
CS 350 2024-25 Sem I Lecture 9

Satyadev Nandakumar

August 31, 2024

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 1 / 20

Outline

1 Applicatives (continued)

2 Monads - introduction

3 Monads - Input output in Haskell

4 The do notation

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 2 / 20

Outline

1 Applicatives (continued)

2 Monads - introduction

3 Monads - Input output in Haskell

4 The do notation

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 3 / 20

One way to think about Functors versus Applicative

fmap f [1,2,3]

______ ________/ ____ ____/

\/ \/

raw (unboxed) pure (boxed)

function value

[List Functor]

fmap f (Just 1)

______ ________/ ____ ____/

\/ \/

raw (unboxed) pure (boxed)

function value

[Maybe Functor]

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 4 / 20

One way to think about Functors versus Applicative

(pure add3) <*> (MyJust 1) <*> (MyJust 2) <*> (MyJust 3)

can be written in pre�x form as as

(<*>) ((<*>) ((<*>) (pure add3) (MyJust 1))

(MyJust 2))

(MyJust 3))

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 5 / 20

One way to think about Functors versus Applicative

(<*>)

((<*>)

((<*>) (pure add3) (MyJust 1)) unlike in fmap,

__________/ ________/ function is also

boxed boxed boxed

function value

________________________________/ return value is

boxed, curried function a boxed function, so

(MyJust 2)) form same as

________/ the innermost (<*>)

boxed value

_________________________________/

boxed, curried function

(MyJust 3))

________/

boxed value
Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 6 / 20

Outline

1 Applicatives (continued)

2 Monads - introduction

3 Monads - Input output in Haskell

4 The do notation

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 7 / 20

Motivation

The boxed curried functions in Applicative "carry a context"
(previous arguments)

in some sense, they carry a state

Can we have mutable state in Haskell?

Important in practical applications - input/output, random number
generation etc.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 8 / 20

Motivation

The boxed curried functions in Applicative "carry a context"
(previous arguments)

in some sense, they carry a state

Can we have mutable state in Haskell?

Important in practical applications - input/output, random number
generation etc.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 8 / 20

Motivation

The boxed curried functions in Applicative "carry a context"
(previous arguments)

in some sense, they carry a state

Can we have mutable state in Haskell?

Important in practical applications - input/output, random number
generation etc.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 8 / 20

Motivation

The boxed curried functions in Applicative "carry a context"
(previous arguments)

in some sense, they carry a state

Can we have mutable state in Haskell?

Important in practical applications - input/output, random number
generation etc.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 8 / 20

Outline

1 Applicatives (continued)

2 Monads - introduction

3 Monads - Input output in Haskell

4 The do notation

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 9 / 20

Hello, World in Haskell

io_1.hs

main = putStrLn "Hello, World!"

1 We can compile this using ghc and run the executable (OR)

2 Load io_1.hs interactively in ghci, and call main

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 10 / 20

Hello, World in Haskell

io_1.hs

main = putStrLn "Hello, World!"

1 We can compile this using ghc and run the executable (OR)

2 Load io_1.hs interactively in ghci, and call main

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 10 / 20

Hello, World in Haskell

io_1.hs

main = putStrLn "Hello, World!"

1 We can compile this using ghc and run the executable (OR)

2 Load io_1.hs interactively in ghci, and call main

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 10 / 20

Hello, World in Haskell

io_1.hs

main = putStrLn "Hello, World!"

1 We can compile this using ghc and run the executable (OR)

2 Load io_1.hs interactively in ghci, and call main

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 10 / 20

I/O in Haskell

reading from the console, displaying a GUI, outputting to the terminal
all change the state of the world.

An interactive program: a pure function taking

the state of the world as an argument

returning a modi�ed state of the world as output.

The modi�ed state will have the side-e�ects of interaction

A �rst attempt is type IO = World -> World

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 20

I/O in Haskell

reading from the console, displaying a GUI, outputting to the terminal
all change the state of the world.

An interactive program: a pure function taking

the state of the world as an argument

returning a modi�ed state of the world as output.

The modi�ed state will have the side-e�ects of interaction

A �rst attempt is type IO = World -> World

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 20

I/O in Haskell

reading from the console, displaying a GUI, outputting to the terminal
all change the state of the world.

An interactive program: a pure function taking

the state of the world as an argument

returning a modi�ed state of the world as output.

The modi�ed state will have the side-e�ects of interaction

A �rst attempt is type IO = World -> World

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 20

I/O in Haskell

reading from the console, displaying a GUI, outputting to the terminal
all change the state of the world.

An interactive program: a pure function taking

the state of the world as an argument

returning a modi�ed state of the world as output.

The modi�ed state will have the side-e�ects of interaction

A �rst attempt is type IO = World -> World

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 20

I/O in Haskell

reading from the console, displaying a GUI, outputting to the terminal
all change the state of the world.

An interactive program: a pure function taking

the state of the world as an argument

returning a modi�ed state of the world as output.

The modi�ed state will have the side-e�ects of interaction

A �rst attempt is type IO = World -> World

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 20

I/O in Haskell

reading from the console, displaying a GUI, outputting to the terminal
all change the state of the world.

An interactive program: a pure function taking

the state of the world as an argument

returning a modi�ed state of the world as output.

The modi�ed state will have the side-e�ects of interaction

A �rst attempt is type IO = World -> World

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 20

I/O in Haskell

reading from the console, displaying a GUI, outputting to the terminal
all change the state of the world.

An interactive program: a pure function taking

the state of the world as an argument

returning a modi�ed state of the world as output.

The modi�ed state will have the side-e�ects of interaction

A �rst attempt is type IO = World -> World

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 20

I/O in Haskell

but I/O also may return a value (for example, reading a character).

Hence, type IO a = World -> (a,World) may be better

Expressions whose type is IO are called actions.

e.g. ~ getChar IO Char ~
e.g. If your code has a main function doing I/O, then ~main IO ()~

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 12 / 20

I/O in Haskell

but I/O also may return a value (for example, reading a character).

Hence, type IO a = World -> (a,World) may be better

Expressions whose type is IO are called actions.

e.g. ~ getChar IO Char ~
e.g. If your code has a main function doing I/O, then ~main IO ()~

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 12 / 20

I/O in Haskell

but I/O also may return a value (for example, reading a character).

Hence, type IO a = World -> (a,World) may be better

Expressions whose type is IO are called actions.

e.g. ~ getChar IO Char ~
e.g. If your code has a main function doing I/O, then ~main IO ()~

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 12 / 20

I/O in Haskell

but I/O also may return a value (for example, reading a character).

Hence, type IO a = World -> (a,World) may be better

Expressions whose type is IO are called actions.

e.g. ~ getChar IO Char ~

e.g. If your code has a main function doing I/O, then ~main IO ()~

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 12 / 20

I/O in Haskell

but I/O also may return a value (for example, reading a character).

Hence, type IO a = World -> (a,World) may be better

Expressions whose type is IO are called actions.

e.g. ~ getChar IO Char ~
e.g. If your code has a main function doing I/O, then ~main IO ()~

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 12 / 20

Outline

1 Applicatives (continued)

2 Monads - introduction

3 Monads - Input output in Haskell

4 The do notation

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 13 / 20

do syntax

io_2.hs : an interactive Hello
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

putStrLn $ "Hello, " ++ name ++ "!"

Type of main

1 main :: IO ()

2 returns an IO action with an empty tuple

3 Can be seen as returning "void" in C

4 happens usually when the last statement in main is an output function.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 20

do syntax

io_2.hs : an interactive Hello
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

putStrLn $ "Hello, " ++ name ++ "!"

Type of main

1 main :: IO ()

2 returns an IO action with an empty tuple

3 Can be seen as returning "void" in C

4 happens usually when the last statement in main is an output function.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 20

do syntax

io_2.hs : an interactive Hello
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

putStrLn $ "Hello, " ++ name ++ "!"

Type of main

1 main :: IO ()

2 returns an IO action with an empty tuple

3 Can be seen as returning "void" in C

4 happens usually when the last statement in main is an output function.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 20

do syntax

io_2.hs : an interactive Hello
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

putStrLn $ "Hello, " ++ name ++ "!"

Type of main

1 main :: IO ()

2 returns an IO action with an empty tuple

3 Can be seen as returning "void" in C

4 happens usually when the last statement in main is an output function.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 20

do syntax

io_2.hs : an interactive Hello
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

putStrLn $ "Hello, " ++ name ++ "!"

Type of main

1 main :: IO ()

2 returns an IO action with an empty tuple

3 Can be seen as returning "void" in C

4 happens usually when the last statement in main is an output function.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 20

do syntax

io_2.hs : an interactive Hello
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

putStrLn $ "Hello, " ++ name ++ "!"

Type of main

1 main :: IO ()

2 returns an IO action with an empty tuple

3 Can be seen as returning "void" in C

4 happens usually when the last statement in main is an output function.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 20

Explanation (continued)

1 Note the <- for reading input.

2 We saw that last in the list comprehension notation

3 There, it denoted, reading from a list in sequence

4 Similarly, it denotes reading from an IO stream here

5 In this case, getLine:: IO String

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 15 / 20

Explanation (continued)

1 Note the <- for reading input.

2 We saw that last in the list comprehension notation

3 There, it denoted, reading from a list in sequence

4 Similarly, it denotes reading from an IO stream here

5 In this case, getLine:: IO String

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 15 / 20

Explanation (continued)

1 Note the <- for reading input.

2 We saw that last in the list comprehension notation

3 There, it denoted, reading from a list in sequence

4 Similarly, it denotes reading from an IO stream here

5 In this case, getLine:: IO String

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 15 / 20

Explanation (continued)

1 Note the <- for reading input.

2 We saw that last in the list comprehension notation

3 There, it denoted, reading from a list in sequence

4 Similarly, it denotes reading from an IO stream here

5 In this case, getLine:: IO String

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 15 / 20

Explanation (continued)

1 Note the <- for reading input.

2 We saw that last in the list comprehension notation

3 There, it denoted, reading from a list in sequence

4 Similarly, it denotes reading from an IO stream here

5 In this case, getLine:: IO String

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 15 / 20

main returning values

io_2.hs modi�ed
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

return name

Type of main

1 main:: IO String

2 To return a value, use return (this is actually a function inside
Monad, not a keyword.)

3 See :info Monad

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 16 / 20

main returning values

io_2.hs modi�ed
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

return name

Type of main

1 main:: IO String

2 To return a value, use return (this is actually a function inside
Monad, not a keyword.)

3 See :info Monad

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 16 / 20

main returning values

io_2.hs modi�ed
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

return name

Type of main

1 main:: IO String

2 To return a value, use return (this is actually a function inside
Monad, not a keyword.)

3 See :info Monad

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 16 / 20

main returning values

io_2.hs modi�ed
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

return name

Type of main

1 main:: IO String

2 To return a value, use return (this is actually a function inside
Monad, not a keyword.)

3 See :info Monad

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 16 / 20

main returning values

io_2.hs modi�ed
main = do

putStrLn "Hi there, what's your name?"

name <- getLine

return name

Type of main

1 main:: IO String

2 To return a value, use return (this is actually a function inside
Monad, not a keyword.)

3 See :info Monad

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 16 / 20

More about the do notation

A sequence of IO actions can be combined into a single expression
using do.

lines are executed one after the other (succeeding lines can use
variables in preceding lines)
Statements of the form v <- foo are called generators (similar as in
list comprehension)
The right side of every <- inside do will be an action (i.e. expression
of type IO)
statements within do must be laid out according to Haskell
indentation rules.

io_3.hs : let inside do

main = do

putStrLn "Hi there, what's your name?"

let nameM = getLine -- new

name <- nameM

putStrLn $ "Hello, " ++ name ++ "!"

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 17 / 20

More about the do notation

A sequence of IO actions can be combined into a single expression
using do.
lines are executed one after the other (succeeding lines can use
variables in preceding lines)

Statements of the form v <- foo are called generators (similar as in
list comprehension)
The right side of every <- inside do will be an action (i.e. expression
of type IO)
statements within do must be laid out according to Haskell
indentation rules.

io_3.hs : let inside do

main = do

putStrLn "Hi there, what's your name?"

let nameM = getLine -- new

name <- nameM

putStrLn $ "Hello, " ++ name ++ "!"

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 17 / 20

More about the do notation

A sequence of IO actions can be combined into a single expression
using do.
lines are executed one after the other (succeeding lines can use
variables in preceding lines)
Statements of the form v <- foo are called generators (similar as in
list comprehension)

The right side of every <- inside do will be an action (i.e. expression
of type IO)
statements within do must be laid out according to Haskell
indentation rules.

io_3.hs : let inside do

main = do

putStrLn "Hi there, what's your name?"

let nameM = getLine -- new

name <- nameM

putStrLn $ "Hello, " ++ name ++ "!"

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 17 / 20

More about the do notation

A sequence of IO actions can be combined into a single expression
using do.
lines are executed one after the other (succeeding lines can use
variables in preceding lines)
Statements of the form v <- foo are called generators (similar as in
list comprehension)
The right side of every <- inside do will be an action (i.e. expression
of type IO)

statements within do must be laid out according to Haskell
indentation rules.

io_3.hs : let inside do

main = do

putStrLn "Hi there, what's your name?"

let nameM = getLine -- new

name <- nameM

putStrLn $ "Hello, " ++ name ++ "!"

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 17 / 20

More about the do notation

A sequence of IO actions can be combined into a single expression
using do.
lines are executed one after the other (succeeding lines can use
variables in preceding lines)
Statements of the form v <- foo are called generators (similar as in
list comprehension)
The right side of every <- inside do will be an action (i.e. expression
of type IO)
statements within do must be laid out according to Haskell
indentation rules.

io_3.hs : let inside do

main = do

putStrLn "Hi there, what's your name?"

let nameM = getLine -- new

name <- nameM

putStrLn $ "Hello, " ++ name ++ "!"

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 17 / 20

More about the do notation

A sequence of IO actions can be combined into a single expression
using do.
lines are executed one after the other (succeeding lines can use
variables in preceding lines)
Statements of the form v <- foo are called generators (similar as in
list comprehension)
The right side of every <- inside do will be an action (i.e. expression
of type IO)
statements within do must be laid out according to Haskell
indentation rules.

io_3.hs : let inside do

main = do

putStrLn "Hi there, what's your name?"

let nameM = getLine -- new

name <- nameM

putStrLn $ "Hello, " ++ name ++ "!"

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 17 / 20

Example program : reverse every word in the input line

Reverse every word in every line (io_4.hs)

main = do

line <- getLine

if null line

then return () -- see :t return

else do

putStrLn $ reverseWords line

main -- recurse

reverseWords = unwords . map reverse . words

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 18 / 20

Example program : adding input integers

Adding numbers input by user (empty line to terminate)

main = add_numbers 0

add_numbers init_val = do

next_number_string <- getLine

if null next_number_string

then putStrLn $ show init_val

else do

let

next_number = read next_number_string::Float

add_numbers $ init_val + next_number

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 19 / 20

Explanation

1 shows that other functions can also use the do notation

2 note the coercion operator (::) to convert string to Float

3 What is the type of read ?

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 20 / 20

Explanation

1 shows that other functions can also use the do notation

2 note the coercion operator (::) to convert string to Float

3 What is the type of read ?

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 20 / 20

Explanation

1 shows that other functions can also use the do notation

2 note the coercion operator (::) to convert string to Float

3 What is the type of read ?

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 20 / 20

	Applicatives (continued)
	Monads - introduction
	Monads - Input output in Haskell
	The do notation

