CS 350 2024-25 Sem | Lecture 11

Satyadev Nandakumar

September 4 2024

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 1/23



@ Monads

© The (>>=) (bind) operator
© Maybe Monad

@ do notation

© List Monad

@ State Monad

@ Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 2/23



Outline

@ Monads

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 3/23



Motivation

o used for side-effects in various settings

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 4/23



Motivation

o used for side-effects in various settings

o the various Monads have different uses.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 4/23



Motivation

o used for side-effects in various settings
@ the various Monads have different uses.

@ concept best understood through concrete examples

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 4/23



Motivation

o used for side-effects in various settings
@ the various Monads have different uses.
@ concept best understood through concrete examples

@ We see the most important monads in the next 2 lectures.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 4/23



Definition

The Monad class

class Applicative m => Monad m where
(>>=) :: ma—>(a—>mb)—>mb
(>>) :: ma->mb-—>mb
return :: a —> m a

.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 5/23



The Monad class

class Applicative m => Monad m where
(>>=) :: ma—>(a—>mb)—>mb
(>>) :: ma->mb-—>mb
return :: a —> m a

4

v
Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 5/23



The Monad class

class Applicative m => Monad m where
(>>=) :: ma—>(a—>mb)—>mb
(>>) :: ma->mb-—>mb
return :: a —> m a

@ return is usually pure from Applicative

v
Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 5/23




The Monad class

class Applicative m => Monad m where
(>>=) :: ma—>(a—>mb)—>mb
(>>) :: ma->mb-—>mb
return :: a —> m a

@ return is usually pure from Applicative
@ We focus on the >>= (bind) function.

v
Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 5/23




The Monad class

class Applicative m => Monad m where
(>>=) :: ma—>(a—>mb)—>mb
(>>) :: ma->mb-—>mb
return :: a —> m a

@ return is usually pure from Applicative
@ We focus on the >>= (bind) function.

@ lts first input is a "boxed a" value

v
Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 5/23




The Monad class

class Applicative m => Monad m where
(>>=) :: ma—>(a—>mb)—>mb
(>>) :: ma->mb-—>mb
return :: a —> m a
v
(more |

@ return is usually pure from Applicative

@ We focus on the >>= (bind) function.
@ lts first input is a "boxed a" value

@ Its second input is a function that takes "unboxed a" and returns
"boxed b".

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 5/23



The Monad class

class Applicative m => Monad m where
(>>=) :: ma—>(a—>mb)—>mb
(>>) :: ma->mb-—>mb
return :: a —> m a
v
(more |

return is usually pure from Applicative

o

@ We focus on the >>= (bind) function.
@ lts first input is a "boxed a" value
o

Its second input is a function that takes "unboxed a" and returns
"boxed b".

The return value of bind is "boxed b" - the output of the function
which is the second argument

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 5/23



Outline

© The (>>=) (bind) operator

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 6/23



The bind operator

@ the bind operatoris (>>=)::ma -> (a ->mb) ->m b

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 7/23



The bind operator

@ the bind operatoris (>>=)::ma -> (a ->mb) ->m b

@ The first argument is of boxed type

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 7/23



The bind operator

@ the bind operatoris (>>=)::ma -> (a ->mb) ->m b
@ The first argument is of boxed type

@ The function requires an unboxed value

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 7/23



The bind operator

@ the bind operatoris (>>=)::ma -> (a ->mb) ->m b
@ The first argument is of boxed type

@ The function requires an unboxed value
@ Point to ponder: how do we unbox the first argument?

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 7/23



The bind operator

@ the bind operatoris (>>=)::ma -> (a ->mb) ->m b
@ The first argument is of boxed type

@ The function requires an unboxed value
@ Point to ponder: how do we unbox the first argument?
e in the definition of (>>=) through pattern-matching, for example.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 7/23



The bind operator

@ the bind operatoris (>>=)::ma -> (a ->mb) ->m b
@ The first argument is of boxed type
@ The function requires an unboxed value
@ Point to ponder: how do we unbox the first argument?
e in the definition of (>>=) through pattern-matching, for example.
o let’s look at a few examples

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 7/23



Outline

© Maybe Monad

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 8/23




Maybe as a Monad

code

instance Monad MyMaybe where
return = pure
MyNothing >>= f = MyNothing
(MylJust x) >= f = f x

.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 9/23



Example usage for 1 argument functions

Suppose we have a "safe" version of integer division which can handle
division by 0 in a safe manner, by returning Nothing.

safe reciprocal

safeReciprocal 0 = MyNothing
safeReciprocal x = MylJust (1/x)

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 10/23



Example usage for 1 argument functions

Suppose we have a "safe" version of integer division which can handle
division by 0 in a safe manner, by returning Nothing.

safe reciprocal

safeReciprocal 0 = MyNothing
safeReciprocal x = MylJust (1/x)

Calling safeDiv using bind

MyJust 0.5 >>= safeReciprocal >>= safeReciprocal
— equals MyJust 0.5

MyJust 0 >>= safeReciprocal >>= safeReciprocal
— equals MyNothing

A

— = = = oyt

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 10/23



Pipes with types

@ Monads are often called "pipes with types"

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 11/23



Pipes with types

@ Monads are often called "pipes with types"

@ Specifically, this refers to the use of >>= analogous to Unix pipes

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 11/23



Example usage for 2 argument functions (importa

e for multiargument functions, we must use currying

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 12/23



Example usage for 2 argument functions (importa

e for multiargument functions, we must use currying

@ let us see how a 2 argument function, safeDiv can be written - it is
integer division which safely handles division by 0.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 12/23



Example usage for 2 argument functions (important)

e for multiargument functions, we must use currying

@ let us see how a 2 argument function, safeDiv can be written - it is
integer division which safely handles division by 0.

safe integer division

safeDiv m 0
safeDiv m n

MyNothing
MyJust (m ‘div‘ n)

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 12/23



Example usage for 2 argument functions (importa

@ There are two arguments, so there must be two occurrences of >>=in
the expression. How is this done?

Story:

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 13 /23



Example usage for 2 argument functions (important)

@ There are two arguments, so there must be two occurrences of >>=in
the expression. How is this done?

Story:
© The left operand of the first >>= is the boxed first argument, say mx

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 13 /23



Example usage for 2 argument functions (important)

@ There are two arguments, so there must be two occurrences of >>=in
the expression. How is this done?

Story:
© The left operand of the first >>= is the boxed first argument, say mx

@ The second argument to the right operand of the first >>= must be a
function : a unary function.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 13/23



Example usage for 2 argument functions (important)

@ There are two arguments, so there must be two occurrences of >>=in
the expression. How is this done?

Story:
© The left operand of the first >>= is the boxed first argument, say mx

@ The second argument to the right operand of the first >>= must be a
function : a unary function.

@ it should take the unboxed first operand, say x

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 13/23



Example usage for 2 argument functions (important)

@ There are two arguments, so there must be two occurrences of >>=in
the expression. How is this done?

Story:
© The left operand of the first >>= is the boxed first argument, say mx

@ The second argument to the right operand of the first >>= must be a
function : a unary function.

@ it should take the unboxed first operand, say x
@ it should return an expression of the form my >>= foo where

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 13 /23



Example usage for 2 argument functions (important)

@ There are two arguments, so there must be two occurrences of >>=in
the expression. How is this done?

Story:
© The left operand of the first >>= is the boxed first argument, say mx

@ The second argument to the right operand of the first >>= must be a
function : a unary function.
@ it should take the unboxed first operand, say x
@ it should return an expression of the form my >>= foo where
@ my is the boxed second operand to safeDiv

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 13 /23



Example usage for 2 argument functions (importa

@ There are two arguments, so there must be two occurrences of >>=in
the expression. How is this done?

Story:
© The left operand of the first >>= is the boxed first argument, say mx

@ The second argument to the right operand of the first >>= must be a
function : a unary function.
@ it should take the unboxed first operand, say x
@ it should return an expression of the form my >>= foo where
@ my is the boxed second operand to safeDiv

® foo is a function that takes the unboxed second operand, say y, and
evaluates to safeDiv x y

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 13 /23



Example usage for 2 argument functions (important)

Calling safeDiv using >>=

(MylJust 4) >>= (\m —>
(MylJust 2) >>= (\n —>
safeDiv m n))

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 14 /23



Outline

@ do notation

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11




The do notation as an alternative to >>=

using the >>= notation

(MylJust 4) >>= (\m —>
(MylJust 2) >>= (\n —>
safeDiv m n))

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 16 /23



The do notation as an alternative to >>=
using the >>= notation

(MylJust 4) >>= (\m —>
(MylJust 2) >>= (\n —>
safeDiv m n))

using the do notation

| A

do
m <— MylJust 4
n <— MylJust 2
safeDiv m n

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 16 /23



The do notation

ml >>= \x1 —> do
m2 >>= \x2 —> xl <— ml
x2 <— m2
mn >>= \xn —>
f x1 x2 ... xn xn <— mn
f x1 x2 ... xn

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 17 /23



Outline

© List Monad

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 ptember 4 2024 18/23




The List monad

instance Monad [] where
[1 >=f =[]
xs >>=f = [y | x < x5, y <— f x]

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 19/23



The List monad

instance Monad [] where
[1 >=f =[]
xs >>=f = [y | x < x5, y <— f x]

Example usage

[1,2,3] >= (\x —>[1+x])

Note that the function returns a singleton list -why?

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024



The List monad

instance Monad [] where
[1 >=f =[]
xs >>=f = [y | x < x5, y <— f x]

Example usage

[1,2,3] >= (\x —>[1+x])

Note that the function returns a singleton list -why?

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024



The List monad

instance Monad [] where
[1 >=f =[]
xs >>=f = [y | x < x5, y <— f x]

Example usage

[1,2,3] >= (\x —>[1+x])

Note that the function returns a singleton list -why?
to be type compatible for >>=

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024



Outline

@ State Monad

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 ptember 4 2024 20 /23




Outline

@ Generic Functions

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 21/23




Generic functions

@ work on all Monads

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 22 /23



Generic functions

@ work on all Monads

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 September 4 2024 22 /23



Example code

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 11 ptember 4 2024 23 /23




	Monads
	The (>>=) (bind) operator
	Maybe Monad
	do notation
	List Monad
	State Monad
	Generic Functions

