
CS 350 2024-25 Sem I Lecture 9

Satyadev Nandakumar

August 31, 2024

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 1 / 19

Outline

1 Functors

2 Applicatives

3 Monads

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 2 / 19

Outline

1 Functors

2 Applicatives

3 Monads

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 3 / 19

Map over lists

map

map f [] = []

map f (x:xr) = (f x) : (map f xr)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 4 / 19

Map over binary trees

mapTree (from previous lecture)

mapTree f Nil = Nil

mapTree f (Node n l r) = (Node (f n) (mapTree f l) (mapTree f r))

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 5 / 19

Map over Maybe

Often computations may not succeed, but it is not a fatal error.

e.g. trying to �nd an occurrence of an element in a list which does not

contain the element. We would like to return a value which means "Not

found"

Maybe is used in computations which may either return a value Just x, or

may return Nothing.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 6 / 19

Map over Maybe

Often computations may not succeed, but it is not a fatal error.

e.g. trying to �nd an occurrence of an element in a list which does not

contain the element. We would like to return a value which means "Not

found"

Maybe is used in computations which may either return a value Just x, or

may return Nothing.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 6 / 19

Maybe basic de�nition and example

Maybe

data Maybe a = Nothing | Just a

-- example : find value of a key in a dictionary,

-- otherwise return Nothing

occursDict k [] = Nothing

occursDict k (x:xr) = if (fst x)==k then Just (snd x)

else occursDict k xr

instance Functor Maybe where

fmap = mapMaybe where

mapMaybe Nothing = Nothing

mapMaybe (Just v) = Just (f v)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 7 / 19

NestedList and map over nested lists

Nested Lists

data NestedList a = Nil |

LL1 a (NestedList a) |

LL2 (NestedList a) (NestedList a) deriving Show

nlmap f Nil = Nil

nlmap f (LL1 x ys) = LL1 (f x) (nlmap f ys)

nlmap f (LL2 xs ys) = LL2 (nlmap f xs) (nlmap f ys)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 8 / 19

Laws

fmap preserves the structure (shape and number of elements)

Laws
1 fmap id = id

2 fmap (f.g) = (fmap f).(fmap g)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 9 / 19

Note about laws

Prove this (on paper) for each fmap implementation.

Haskell compiler does not enforce this.

What's wrong with mapDestroy f xs = [] as an fmap for lists?

Which law does it violate? Does it obey any law?

Try a similar function for binary trees, and verify that it will compile.

This shows that these laws are properties that we have to ensure

manually, and are beyond the type-checker or the compiler.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 10 / 19

Outline

1 Functors

2 Applicatives

3 Monads

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 11 / 19

Motivation

Functors are for one-argument functions

can we generalize for multi-argument functions?

use currying

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 12 / 19

Motivation, continued

e.g. fmap2 (+) (Just 1) (Just 2) operates with addition, which

requires two arguments.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 13 / 19

Currying

converting a multi-argument function into a sequence of partially-evaluated

single argument functions

Example of curried addition

add = (\l x -> (\l y -> x+y))

Explanation

1 on one argument x, it returns a function

2 this function takes an argument y and returns x+y

3 the second function has access to x because of lexical scoping

4 uses the concept of closure.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 19

Currying

converting a multi-argument function into a sequence of partially-evaluated

single argument functions

Example of curried addition

add = (\l x -> (\l y -> x+y))

Explanation

1 on one argument x, it returns a function

2 this function takes an argument y and returns x+y

3 the second function has access to x because of lexical scoping

4 uses the concept of closure.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 14 / 19

Applicatives

Applicative

type Applicative :: (* -> *) -> Constraint

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

GHC.Base.liftA2 :: (a -> b -> c) -> f a -> f b -> f c

(*>) :: f a -> f b -> f b

(<*) :: f a -> f b -> f a

{-# MINIMAL pure, ((<*>) | liftA2) #-}

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 15 / 19

Maybe as Applicative

An implementation of Maybe as Applicative

data MyMaybe a = MyNothing | MyJust a

deriving Show

instance Functor MyMaybe where

fmap = mapMyMaybe where

mapMyMaybe f MyNothing = MyNothing

mapMyMaybe f (MyJust x) = MyJust (f x)

instance Applicative MyMaybe where

pure = MyJust

(MyJust foo) <*> mx = fmap foo mx

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 16 / 19

List as Applicative

List as Applicative

instance Applicative [] where

pure x = [x]

gs <*> xs = [g x | g <- gs, x <- xs]

Example usage

add3 x y z = x+y+z

pure add3 <*> (MyJust 3) <*> (MyJust 4) <*> (MyJust 5)

add3 <$> [1,2,3] <*> [4,5,6] <*> [7,8,9]

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 17 / 19

Applicative Laws

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 18 / 19

Outline

1 Functors

2 Applicatives

3 Monads

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 9 August 31, 2024 19 / 19

	Functors
	Applicatives
	Monads

