G) ≥ 1− 1
12n2 .

Proof. Let ε = 1
6n2 . Let u⊥1 be a unit vector (i.e.

∑
i∈[n] ui = 0 and

||u|| = 1: note here that u is not a probability vector), and let v = Au.
We show that ||v|| ≤ 1− ε

2 . If ||v|| ≤ 1− ε
2 , then ||v||

2 ≤ 1+ε2/2−2ε ≤ 1−ε,
hence, ||v||2 ≤ 1− ε. Thus it su�ces to show that 1− ||v||2 ≥ ε. Since u is a
unit vector, we show that ||u||2 − ||v||2 ≥ ε.
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We �rst show that

||u||2 − ||v||2 =
∑
i∈[n]

∑
j∈[n]

Ai,j(ui − vj)2. (1)

Indeed,∑
i,j

Aij (ui − vj)2 =
∑
i,j

Ai,ju
2
i − 2

∑
i,j

Aijuivj +
∑
i,j

Aijv
2
j

= ||u||2 − 2〈Au, v〉+ ||v||2

= ||u||2 − 2〈v, v〉+ ||v||2

= ||u||2 − ||v||2

Thus, we have established (1)
Now, we show that

∑
i,j Ai,j (ui − vj)

2 ≥ ε. Since u is a unit vector
whose coordinates sum to zero, there must be coordinates ui > 0 and uj < 0
such that at least one of these co-ordinates must have absolute value ≥ 1√

n
,

implying ui − uj ≥ 1√
n
. Let us rename ui as u1 and uj as uD+1, where D

is the diameter of G. Since G is connected, there is a path u1, u2, . . . , uD+1.
We have

1√
n
≤ u1 − uD+1

= (u1 − v1) + (v1 − u2) + · · ·+ (vD − uD+1)

≤ |u1 − v1|+ |v1 − u2|+ · · ·+ |vD − uD+1|

≤
√

(u1 − v1)
2 + (v1 − u2)

2 + · · ·+ (vD − uD+1)
2
√
2D + 1

where the last two inequalities follow from the relation between the L2and
L1norms of the vector (u1 − v1, v1 − u2, . . . , vD − uD+1). Thus∑

i,j

Aij (ui − vj)2 ≥ 1

dn(2D + 1)
≥ 1

2dn2
,

using the trivial estimate D ≤ n − 1. Thus, we have λ(G) ≥ 1 − 1
4dn2 .

Using the tighter estimate D ≤ 3n
(d+1) for regular graphs yields the result as

stated.

2 Expander Graphs

We now give two approaches to the notion of an expander graph - an algebraic
approach, and a combinatorial approach. We show the relationships between
the two.
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2.1 Algebraic De�nition (Spectral expansion)

First, we give the de�nition of an expander graph based on the parameter
λ(G).

De�nition 9. If G is an n-vertex d-regular graph with λ(G) < 1, then we
say that G is an (n, d, λ)-graph.
A family of graphs (Gn)n∈N is an expander graph family if there are con-
stants d and λ < 1 such that for every n ∈ N, Gnis an (n, d, λ)-graph.

The smallest value of λ(G) is (1 − o(1))2
√
d−1
d , which are attained by

Ramanujan graphs.

De�nition 10. We say that the expander graph family (Gn)n∈N is explicit
if there is a polynomial-time aglorithm that, given 1n, outputs the adja-

cency matrix of Gn. We say that (Gn)n∈N is strongly explicit if there is a
polynomial-time algorithm that, given 〈n, v, i〉 ∈ N × V × [d], outputs the
index of the ithneighbor of the vertex v in Gn. [n and d are as in De�nition
9.

2.2 Combinatorial De�nition (Edge expansion)

Let G = (V,E) denote a graph with the set of vertices V and the set of edges
E.
De�nition 11. A constant (d)-degree regular graph G = (V,E) is an
expander if ∃c > 0 ∀S ⊆ V , |S| ≤ |V |/2 implies that

|{(a, b) ∈ E | a ∈ S, b ∈ V − S}|
|{(a, b) ∈ E | a ∈ S}|

≥ c.

That is, a constant fraction of edges incident on vertices of S must be
edges from S to its complement.

We now outline a probabilistic argument for the existence of expander
graphs. This construction is only one of many possible constructions.

Let V = {v1, . . . , vn} be the set of vertices in a graph G we are about
to construct. Consider permutations π1, . . . , πd : [n] → [n] chosen inde-
pendently and uniformly at random from the set of all permutations. We
add edges to the graph as follows. For each permutation πi, 1 ≤ i ≤ d, if
πi(k) = `, then we add the edge {k, `} to G. Then G is a 2d-regular graph.
[For each permutation πi and each k, we have πi(k) = `, and for some inte-
ger j (possibly `), we have πi(j) = k. If j, k, ` are all distinct, this adds two
edges per permutation to the vertex k. If j = ` 6= k, then this adds parallel
edges {k, `} . If j = k = `, then this adds two self-loops to k.]
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Theorem 12. (Existence of expander graphs) The above construction yields

a
(
n, 2d, 1

10

)
expander.

Proof. (Outline) The proof is a probabilistic argument. We show that the
probability that G is not an expander is less than 1. This implies that there
is some expander following the above construction.

Consider S ⊂ V , |S| ≤ n/2, and let S = V \ S. Let S = {vs1 , . . . , vsk} .
Select a vertex vsi . De�ne the indicator random variables

Xj =

{
1 if the jth neighbor of vsi is in S

0 otherwise.

Then E
[
E(vsi , S)

]
= E

[∑
j∈[2d]Xij

]
= d

n(n− k).
Using Hoe�ding bound, it is possible to bound the probability that a

random choice of π1, . . . , πd violates the expander property for the given cut
S. Using union bound, we show that the probability that there is some cut
which violates the expander property, is strictly less than 1.

2.3 Expander Mixing Lemma

Lemma 13. Let G be a d-regular undirected graph, and S, T be disjoint

subsets of vertices. Then∣∣∣∣E(S, T )− d|S||T |
|V |

∣∣∣∣ ≤ λ(G)√|S||T |.
Proof. Note that

|E(S, T )| = 1>SA1T

and
|S||T | = 1>s J1T ,

where J is the all-one matrix. Hence,∣∣∣∣E(S, T )− d|S||T |
|V |

∣∣∣∣ = ∣∣∣∣1>SA1T − d

|V |
1>s J1T

∣∣∣∣
=

∣∣∣∣1>S (A− d

|V |
J

)
1T

∣∣∣∣
≤
∥∥∥1>S ∥∥∥∥∥∥∥A− d

|V |
J

∥∥∥∥ ‖1T ‖
= λ(G)

√
|S||T |.
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This explains why expander graphs are considered �pseudorandom� - the
number of edges from any S to any disjoint T is similar to what you would
expect in a random graph.

2.4 Algebraic expansion implies combinatorial expansion

Lemma 14. If Gis an (n, d, λ)-expander, then it is an
(
n, d, (1−λ)

2

)
-edge

expander.

Proof. Let A be the normalized adjacency matrix of G. Let S and T be
arbitrary disjoint subsets of vertices in G. Using the property that the sec-
ond largest (in absolute value) eigenvalue of A is λ, we show that at least
1−λ

2 fraction of the edges in S cross to T .
De�ne x ∈ Rnby

xi =


+|T | i ∈ S
−|S| i ∈ T
0 otherwise.

Then,
‖x‖2 | = |S||T |2 + |T ||S|2 = |S||T | (|S|+ |T |)

and ∑
i∈[n]

xi =
∑
i∈S
|T | −

∑
i∈T
|S| = |S||T | − |T ||S| = 0.

Thus x ∈ 1>.

Consider the sum of weights obtained by placing the weight
(xi−xj)

2d

2

on every edge {i, j} in the graph G. If the edge is inside S or inside T ,
then this weight is 0, otherwise it is (|S|+ |T |)2. That is, if we de�ne Z =∑

i,j Aij (xi − xj)
2, then it is clear that

Z =
2

d
E(S, T ) (|S|+ |T |)2.

On the other hand, we also have

Z =
∑
i,j

Aijxi2 − 2
∑
i,j

Aijxixj +
∑
i,j

Aijx
2
j = 2 ‖x‖2 − 2〈x,Ax〉.

Since ||Ax|| ≤ λ||x||, we have 2〈x,Ax〉 ≤ 2λ||x||2. This yields that

1

d
E(S, T ) (|S|+ |T |)2 ≥ (1− λ) ‖x‖2 ,
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hence,
1

d
E(S, T ) (|S|+ |T |) ≥ (1− λ)|S||T |,

thus yielding

E(S, T ) ≥ (1− λ) d |S||T |
|S|+ |T |

≥ (1− λ) d |S||T |
|V |

,

as required.

2.5 Combinatorial expansion implies algebraic expansion

Lemma 15. If G is an (n, d, ρ) edge expander, then its second largest eigen-

value is at most
(
1− ρ2

2

)
.

Proof. Let G = (V,E) be an n-vertex d-regular graph such that for every
S ⊂ V , |S| < n/2, there are ρd|S| edges between S and its omplement. Let
A be G's normalized adjacency matrix.

Let λ be the ssecond largest eigenvalue of A. We need to establish that

λ ≤
(
1− ρ2

2

)
. Then there is a vector u⊥1 such that Au = λu. Since u⊥1,

we have 〈u, 1〉 =
∑

i∈[n] ui = 0, it is clear that u has positive and negative
co-ordinates. Write u = v + w where v is non-zero in co-ordinates where u
are positive, and w is non-zero in co-ordinates where u has negative entries.
Assume, without loss of generality, that v contains at most n/2 non-zero
entries (otherwise, we can use −u). De�ne

Z =
∑
i,j

Aij
∣∣v2
i − v2

j

∣∣ .
If we show that

Z ≥ 2ρ ‖v‖2

Z ≤
√

8(1− λ) ‖v‖2 ,
(2)

then it follows that

λ ≥ 1− ρ2

2
.
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� We �rst show that Z ≥ 2ρ ‖v‖2. Sort the co-ordinates of v so that
v1 ≥ v2 ≥ · · · ≥ vn, with vi = 0 for all i ≥ n

2 . Note that

v2
i − v2

j =
(
v2
i − v2

i+1

)
+
(
v2
i+1 − v2

i+2

)
+ · · ·+

(
v2
j−1 − v2

j

)
.

Hence,

Z =
∑
i∈[n]

∑
j∈[n]

Aij
∣∣v2
i − v2

j

∣∣ = ∑
i∈[n]

∑
j∈[i+1,n]

2Aij
(
v2
i − v2

j

)
= 2

∑
i∈[n]

∑
j∈[i+1,n]

∑
k∈[i+1,j−1]

Aij
(
v2
k − v2

k+1

)
.

We now estimate the sum above. For every edge {i, j}, for every k ∈ [i, j),
the term

(
v2
k − v2

k+1

)
appears once with a weight 2/d. Since vk = 0 for

k ≥ n/2, this means that the above sum is

2

d

∑
k∈[n/2]

|E([k], [k + 1, n]|
(
v2
k − v2

k+1

)
≥ 2

d

∑
k∈[n/2]

ρdk
(
v2
k − v2

k+1

)
.

We have, using the fact that vi = 0 for all i ≥ n/2,∑
k∈[n/2]

k
(
v2
k − v2

k+1

)
= v2

1−v2
2+2v2

2−2v2
3+· · ·+(n−1)v2

n−1−(n−1)v2
n = ‖v‖2 .

Hence

Z ≥ 2

d
dρ ‖v‖2 ,

establishing the lower bound for Z.
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Proof. We now show the upper bound Z ≤
√
8(1− λ) ‖v‖2. Since u = v+w

as stated before, we have 〈v, w〉 = 0. Further, Au = λu. Thus, we have

〈Av, v〉+〈Aw, v〉 = 〈A(w+v), v〉 = 〈Au, v〉 = 〈λu, v〉 = 〈λ(v+w), w〉 = λ〈v, v〉 = λ‖v‖2.

Since 〈Aw, v〉 is not positive, we have that 〈Av,v〉‖v‖2 ≥ λ. Hence,

1− λ ≥ 1− 〈Av, v〉
‖v‖2

=
‖v‖2 − 〈Av, v〉

‖v‖2
=

∑
i,j Aij (vi − vj)

2

2‖v‖2
.

Multiplying the numerator and the denominator with the term∑
i,j Aij (vi + vj)

2, we get(∑
i,j Aij (vi − vj)

2
)(∑

i,j Aij (vi + vj)
2
)

2‖v‖2
(∑

i,j Aij (vi + vj)
2
) ≥

(∑
i,j Aij (vi − vj) (vi + vj)

)2

2‖v‖2
(∑

i,j Aij (vi + vj)
2
)

using the Cauchy Schwarz inequality. Hence,

1− λ ≥

(∑
i,j Aij

(
v2
i − v2

j

))2

2‖v‖2
(∑

i,j Aij (vi + vj)
2
) =

Z2

2‖v‖22 (‖v‖2 + 〈Av, v〉)
≥ Z2

8‖v‖2
,

establishing the upper bound.

This completes the proof.

2.6 Error reduction using expanders

One way of reducing the probability of error in a probabilistic algorithm
for a decision problem is to execute it k times independently, and taking
the majority output. By Cherno� bounds, it is possible to show that if the
probability of error of one execution is at most 1/3, then the probability
of the majority of k executions being wrong is 2−Ω(k). If one execution of
the algorithm uses m random coins, then the multiple executions take mk
random coins.

Using expanders, we can reduce the number of random coins to m+O(k)
random coins.

The idea is as follows. Let G be a (2m, d, 1/10)-graph from a strongly
explicit expander graph family.1 Note especially that the number of vertices

1This means λ ≤ 1/10, using the algebraic de�nition.
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in the graph G is equal to the total number of possible random coins used
by the algorithm. Then, we do as follows:

let v1 at random For i=2 to k do: From the d neighbors of vi−1,
choose a vertex vi at random. [Requires O(log d) random bits] Run
the algorithm with the random coins being v1, . . . , vm and output
the majority

Algorithm 1: Error reduction using a random walk on an expander

We now analyze the probability of error of the above algorithm. Assume
that we have an algorithm which makes one-sided errors: for strings not in
the language, the original algorithm always says no, and for strings in the
language, the algorithm says �yes� with probability 2/3.

In the following theorem, setting β = 1/3 and λ = 1/10 implies that the
probability that the above algorithm will reject an input in the language is
bounded by 2−Ω(k).

Theorem 16. (Expander walks)

Let G be an (n, d, λ) expander. Let B ⊆ [n] have at most βn vertices,

where β ∈ (0, 1). Let X1, . . . , Xk ∈ [n] be random variables denoting a k−1-
step random walk in G starting from X1, with X1 being uniformly chosen

from [n]. Then,

Pr
[
∧ki−1 (Xi ∈ B)

]
≤
(
(1− λ)

√
β + λ

)k−1
.

To get some intuition about what the theorem says, think of B being a
�bad set� which we want to escape. If B is very large, i.e. β ≈ 1, then the
right-side expression is approximately 1, so the above bound is useless - so
the bad set cannot be very large. If, on the other hand, the bad set is, say,
0.1n, then the probability that all the randomly chosen vertices are in the
bad set slowly decays with k - the rate of decay is not as fast as λk−1, but it
is still some γk−1,where γ = (1− λ)

√
β + λ < 1.

Proof. For 1 ≤ i ≤ k, let Bi denote the event Xi ∈ B.
Let T : Rn → Rnbe de�ned by (Tu)i = ui if i ∈ B and 0 otherwise. Then

this transformation �zeroes out� coordinates not in B. It is easy to verify
that for every probability vector p over [n], we have Tp is a vector whose
co-ordinates sum to the probability (according to p) of chosing a vertex in B.
If we normalize so that the sum of coordinates of Tp is 1, then we obtain the
cpnditional probability distribution of p conditioned on the event of chosing
a vertex in B.
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Hence, let 1 =
(

1
n , . . . ,

1
n

)
be the uniform distribution, and let pi be the

conditional distribution of X conditioned on the events B1, . . . , Bn. Then

p1 =
1

Pr[B1]
T1

p2 =
1

Pr[B2|B1]Pr[B1]
TAT1

. . .

pi =
1

Pr[Bi | B1, . . . , Bi−1]
(TA)i−1 T1.

Since p is a probability vector, |p| = 1. Hence, Pr
[
∧ki−1 (Xi ∈ B)

]
=∣∣∣(TA)k−1 T1

∣∣∣ ≤ √n‖(TA)k−1 T1‖, where the last inequality is due to the

relation between L1and L2 norms. It su�ces now to show that
√
n‖(TA)k−1 T1‖ ≤

(
(1− λ)

√
β + λ

)
.

We now assume the following fact, given as Lemma 21.4 in the book.
Let A be a random-walk matrix of an (n, d, λ)-expander graph G. Let J be
the matrix with all entries equal to 1/n. (This corresponds to the adjacency
matrix of an n-clique with self-loops. Then

A = (1− λ)J + λC,

where ‖C‖ =: max {‖Av2‖ : v2⊥1} ≤ 1.
The use of this fact is as follows. For any probability vector p, we may
view the probability vector Ap a convex combination of Jp (the uniform
distribution) and Cp. This can be interpreted as Ap goes to Jp with
probability 1− λ and Cp with probability λ.

Let TA be written as (1− λ)TJ + λTC. Then

‖TA‖ = (1− λ) ‖TJ‖+ λ ‖TC‖

= (1− λ)
√
βn

n2
+ λ ‖TC‖ .

Since ‖T‖ ≤ 1, we have ‖TC‖ ≤ 1. Hence

‖TA‖ ≤ (1− λ)
√
β + λ,

whence ∥∥∥(TA)k−1T1
∥∥∥ ≤ ((1− λ)√β + λ

)k−1
√
β√
n
,

as required.
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3 Undirected graph reachability in non-deterministic

logspace

This section contains the result by Reingold that the randomized logspace
algorithm for s-t connectivity in undirected graphs, which relies on random
walks, can be completely derandomized.

Theorem 17. (Reingold)

UPATH ∈ L.
We consider undirected graphs that have a lot of parallel edges. We can making

graph regu-

lar

assume that we have 4-regular graphs, without loss of generality because of
the following reason. If a vertex has degree at most 3, then we can add
parallel self-loops. If a vertex v has degree greater d′ than 3, then we can
replace it with a cycle of d′ vertices such that each of the edges incident on
v now becomes incident on a unique vertex in the cycle. Since this is a local
transformation, it can be performed in logspace.

It is easy to check connectivity in expander graphs. Indeed, Lemma 7 checking

connec-

tivity in

expanders

shows that the probability distribution of the kthvertex in a random walk is
approximately 1

n±
√
nλk. Then a random walk of length k−O(log n) from s

will reach t with positive probability. Hence, If every connected component
in G is an expander, then there is a number k = O(log n) such that every
pair of connected vertices have a path of length ≤ k between them.

G, H and
GksProof. Assume that the input graph G has degree d50 for some su�ciently

large d so that there is an (d50, d/2,0.01)-expander H. We can ensure this by
su�ciently many self-loops if necessary. Since d50is a constant independent
of the number of vertices in G, we can store H in O(1) bits.

Let
G0 = G

Gk = (Gk−1rH)50 ,

where ® denotes the replacement product de�ned as follows. replacement
productLet R,R′ be two graphs such that R has n vertices, and degree D and R′

has D vertices and degree d′. The (balanced) replacement product of R and
R′, denoted RrR′, is the nD-vertex, 2d'-degree graph de�ned as follows.

1. For every vertex u of R, the graph RrR′ has a copy of R′.
2. If {u, v} is an edge in R, then we place d′ parallel edges between the

ithvertex in the copy of R′ corresponding to u and the jth vertex in the copy
of R′ corresponding to v. degree and

connectivity
of Gk

Coming back to the construction, if Gk−1has N vertices and degree d50,
then Gk−1rH is a d50N -vertex graph with degree d, hence (Gk−1rH)50 is

14



a d50N -vertex graph with degree d. If two vertices were connected in Gk−1,
then they are connected in Gk, and if they were disconnected in Gk−1, they
remain disconnected in Gk. components

in Gk are
good ex-
panders

We show that G10 logn is an expander, and this is an easy instance of
UPATH. Speci�cally, we can show that every connected component in Gk

is an
(
d50n, d20, 1− ε

)
-expander, where ε = min

(
1
20 ,

1.5k

12n2

)
.

Set k = log n. Then G10 lognis an expander with expansion parameter
≤ 1 − 1

20 . Hence to �nd whether s and t are connected, we enumerate over
all paths in G10 logn.

Now we argue that, given the input G = G0, we can perform a single
step of a random walk in Gk. That is, given a descriptionof a vertex s in Gk,
and an i ∈

[
d20
]
, we can compute the ithneighbor of Gk. indexing

verticesA vertex in Gk−1rH is represented by a pair [u, v], u ∈ V (Gk−1), v ∈
V (H), and the index of a neighbor is represented by a pair [b, i], b ∈ 0, 1,
i ∈ [d/2]. If b = 0, then the designated neighbor is [u, v′] where v′ is the
ithneigbor of u in H. Otherwise, [b, i] designates [u′, v′] such that u′ is the
vth neighbor of u in Gk−1 and v

′ is the index of u as a neighbor of u′ in Gk−1.
This can be computed by a recursive algorithm, in logspace.
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