
CS 350 2024-25 Sem I Lecture 11

Satyadev Nandakumar

September 4 2024

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 1 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 2 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 3 / 23

Motivation

used for side-e�ects in various settings

the various Monads have di�erent uses.

concept best understood through concrete examples

We see the most important monads in the next 2 lectures.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 4 / 23

Motivation

used for side-e�ects in various settings

the various Monads have di�erent uses.

concept best understood through concrete examples

We see the most important monads in the next 2 lectures.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 4 / 23

Motivation

used for side-e�ects in various settings

the various Monads have di�erent uses.

concept best understood through concrete examples

We see the most important monads in the next 2 lectures.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 4 / 23

Motivation

used for side-e�ects in various settings

the various Monads have di�erent uses.

concept best understood through concrete examples

We see the most important monads in the next 2 lectures.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 4 / 23

De�nition

The Monad class

c l a s s Ap p l i c a t i v e m => Monad m where

(>>=) : : m a => (a => m b) => m b
(>>) : : m a => m b => m b
return : : a => m a

More

return is usually pure from Applicative

We focus on the >>= (bind) function.

Its �rst input is a "boxed a" value

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 5 / 23

De�nition

The Monad class

c l a s s Ap p l i c a t i v e m => Monad m where

(>>=) : : m a => (a => m b) => m b
(>>) : : m a => m b => m b
return : : a => m a

More

return is usually pure from Applicative

We focus on the >>= (bind) function.

Its �rst input is a "boxed a" value

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 5 / 23

De�nition

The Monad class

c l a s s Ap p l i c a t i v e m => Monad m where

(>>=) : : m a => (a => m b) => m b
(>>) : : m a => m b => m b
return : : a => m a

More

return is usually pure from Applicative

We focus on the >>= (bind) function.

Its �rst input is a "boxed a" value

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 5 / 23

De�nition

The Monad class

c l a s s Ap p l i c a t i v e m => Monad m where

(>>=) : : m a => (a => m b) => m b
(>>) : : m a => m b => m b
return : : a => m a

More

return is usually pure from Applicative

We focus on the >>= (bind) function.

Its �rst input is a "boxed a" value

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 5 / 23

De�nition

The Monad class

c l a s s Ap p l i c a t i v e m => Monad m where

(>>=) : : m a => (a => m b) => m b
(>>) : : m a => m b => m b
return : : a => m a

More

return is usually pure from Applicative

We focus on the >>= (bind) function.

Its �rst input is a "boxed a" value

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 5 / 23

De�nition

The Monad class

c l a s s Ap p l i c a t i v e m => Monad m where

(>>=) : : m a => (a => m b) => m b
(>>) : : m a => m b => m b
return : : a => m a

More

return is usually pure from Applicative

We focus on the >>= (bind) function.

Its �rst input is a "boxed a" value

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 5 / 23

De�nition

The Monad class

c l a s s Ap p l i c a t i v e m => Monad m where

(>>=) : : m a => (a => m b) => m b
(>>) : : m a => m b => m b
return : : a => m a

More

return is usually pure from Applicative

We focus on the >>= (bind) function.

Its �rst input is a "boxed a" value

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 5 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 6 / 23

The bind operator

the bind operator is (>>=)::m a -> (a -> m b) -> m b

The �rst argument is of boxed type

The function requires an unboxed value

Point to ponder: how do we unbox the �rst argument?

in the de�nition of (>>=) through pattern-matching, for example.

let's look at a few examples

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 7 / 23

The bind operator

the bind operator is (>>=)::m a -> (a -> m b) -> m b

The �rst argument is of boxed type

The function requires an unboxed value

Point to ponder: how do we unbox the �rst argument?

in the de�nition of (>>=) through pattern-matching, for example.

let's look at a few examples

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 7 / 23

The bind operator

the bind operator is (>>=)::m a -> (a -> m b) -> m b

The �rst argument is of boxed type

The function requires an unboxed value

Point to ponder: how do we unbox the �rst argument?

in the de�nition of (>>=) through pattern-matching, for example.

let's look at a few examples

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 7 / 23

The bind operator

the bind operator is (>>=)::m a -> (a -> m b) -> m b

The �rst argument is of boxed type

The function requires an unboxed value

Point to ponder: how do we unbox the �rst argument?

in the de�nition of (>>=) through pattern-matching, for example.

let's look at a few examples

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 7 / 23

The bind operator

the bind operator is (>>=)::m a -> (a -> m b) -> m b

The �rst argument is of boxed type

The function requires an unboxed value

Point to ponder: how do we unbox the �rst argument?

in the de�nition of (>>=) through pattern-matching, for example.

let's look at a few examples

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 7 / 23

The bind operator

the bind operator is (>>=)::m a -> (a -> m b) -> m b

The �rst argument is of boxed type

The function requires an unboxed value

Point to ponder: how do we unbox the �rst argument?

in the de�nition of (>>=) through pattern-matching, for example.

let's look at a few examples

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 7 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 8 / 23

Maybe as a Monad

code

instance Monad MyMaybe where

return = pure
MyNothing >>= f = MyNothing
(MyJust x) >>= f = f x

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 9 / 23

Example usage for 1 argument functions

Suppose we have a "safe" version of integer division which can handle
division by 0 in a safe manner, by returning Nothing.

safe reciprocal

s a f e R e c i p r o c a l 0 = MyNothing
s a f e R e c i p r o c a l x = MyJust (1/ x)

Calling safeDiv using bind

MyJust 0 . 5 >>= s a f e R e c i p r o c a l >>= s a f e R e c i p r o c a l
== e qu a l s MyJust 0 . 5

MyJust 0 >>= s a f e R e c i p r o c a l >>= s a f e R e c i p r o c a l
== e qu a l s MyNothing

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 10 / 23

Example usage for 1 argument functions

Suppose we have a "safe" version of integer division which can handle
division by 0 in a safe manner, by returning Nothing.

safe reciprocal

s a f e R e c i p r o c a l 0 = MyNothing
s a f e R e c i p r o c a l x = MyJust (1/ x)

Calling safeDiv using bind

MyJust 0 . 5 >>= s a f e R e c i p r o c a l >>= s a f e R e c i p r o c a l
== e qu a l s MyJust 0 . 5

MyJust 0 >>= s a f e R e c i p r o c a l >>= s a f e R e c i p r o c a l
== e qu a l s MyNothing

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 10 / 23

Pipes with types

Monads are often called "pipes with types"

Speci�cally, this refers to the use of >>= analogous to Unix pipes

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 11 / 23

Pipes with types

Monads are often called "pipes with types"

Speci�cally, this refers to the use of >>= analogous to Unix pipes

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 11 / 23

Example usage for 2 argument functions (important)

for multiargument functions, we must use currying

let us see how a 2 argument function, safeDiv can be written - it is
integer division which safely handles division by 0.

safe integer division

s a f eD i v m 0 = MyNothing
s a f eD i v m n = MyJust (m ` div ` n)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 12 / 23

Example usage for 2 argument functions (important)

for multiargument functions, we must use currying

let us see how a 2 argument function, safeDiv can be written - it is
integer division which safely handles division by 0.

safe integer division

s a f eD i v m 0 = MyNothing
s a f eD i v m n = MyJust (m ` div ` n)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 12 / 23

Example usage for 2 argument functions (important)

for multiargument functions, we must use currying

let us see how a 2 argument function, safeDiv can be written - it is
integer division which safely handles division by 0.

safe integer division

s a f eD i v m 0 = MyNothing
s a f eD i v m n = MyJust (m ` div ` n)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 12 / 23

Example usage for 2 argument functions (important)

There are two arguments, so there must be two occurrences of >>= in
the expression. How is this done?

Story:

1 The left operand of the �rst >>= is the boxed �rst argument, say mx

2 The second argument to the right operand of the �rst >>= must be a
function : a unary function.

1 it should take the unboxed �rst operand, say x
2 it should return an expression of the form my >>= foo where

1 my is the boxed second operand to safeDiv

2 foo is a function that takes the unboxed second operand, say y, and

evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 13 / 23

Example usage for 2 argument functions (important)

There are two arguments, so there must be two occurrences of >>= in
the expression. How is this done?

Story:

1 The left operand of the �rst >>= is the boxed �rst argument, say mx

2 The second argument to the right operand of the �rst >>= must be a
function : a unary function.

1 it should take the unboxed �rst operand, say x
2 it should return an expression of the form my >>= foo where

1 my is the boxed second operand to safeDiv

2 foo is a function that takes the unboxed second operand, say y, and

evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 13 / 23

Example usage for 2 argument functions (important)

There are two arguments, so there must be two occurrences of >>= in
the expression. How is this done?

Story:

1 The left operand of the �rst >>= is the boxed �rst argument, say mx

2 The second argument to the right operand of the �rst >>= must be a
function : a unary function.

1 it should take the unboxed �rst operand, say x
2 it should return an expression of the form my >>= foo where

1 my is the boxed second operand to safeDiv

2 foo is a function that takes the unboxed second operand, say y, and

evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 13 / 23

Example usage for 2 argument functions (important)

There are two arguments, so there must be two occurrences of >>= in
the expression. How is this done?

Story:

1 The left operand of the �rst >>= is the boxed �rst argument, say mx

2 The second argument to the right operand of the �rst >>= must be a
function : a unary function.

1 it should take the unboxed �rst operand, say x

2 it should return an expression of the form my >>= foo where

1 my is the boxed second operand to safeDiv

2 foo is a function that takes the unboxed second operand, say y, and

evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 13 / 23

Example usage for 2 argument functions (important)

There are two arguments, so there must be two occurrences of >>= in
the expression. How is this done?

Story:

1 The left operand of the �rst >>= is the boxed �rst argument, say mx

2 The second argument to the right operand of the �rst >>= must be a
function : a unary function.

1 it should take the unboxed �rst operand, say x
2 it should return an expression of the form my >>= foo where

1 my is the boxed second operand to safeDiv

2 foo is a function that takes the unboxed second operand, say y, and

evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 13 / 23

Example usage for 2 argument functions (important)

There are two arguments, so there must be two occurrences of >>= in
the expression. How is this done?

Story:

1 The left operand of the �rst >>= is the boxed �rst argument, say mx

2 The second argument to the right operand of the �rst >>= must be a
function : a unary function.

1 it should take the unboxed �rst operand, say x
2 it should return an expression of the form my >>= foo where

1 my is the boxed second operand to safeDiv

2 foo is a function that takes the unboxed second operand, say y, and

evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 13 / 23

Example usage for 2 argument functions (important)

There are two arguments, so there must be two occurrences of >>= in
the expression. How is this done?

Story:

1 The left operand of the �rst >>= is the boxed �rst argument, say mx

2 The second argument to the right operand of the �rst >>= must be a
function : a unary function.

1 it should take the unboxed �rst operand, say x
2 it should return an expression of the form my >>= foo where

1 my is the boxed second operand to safeDiv

2 foo is a function that takes the unboxed second operand, say y, and

evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 13 / 23

Example usage for 2 argument functions (important)

Calling safeDiv using >>=

(MyJust 4) >>= (\m =>
(MyJust 2) >>= (\n =>

sa f eD i v m n))

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 14 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 15 / 23

The do notation as an alternative to >>=

using the >>= notation

(MyJust 4) >>= (\m =>
(MyJust 2) >>= (\n =>

sa f eD i v m n))

using the do notation

do

m <= MyJust 4
n <= MyJust 2
s a f eD i v m n

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 16 / 23

The do notation as an alternative to >>=

using the >>= notation

(MyJust 4) >>= (\m =>
(MyJust 2) >>= (\n =>

sa f eD i v m n))

using the do notation

do

m <= MyJust 4
n <= MyJust 2
s a f eD i v m n

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 16 / 23

The do notation

m1 >>= \x1 =>
m2 >>= \x2 =>

. . .
mn >>= \xn =>
f x1 x2 . . . xn

do

x1 <= m1
x2 <= m2
. . .
xn <= mn
f x1 x2 . . . xn

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 17 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 18 / 23

The List monad

code

instance Monad [] where

[] >>= f = []
xs >>= f = [y | x <= xs , y <= f x]

Example usage

[1 , 2 , 3] >>= (\ x =>[1+x])

Note that the function returns a singleton list -why?

to be type compatible for >>=

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 19 / 23

The List monad

code

instance Monad [] where

[] >>= f = []
xs >>= f = [y | x <= xs , y <= f x]

Example usage

[1 , 2 , 3] >>= (\ x =>[1+x])

Note that the function returns a singleton list -why?

to be type compatible for >>=

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 19 / 23

The List monad

code

instance Monad [] where

[] >>= f = []
xs >>= f = [y | x <= xs , y <= f x]

Example usage

[1 , 2 , 3] >>= (\ x =>[1+x])

Note that the function returns a singleton list -why?

to be type compatible for >>=

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 19 / 23

The List monad

code

instance Monad [] where

[] >>= f = []
xs >>= f = [y | x <= xs , y <= f x]

Example usage

[1 , 2 , 3] >>= (\ x =>[1+x])

Note that the function returns a singleton list -why?
to be type compatible for >>=

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 19 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 20 / 23

Outline

1 Monads

2 The (>>=) (bind) operator

3 Maybe Monad

4 do notation

5 List Monad

6 State Monad

7 Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 21 / 23

Generic functions

work on all Monads

Monadic map

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 22 / 23

Generic functions

work on all Monads

Monadic map

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 22 / 23

Example code

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 11 September 4 2024 23 / 23

	Monads
	The (>>=) (bind) operator
	Maybe Monad
	do notation
	List Monad
	State Monad
	Generic Functions

