CS 350 2024-25 Sem | Lecture 9

Satyadev Nandakumar

August 31, 2024

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 1/19

Outline

@ Functors

© Applicatives

© Monads

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 2/19

Outline

@ Functors

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 3/19

Map over lists

map £ [1 = []
map £ (x:xr) = (f x) : (map f xr)

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 4/19

Map over binary trees

mapTree (from previous lecture)

mapTree f Nil = Nil
mapTree £ (Node n 1 r) = (Node (f n) (mapTree f 1) (mapTree f|:

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 5/19

Map over Maybe

Often computations may not succeed, but it is not a fatal error.

e.g. trying to find an occurrence of an element in a list which does not
contain the element. We would like to return a value which means "Not
found"

Maybe is used in computations which may either return a value Just x, or
may return Nothing.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 6/19

Map over Maybe

Often computations may not succeed, but it is not a fatal error.

e.g. trying to find an occurrence of an element in a list which does not
contain the element. We would like to return a value which means "Not
found"

Maybe is used in computations which may either return a value Just x, or
may return Nothing.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 6/19

Maybe basic definition and example

data Maybe a = Nothing | Just a

-- example : find value of a key in a dictionary,

-- otherwise return Nothing

occursDict k [] = Nothing

occursDict k (x:xr) = if (fst x)==k then Just (snd x)
else occursDict k xr

instance Functor Maybe where
fmap = mapMaybe where
mapMaybe Nothing = Nothing
mapMaybe (Just v) = Just (f v)

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 7/19

NestedList and map over nested lists

data NestedList a = Nil |
LL1 a (NestedList a) |
LL2 (NestedList a) (NestedlList a) deriving Show

nlmap f Nil = Nil
nlmap f (LL1 x ys) LL1 (f x) (nlmap f ys)
nlmap £ (LL2 xs ys) = LL2 (nlmap f xs) (nlmap f ys)

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 8/19

e fmap preserves the structure (shape and number of elements)

O fmap id = id

Q fmap (f.g) = (fmap f).(fmap g)

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 9/19

Note about laws

@ Prove this (on paper) for each fmap implementation.
o Haskell compiler does not enforce this.

e What's wrong with mapDestroy f xs = [] as an fmap for lists?
Which law does it violate? Does it obey any law?

@ Try a similar function for binary trees, and verify that it will compile.
This shows that these laws are properties that we have to ensure
manually, and are beyond the type-checker or the compiler.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 10/19

Outline

© Applicatives

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 11/19

Motivation

@ Functors are for one-argument functions
@ can we generalize for multi-argument functions?

@ use currying

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 12/19

Motivation, continued

@ e.g. fmap2 (+) (Just 1) (Just 2) operates with addition, which
requires two arguments.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 13 /19

Currying

converting a multi-argument function into a sequence of partially-evaluated
single argument functions

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 14 /19

converting a multi-argument function into a sequence of partially-evaluated
single argument functions

Example of curried addition
add = (\L x -> (\1 y -> z+y))

Explanation

@ on one argument x, it returns a function
@ this function takes an argument y and returns x+y
© the second function has access to x because of lexical scoping

@ uses the concept of closure.

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 14 /19

Applicatives

Applicative

type Applicative :: (* -> %) -> Constraint
class Functor f => Applicative f where
pure :: a -> f a

(<#>) :: f (a->b) >fa->fb

GHC.Base.liftA2 :: (a ->b ->c¢) >fa >fb ->fc
(¥>) :: fa->fb->fhb

(<x) :: fa->fb->fa

{-# MINIMAL pure, ((<*>) | 1liftA2) #-}

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 15 /19

Maybe as Applicative

An implementation of Maybe as Applicative

data MyMaybe a = MyNothing | MyJust a
deriving Show

instance Functor MyMaybe where
fmap = mapMyMaybe where
mapMyMaybe f MyNothing = MyNothing
mapMyMaybe f (MyJust x) = MyJust (f x)

instance Applicative MyMaybe where
pure = MyJust
(MyJust foo) <*> mx = fmap foo mx

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 16 /19

List as Applicative
List as Applicative

instance Applicative [] where
pure x = [x]
gs <¥>xs = [gx | g <- gs, x <- xs]

Example usage

add3 x y z = xtytz

pure add3 <x> (MyJust 3) <*> (MyJust 4) <*> (MyJust 5)
add3 <$> [1,2,3] <*x> [4,5,6] <*x> [7,8,9])

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 17 /19

Applicative Laws

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 18/19

Outline

© Monads

Satyadev Nandakumar CS 350 2024-25 Sem | Lecture 9 August 31, 2024 19/19

	Functors
	Applicatives
	Monads

